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Abstract

This work presents the results of a finite element analysis (FEA) used to simulate two-dimensional (2D) sliding between two interfering
elasto-plastic cylinders. The material for the cylinders is modeled as elastic-perfectly plastic and follows the von Mises yield criterion. The
FEA provides trends in the deformations, reaction forces, stresses, and net energy losses as a function of the interference and sliding distance
between the cylinders. Results are presented for both frictionless and frictional sliding and comparisons are drawn. The effects of plasticity and
friction on energy loss during sliding are isolated. This work also presents empirical equations thatt relate the net energy loss due to sliding
under an elasto-plastic deformation as a function of the sliding distance. Contour plots of the von Mises stresses are presented to show the
formation and distribution of stresses with increasing plastic deformation as sliding progresses. This work shows that for the plastic loading
cases the ratio of the horizontal force to the vertical reaction force is non-zero at the point where the cylinders are perfectly aligned about the
vertical axis. In addition, a “load ratio” of the horizontal tugging force to the vertical reaction force is defined. Although this is analogous to
the common definition of the coefficient of friction between sliding surfaces, it just contains the effect of energy loss in plasticity. The values
of the contact half-width are obtained for different vertical interferences as sliding progresses.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Sliding contact between two elasto-plastic cylinders and
spheres has important engineering applications in both the
macro- and the microscale. The current results are normalized
to be valid in both scales as long as continuum mechanics
prevails. In microscale, it is well known that asperities deform
plastically during sliding contact between rough surfaces.
Thus, it is important to know the effect the contact has on the
surface material and the geometry through plastic deformations
and residual stresses. In macroscale, this information may be
useful in analyzing the friction, wear, and deformation of con-
tacts such as in gears, rolling element bearings, wheel on rail,
when sliding may occur (in addition to rolling). In an electro-
magnetic launcher (EML) [1] an armature slides in a prede-
fined spacing between two rails and, hence, this application
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lends itself specifically to the boundary conditions used in the
current work. The results presented here may also be valu-
able in analyzing human joints, such as that investigated by
Chen et al. [2], wherein 2D plane strain finite elements are
employed to model the temporomandibular joint using hyper-
elastic (Mooney–Rivlin) material. The approach is similar to
the one taken in the current study only that here metallic-like
material behavior is prevailing.

Both elastic and elastic–plastic spherical contacts have been
analyzed in great detail in the last four decades. Predominantly
considering normal loading only, a wide array of works have
analyzed the contact of rough surfaces as reviewed by Liu et al.
[3]. These works are based on the contact behavior of a single
asperity in a statistical model of multiple asperity contact. All
these works, share the common methodology of Thomas [4]
and Greenwood [5] that is as follows:

(1) Replacing the two rough surfaces by a smooth surface in
contact with an equivalent rough surface.

http://www.elsevier.com/locate/nlm
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Nomenclature

b contact half width
C critical yield stress coefficient
E elastic modulus

E′ equivalent modulus of elasticity, 1
E′ = 1−�2

1
E1

+
1−�2

2
E2

Fx horizontal reaction force at the base of the bot-
tom cylinder

Fy vertical reaction force at the base of the bottom
cylinder

i load step number
L length of contact
n number of load steps employed to simulate a

quasi-static sliding process
P contact force
P ∗ non-dimensional load, P/Pc
po maximum contact pressure
R radius of the cylinder
R equivalent radius, 1

R
= 1

R1
+ 1

R2

Sy yield strength
U potential (strain) energy
u maximum vertical displacement
x horizontal sliding distance covered by the top

cylinder up to the ith load step

�x total horizontal distance covered by the top
cylinder to complete sliding

�x equal increments in which the total sliding hor-
izontal sliding is covered

� Poisson’s ratio
�e maximum equivalent von Mises stress
� interference between cylinder surfaces
�∗ non-dimensional vertical interference between

cylinders, �/�c

Superscript

∗ dimensionless

Subscripts

c critical value at onset of plastic deformation
′ equivalent
1 bottom cylinder
2 top cylinder
net net value after sliding is completed
res residual value after sliding is completed
x corresponding to horizontal axis
y corresponding to vertical axis

(2) Replacing asperities with simple geometrical shapes.
(3) Assume a probability distribution for asperity parameters.

Some of these works are restricted mainly to pure elas-
tic regime, such as the landmark work by Greenwood and
Williamson [6]. Other works, such as Greenwood and Tripp [7],
Lo [8], Whitehouse and Archard [9], Tsukizoe and Hisakado
[10], and Bush et al. [11,12], extend the Greenwood and
Williamson model in the elastic regime to a variety of geome-
tries and different basic assumptions. Other works concentrate
on pure plastic deformation, and are based on the models of
Abbott and Firestone [13] and Tsukizoe and Hisakado [10].

Normal spherical contacts in the elastic–plastic regime by
Evseev et al. [14], Chang [15], and Zhao [16]. FEA has been
used by Vu-Quoc et al. [17] to analyze contact between two
spheres, which by symmetry is equivalent to that of one sphere
in contact with a frictionless rigid plane, but the analysis is
restricted to specific parameters and lack generality. Adams
and Nosonovsky [18] provide a review on contact modeling
with an emphasis on the forces of contact and their relationship
to the geometrical, material and mechanical properties of the
contacting bodies.

Recently, Jackson and Green [19], Wang and Keer [20], and
Nelias et al. [21], have explored hemispherical elastic–plastic
contact in normal loading. However, the characteristics of nor-
mal contact as opposed to sliding contact are quite different,
and thus the latter is explored in this work. Hamilton and

Goodman [22] presented implicit equations and graphs of yield
parameter and tensile stress distribution for circular sliding con-
tact using the von Mises criterion for the prediction of yield-
ing. Hamilton [23] further developed the implicit results in
[22] to obtain explicit formulae for the stresses beneath a slid-
ing, normally loaded Hertzian contact. However, these studies
[22,23] concentrated on the effect of increasing friction in a
sliding contact against a rigid flat, and on the resulting develop-
ment of impending failure regions, but a coefficient of friction
had a priori been imposed. In contrast, this works isolates the
effects of purely frictionless sliding of interfering cylinders, and
hence the development of stresses, energy loss, and other phe-
nomena occur solely due to mechanical deformation. In [24]
a dynamic analysis gives an estimation of the contact forces
between wheels and rails in sliding. The analysis herein, is nat-
urally related to such a line (or cylindrical) contact. Perhaps
one of the earliest attempts in tackling interference sliding be-
tween two bodies (spheres) is that by Faulkner and Arnell [25],
who quote extremely long execution times even for very coarse
FEA meshes (∼960 h for each simulation), leaving out gener-
alization of the results. Steady-state dry frictional sliding be-
tween two elastic bodies by using Fourier series and integral
transform techniques has been examined by Nosonovsky and
Adams [26].

It is clear from the literature survey that a thorough investi-
gation of the actual forces, deformations, stress formations, and
most importantly energy losses due to plasticity for sliding in
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the elastic–plastic regime is missing. The equivalent model of
“elliptical contact against a rigid flat” is the consequence of the
elastic Hertzian theory. Even though it had been used in normal
elasto-plastic contact, such an “equivalent model” has no phys-
ical grounds or mathematical proof once plasticity takes place,
certainly not when the two sliding bodies have distinct material
properties. These parameters are particularly critical in under-
standing the sliding phenomenon under extreme conditions in
an EML, and play a pivotal role in the design and construction
of such systems. This work helps in understanding the afore-
mentioned factors, thereafter the thermal and electromagnetic
aspects of the problem can be amalgamated with these find-
ings to form a comprehensive understanding of such sliding.
In this work, elastic-perfectly plastic cylinders in sliding over
each other are treated as whole bodies, and not as a part of a
statistically generated surface. By means of FEA actual sliding
is simulated, wherein the two interfering bodies are both fully
modeled, without resorting to the common model of an equiv-
alent body against a flat. This is particularly important when
sliding takes place between dissimilar materials.

In the elastic domain and up to the onset of plasticity, the
Hertzian solution [27] provides critical values of load, contact
half-width, and strain energy. As explained by Green [28] and
Jackson et al. [29], hardness is not implemented as an unique
material property as it varies with the deformation itself as well
as with other material properties such as yield strength, Pois-
son’s ratio, and the elastic modulus. Instead, the critical verti-
cal interference, �c, as derived by Green [28] for cylindrical
contact, is employed. This quantity is derived by using the dis-
tortion energy yield criterion at the site of maximum von Mises
stress by comparing the stress value with the yield strength, Sy .
The critical values of force per unit length, half contact width,
and interference are given as

Pc

L
= �R(CSy)

2

E′ , bc = 2R(CSy)

E′ ,

�c = R

(
CSy

E

)2 [
2 ln

(
2E′

CSy

)
− 1

]
, (1)

where

C = 1√
1 + 4(� − 1)�

, ��0.1938,

C = 1.164 + 2.975� − 2.906�2, � > 0.1938. (2)

The value of C is obtained from elasticity considerations, and
the critical parameters are obtained at the point of yielding
onset. To account for two different material properties note that
CSy =min(C(�1)Sy1, C(�2)Sy2). The maximum elastic energy
that can possibly be stored (up to the point of yielding onset) is
used to normalize the net energy loss due to plastic deformation
after sliding, and is likewise given by Green [28] as

Uc

L
= �(CSy)

4R2

4E′3

{
4 ln

[
2E′

CSy

]
− 3

}
. (3)

In this work, the critical values are calculated for a steel ma-
terial with properties as follows: E1 = E2 = 200 GPa, and
�1 = �2 = 0.32. Since all the quantities are subsequently be-
ing normalized by the aforementioned Eqs. (1)–(3), the ensuing
results apply for any geometry scale (as long as homogeneous
and isotropic continuum mechanics prevails); therefore, the
radii for the cylinders in the FE model are subjectively (and
conveniently) chosen to be R1 =R2 =1m. The above equations
are expanded upon in the Appendix, and are likewise used to
establish convergence of the finite element model.

1.1. Assumptions

Following are the assumptions that are used to simplify the
problem:

(1) The two cylinders are considered to be infinitely long in
the direction perpendicular to sliding. This enables the FE
model to be in 2D under the assumption of plane strain
behavior.

(2) The sliding bodies are idealized to have elastic-perfectly
plastic behavior.

(3) At first sliding is assumed to be a frictionless process, and
hence no coefficient of friction is input in the FE model.
This is done in order to isolate the effect of plasticity during
sliding. Subsequently, this is relaxed and frictional sliding
is investigated.

(4) It is assumed that the mesh validated up to the onset of
plasticity is also robust for analysis of the elastic–plastic
regime, since no closed form solution is available beyond
that point for this purpose.

(5) Deformations in the bulk area are assumed not to have a
significant bearing on the effects of sliding in the contact
region. It is recognized that in contradiction to a point
(hemispherical) contact problem, bulk deformation cannot
entirely be neglected. However, this work concentrates on
the area close to the contact surfaces and far field bulk
deformation effects are assumed not to have a significant
effect on the region close to the contact surfaces.

(6) Sliding is simulated as a quasi-static process, i.e., time-
dependent phenomena are not analyzed. Hence, dynamic
effects are ignored and material properties used do not
depend on the strain rate. Likewise, adhesion and stick-slip
phenomena are not accounted for.

(7) Temperature effects that occur due to sliding are not con-
sidered, and the material properties used are assumed to be
at room temperature.

2. The finite element model

Two plane semi-circles representing the sliding cylinders are
modeled and one is made to traverse over the other with a preset
vertical interference � between the two (see Fig. 1). Sliding
is simulated first as a frictionless process, i.e., no coefficient
of friction is input in the FE model. Also, repeated sliding is
not considered, and hence the top cylinder is made to pass
over the bottom cylinder just once (i.e., ‘one-pass’ sliding).
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Fig. 1. Schematics of the sliding process.

Fig. 2. Schematic of the FEA model for sliding between cylinders.

Sliding is attained piecewise as the top cylinder traverses a
total displacement, �x (see Fig. 1). This �x is calculated from
geometry and it is a function of the vertical interference, �,
where naturally �x increases with the preset interference �.
That total distance is divided into n equal load steps, �x=�x/n.
Hence, at load step i the location of the center of the traversing
cylinder relative to the center of the stationary cylinder is

x = i · �x − �x

2
, i = 0, n + m.

Because of material tugging m load steps are added to ensure
exit from sliding contact.

Normalizing x by R, the loading phase is defined by the re-
gion x/R < 0, where the top cylinder is pressed horizontally
against the bottom one before passing the vertical axis of align-
ment (x/R = 0). The unloading phase is defined in the region
x/R > 0, where the top cylinder has passed the vertical axis of
alignment, and where the cylinders are expected to repel each
other. The nodes at the base of the bottom cylinder (Fig. 2)
are constrained from displacement in the X and Y directions.
The nodes at the base of the top cylinder are also constrained
from displacement in the Y direction, but are allowed to dis-
place freely in the X direction upon sliding. The fixed hori-
zontal sliding displacement is equally imposed on these nodes.
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Table 1
Validation of the meshing scheme employed

�∗ ANSYS b(m) Theoretical b(m) % diff ANSYS �e (GPa) Theoretical �e (GPa) % diff ANSYS po (GPa) Theoretical po (GPa) % diff

0.2 0.00663 0.00579 −14.3 0.338 0.355 4.8 0.615 0.646 4.7
0.3 0.00784 0.00726 −8.0 0.433 0.445 2.7 0.786 0.809 2.9
0.5 0.01010 0.00964 −4.8 0.585 0.591 1.0 1.058 1.074 1.5
0.7 0.01202 0.01162 −3.4 0.709 0.712 0.5 1.279 1.294 1.2
1.0 0.01445 0.01397 −3.4 0.858 0.856 −0.2 1.545 1.556 0.7

A reasonably large range of vertical interferences, �, coupled
with horizontal sliding distance (from one side where the cylin-
ders are just in contact to the other side where they just come
out of contact), is used to simulate sliding.

To establish confidence in the mesh for different loading
schemes (ranging from elastic to highly plastic), a 2D plane
strain FEA simulation of the cylindrical line contact is per-
formed. The modeling and meshing for this simulation is sim-
ilar in approach to that employed by Jackson et al. [19,29].
However, instead of a quarter-circle and a rigid flat, contact in
this case is between two elasto-plastic semi-circles represent-
ing the two cylinders. In addition, a new meshing scheme is
introduced wherein a semi-circular dense region of elements is
used to capture the high stresses in the small region of contact
(see Fig. 2). In [19,29] a rectangular region is employed for the
same purpose.

The commercial FEA software ANSYS� is used to per-
form the analyses. The mesh is constructed using eight
node quadrilateral elements (Plane 82) and surface-to-surface
contact elements (Contact 172 and Target 169). Once the
predetermined regions are established, ANSYS is used to auto-
matically mesh the said regions. Various mesh schemes are tried
to achieve convergence. The optimized model has 83 372 nodes,
25 570 elements, and 200 contact elements in the region of
interest.

The mesh is validated first for a purely aligned normal elastic
contact (non-sliding), with Sy=0.856 GPa, and results are com-
pared against the analytical solution obtained by Green [28],
as summarized in the Appendix. In this FEA model values of
vertical interference, �, are imposed and numerical results are
extracted for the contact half-width, the maximum von Mises
stresses, and the maximum pressure (i.e., pe = |�z| at the axis
of symmetry on the surface � = |z/b| = 0; see Eq. (11) in the
Appendix). Corresponding to the imposed interferences, �, the
theoretical values of P/L are solved from Eq. (13), the contact
widths, b, are calculated from Eq. (9), the maximum von Mises
stresses are calculated from Eqs. (10) and (12) at �m, and the po
values are calculated from Eq. (8). The results of this validation
are summarized in Table 1, where the last row represents the
critical values at � = �c (or �∗ = �/�c = 1). For the interfer-
ences examined, the maximum disagreement between the FEA
values and the theoretical values occurs at the lowest applied
vertical interference of �∗ = 0.2. The accord between the FEA
and the theoretical values gets progressively better as higher
vertical interferences approaching criticality are applied. The

contact half width, bc, differs by only 3.4%, where the maxi-
mum equivalent von Mises stress, �e, and the maximum con-
tact pressure, pe, differ by less than 1%. The larger error in the
contact half-width is attributed to the finite FEA grid, i.e, the
resolution or spacing between the contact elements. The smaller
the interference, the smaller number of contact elements are in
effect, leading to a larger error, and vice versa. Noteworthy,for
as long as � < �c extremely good agreement is found also be-
tween the parameters calculated for sliding contact when the
two cylinders are at vertical alignment compared to those for
non-sliding normal contact (as it should).

For this non-linear problem, small load steps are used toward
incremental (quasi-static) sliding from one end to the other.
Values of the contact force, stress tensor, von Mises stress, and
displacement are recorded at each load step. The contact forces
are determined by summing the reaction forces at the base of
the bottom cylinder.

In this analysis, sliding takes place under interference val-
ues sufficiently larger than the critical interference, and thus
additional mesh convergence tests are now undertaken. As no
closed-form solutions are available for the elastic–plastic do-
main with which the FE model can be validated, additional
combinations of reasonable boundary conditions and meshing
schemes are checked to attest the sliding results. These are all
done at an intermediate interference value of �∗=9, and results
are compared against each other. The cases are as follows:

• To verify the meshing scheme employed, both the top and
bottom cylinders are meshed such that the nodes and ele-
ments generated mirror each other across their respective axes
of symmetry. This is different from the automated (default)
meshing technique employed by ANSYS (described earlier),
which generates a mesh that is not mirrored, and hence is not
exactly symmetric. However, the results obtained via both
approaches are practically identical.

• The employed boundary condition, wherein the bottom cylin-
der base is affixed and the top cylinder slid across, is checked
against other equivalent boundary conditions. This is done
by placing the nodes at the bases of both cylinders on rollers.
Opposing horizontal displacements are then applied to the
bases of both cylinders to simulate sliding. This procedure
yields results that are identical to those presented in this
paper.

• Instead of an 8-node quad element, a 6-node triangular ele-
ment in a perfectly symmetric meshing is used on the case
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where the two cylinders are slid against each other. Again,
this resulted in no change in the intermediate load steps and
the final results.

• Likewise, affixing the upper cylinder and sliding the bottom
cylinder, with either meshing scheme, also produces iden-
tical results. That is, the upper cylinder and lower cylinder
maintained their own stress and deformation patterns.

Noteworthy, the computational cost is considerably smaller
when using the boundary conditions where displacement
is applied to only one of the cylinders. Since all feasible
combinations of boundary conditions and various meshing
schemes produce indistinguishable results, the meshing scheme
discussed first is upheld and used for the entire study. It is
postulated that the FEA mesh used is trustworthy.

3. Results and discussion

The following results pertain to steel with Sy = 0.9115 GPa,
and they are presented for a range of preset normalized vertical
interferences, �∗, from 1 (elastic limit) to 20 (elastic–plastic).
The material properties used for the cylinders are chosen
to be steel, which is commonly employed in many engi-
neering applications. The computation time is about an hour
for sliding with small vertical interferences to about 4 h for
sliding with larger interferences on a dual processor Xeon
3 GHz PC with hyperthreading turned on to utilize four virtual
processors.

3.1. Deformation

Since both cylinders are modeled with the same material
properties, the deformation pattern followed by the two is iden-
tical. The maximum vertical displacements, uy , of the nodes
on the cylinder surfaces are monitored in order to understand
the deformation of the cylinders. The position of this maximum
vertical displacement on the surface of the cylinders moves
along as sliding progresses because of the curvature of the two
cylinders. The value uy is effectively normalized by the crit-
ical interference �c given in Eq. (1). Plots of the normalized
maximum vertical displacement, uy/�c, with respect to the
normalized sliding distance of the top cylinder, x/R, are pre-
sented for a range of �∗ varying from 1 (elastic limit) to 20
(elastic–plastic) in Fig. 3.

As expected, for �∗ = 1, the vertical displacements are sym-
metric about the axis of alignment. Also, displacements increase
with the increase in vertical interference �∗, i.e., with increase
in load. It can be seen that for �∗ > 1, there is plastic defor-
mation in that the curves do not come back down to the zero
displacement line, i.e., to the X axis. Instead, it flattens out and
preserves the plastic deformation that has occurred as can be
seen from the last few data points on each curve. This normal-
ized vertical residual deformation, ures/�c, increases with the
increase in vertical interference between the cylinders as shown
in Fig. 3. Also, for �∗ = 20, it is observed that the maximum
vertical deformation actually occurs after the cylinders have
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Fig. 4. Development of residual deformation with increase in vertical inter-
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passed the vertical axis of alignment. This phenomenon can be
attributed to material tugging and pile-up caused by large plas-
tic deformation.

To capture the residual deformations the last point in
Fig. 3 are extracted for different ranges of the applied vertical
interference, and equations are fitted to the numerical data, as
shown in Fig. 4:

ures

�c
= 0, �∗ �1,

ures

�c
= 0.03045(�∗ − 1) + 0.05556(�∗ − 1)2, 1��∗ �4,

ures

�c
= 0.59139 + 0.47795(�∗ − 4)

+ 0.01391(�∗ − 4)2, 4��∗ �20. (4)

These equations are continuous at �∗ = 1 and 4.
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3.2. Forces

Reaction forces at the base nodes of the bottom cylinder are
summed for each load step and plotted against the normalized
horizontal sliding distance x/R. Both the tangential reaction
force, Fx , and the normal reaction force, Fy , are normalized
by the critical load, Pc given in Eq. (1). Figs. 5 and 6 show the
trends followed by Fx/Pc and Fy/Pc, respectively, as the top
cylinder slides across the bottom one.

As expected, it is apparent that for the vertical interference
�∗ = 1, the curve is anti-symmetric in Fig. 5, and symmetric
in Fig. 6, signifying no plasticity or loss of energy once sliding
is completed. However, for the elastic–plastic loading cases,
where �∗ > 1, permanent plastic deformation occurs and some
energy is lost in the process. This is evident from Fig. 5 as
the area under (energy invested in sliding) is larger than that
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Fig. 7. “Load Ratio” vs. normalized sliding distance.

above (energy restored in rebound) for all the curves in the
elastic–plastic regime. This shows that more work is done in
pushing the top cylinder across the bottom one in the loading
phase, than what is earned once it has passed the vertical axis
of alignment in the unloading phase where both cylinders are
repelling each other. Also, it is apparent from Fig. 6 that the
normalized vertical reaction force, Fy , is symmetric for �∗ =1,
but becomes higher and increasingly skewed during loading
than unloading as the applied vertical interference is increased.
This may be attributed to predominantly elastic resistance
during loading which diminishes once plasticity spreads in
the contact.

Now, a “load ratio” is defined as Fx/Fy , being the ratio of
the horizontal reaction force with respect to the vertical reaction
force. This ratio is generated and plotted versus the normalized
sliding distance as shown in Fig. 7. While each of the data points
on these curves can be thought of as a quantity similar to the
instantaneous local coefficient of friction, it is emphasized that
this is not a “coefficient of friction” in the traditional sense since
other effects (e.g., adhesion, contamination) are not accounted
for. This load ratio applies only to this isolated mechanical
sliding process. Moreover, in the region where the cylinders
repel each other, the positive “load ratio” does not truly indicate
a “negative coefficient of friction.”

For the elastic loading case of �∗ = 1, the curve in Fig. 7
is (as expected) anti-symmetric. For the elastic–plastic loading
cases with �∗ranging from 2 to 20, it can be seen that the
maximum magnitude of the “load ratio” increases steadily as
�∗ increases. However, once the top cylinder has passed the
vertical alignment axis and is repelling the bottom cylinder, the
maximum “load ratio” magnitude does not vary much for the
different �∗ applications. This is evident from plot in Fig. 7.
It is thus reasonable to postulate that for �∗ �4, the maximum
“load ratio” in unloading becomes constant with a value of
approximately 0.05. In addition, the plot clearly shows that
for all vertical interferences, the magnitude of the “load ratio”
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Fig. 8. von Mises stress contours for sliding cylindrical contact at vertical interferences of (i) �∗ = 4 and (ii) �∗ = 20 at the vertical axis of alignment.

Fig. 9. Residual von Mises stress contours for sliding cylindrical asperities for (a) �∗ = 12, (b) �∗ = 20.

during elasto-plastic loading is always greater than that during
unloading.

It is also clear from the plot that for the plastic loading
cases, the ratio of the horizontal to the vertical reaction force is
not zero at the point where the cylinders are perfectly aligned
about the vertical axis. It is noteworthy from Figs. 5 and 7 that
for sliding between cylinders, additional tangential load can be
supported with increasing �∗, even if the contact interface has
become plastic, where in fact the tangential load increases with
the interference.

3.3. Stress formation

The stress regions formed in both cylinders are by and large
anti-symmetric about the axis of alignment throughout the
course of the sliding process, since identical material prop-
erties and geometries are used to model both cylinders. This
holds for the elastic, as well as all of the elastic–plastic ranges.
At low interferences, the high stress region develops below the
contact interface. As sliding progresses and load on the cylin-
ders increases for the elastic–plastic loading ranges, yielding
occurs and a sub-surface plastic core develops (see Fig. 8).
Elastic material surrounds this plastic core, and provides the
greater part of resistance to sliding. As the load increases with
the progression of sliding (i.e., rendering an increase in the

effective interference), the elastic region diminishes, making
way for the growth and propagation of a plastic core, which
diminishes the resistance to sliding.

At the vertical axis of alignment, as seen from Fig. 8, the von
Mises stress distribution in both cylinders is mostly identical
(in an anti-symmetric pattern), with regions of slightly higher
concentrations in the direction of sliding signifying resistance
to sliding. For lower elastic–plastic vertical interferences, such
as �∗ = 4, high stresses remain near the area of contact, i.e.,
there is no significant stress formation at the base of the cylin-
ders (where they may be connected to a bulk material). As the
vertical interference increases, however, stresses can be seen
developing in the body of the cylinder as well as at the base (see
Fig. 8). This signifies shear tugging at the cylinder base, and
for vertical interference causing extreme plastic deformations,
this might very well be the region with the highest stresses.
This work concentrates on the elastic–plastic regime at the
vicinity of contact, and hence only those results are expounded
upon.

Fig. 9 shows the distribution of the residual stresses after
sliding is completed for vertical interference values �∗=12 and
20. As expected, the residual stresses for the case with �∗ =20
are more widely spread than those for �∗ = 12. Some of these
stresses remain at the yield value (i.e., residual plastic strain).
Also, it can be seen that there are remnants of the stress in the
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bulk of the cylinders away from the area of contact as well as
at their bases. As discussed earlier, for highly plastic vertical
interferences, this occurrence would become significant as the
mode of failure might be the initiation of cracks or the shearing-
off of the cylinders. This phenomenon is beyond the scope of
this work and it is not explored herein.

3.4. Energy loss

Energy loss in sliding for individual preset vertical interfer-
ence cases is separately calculated by evaluating the areas un-
der each of their respective horizontal reaction curves in Fig. 5.
This represents the net work done when sliding the top cylinder
over the bottom. It is emphasized that because of the bound-
ary conditions used herein, where the nodes at the bases of the
two half cylinders do not translate in the Y direction, the reac-
tion force Fy does not do work. The work done is solely due
to Fx . The values obtained, Unet, are normalized by Uc from
Equation (3). Fig. 10 shows the plot of Unet/Uc for each of
the preset vertical interferences, �∗, as calculated from the FE
simulations.

Second order polynomial curves are then fitted to the nu-
merical data. They represent the trend followed by energy loss
for different ranges of the applied vertical interference, �∗, and
are found to closely capture the increasing energy loss with in-
creasingly elastic–plastic loading. The fitted equations are as
follows:

Unet

Uc
= 0, �∗ �1

Unet

Uc
= −9.487(�∗ − 1) + 13.409(�∗ − 1)2, 1��∗ �4

Unet

Uc
= 92.221 + 85.238(�∗ − 4)

+ 12.133(�∗ − 4)2, 4��∗ �20. (5)

These equations are continuous at �∗ = 1 and 4.
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3.5. Contact half-width

Fig. 11 shows the trend followed by the contact half-width,
b, as it changes with each load step as sliding with different
vertical interferences progresses. It is normalized by the critical
contact half-width, bc, and is hence plotted as the ratio b∗. It
is observed that the contact half width curve for sliding with
vertical interference �∗ =1 is symmetric about the vertical axis
of alignment where the cylinders are exactly on top of each
other. As �∗ increases, the curves get more and more skewed
at the loading phase of the sliding process. Also in Fig. 11,
the value of the contact half-width is given by the symbol ‘x’
for perfectly symmetric, normal contact simulation between the
same cylinders, designated by �n. For �∗ = 1, as expected the
contact half-widths for the sliding and normal loading cases
is found to be the same. However, for interferences �∗ �1,
the contact half-widths, b∗, for normal loading of cylinders are
consistently higher than those for sliding interference at the
vertical axis of alignment. This is because in normal loading
material is flattened and flows equally sideways, while in sliding
material is being tugged, flowing plastically away from the
contact interface.

3.6. Frictional vs. frictionless sliding

In reality, sliding between any two surfaces is likely to con-
tain friction. Friction plays an important, and in most cases
pivotal, role in the behavior of surfaces as they slide over each
other. Now that the part played by pure plastic deformation in
elastic–plastic sliding has been analyzed, the next step is to see
how friction combines with the aforementioned to affect the
sliding process. This analysis is thus closer to the actual setting
found in most applications, and hence a relatively common co-
efficient of friction of 0.3 is used for the purpose of the FEA.
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This helps in highlighting the part played by each of the two
aforementioned factors. The methodology employed for this
analysis is the same as the approach used in the frictionless
analysis, except that in this case a coefficient of friction is in-
troduced between the two sliding cylinders to study the effect
of friction in such sliding.

3.6.1. Deformations
Fig. 12 shows the plot of uy/�c vs. x/R for both the fric-

tionless and frictional steel–steel sliding cases for the vertical
interferences of �∗=12, 15, and 20. The peak deformations for
�∗ = 12 are about the same, but while for the frictionless slid-
ing case the deformation decreases after reaching the peak, for
frictional sliding it increases marginally. For �∗ = 15 and 20,
the magnitudes of uy/�c are noticeably higher than those for
the frictionless case. The resultant residual deformation mag-
nitudes for frictional sliding cases are found to be significantly
higher than those found in corresponding frictionless sliding
cases. This is evident from the fact that in Fig. 12 curves for
frictional sliding consistently finish higher than the correspond-
ing frictionless curves.

3.6.2. Forces
Figs. 13 and 14 show a comparison of the plots of the nor-

malized horizontal force and normalized vertical force for the
frictionless and frictional sliding cases. Expectedly, none of the
curves that are plotted for the frictional sliding cases show pos-
itive values. The peak values for both the frictionless as well
as the frictional sliding cases lie before x/R = 0. Because of
material pile-up in the cases of frictional sliding, the area un-
der the horizontal reaction curve is much larger than that in the
frictional sliding cases. This signifies greater energy loss due
to the presence of friction.

3.6.3. Stress formations
Fig. 15 captures the von Mises stress contours found in fric-

tionless and frictional sliding analyses. The most significant
difference in the stress contours of these two cases is the axis of
symmetry for the stress pattern. For both frictionless as well as
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frictional sliding, the stress field in the two sliding steel cylin-
ders is mirrored about the horizontal contact interface. How-
ever, for frictional sliding the higher stress fields that develop
during the course of sliding are tilted towards the normal to the
actual plane of contact between the two cylinders. This plays
an important role in the progression of yield and diminishment
of the elastic core in frictional sliding. Moreover, friction also
leads to the accumulation of stresses at the corners of the two
cylinders as seen in Fig. 15. For high vertical interferences pro-
gressively large magnitudes of stresses are found at the base
of the cylinders for both frictionless as well as frictional slid-
ing. It is thus reasonable to postulate that for extremely high
vertical interference values, these regions with such accumula-
tion of stresses will be the cause of shearing or failure. While
in the frictionless sliding case such stresses are found to de-
velop equally at both the corners of the base of the cylinders,
this is not the case when sliding is simulated in the presence
of friction. For example, at x/R = 0 for sliding with a vertical
interference of �∗ = 15 the maximum von Mises stress, �e, at
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Fig. 15. von Mises stress contours for (a) frictional and (b) frictionless steel–steel sliding cylindrical contact for vertical interferences of (i) �∗ = 4 and (ii)
�∗ = 15 at the vertical axis of alignment for steel–steel sliding.

Fig. 16. Residual von Mises stress contours for (a) frictionless and (b) frictional steel–steel sliding contact for �∗ = 9.

the base of the bottom cylinder for the frictionless sliding case
is found to be 0.453 GPa. On the other hand, for sliding with
friction the magnitude of �e is 0.715 GPa. This difference holds
true for all the vertical interference cases, and the magnitudes
of the stresses at the base of the cylinders are always higher
for frictional sliding as compared to those for the frictionless
sliding cases. It is notable that these stress magnitudes found at
the base for both frictionless and frictional sliding are still be-
low the yield strength; hence no yielding has occurred at these
locations.

As far as the residual stresses are concerned, it is discovered
that the spread is wider on the case of frictionless sliding. This
can be observed by comparing residual von Mises stress contour
plots shown in Fig. 16, which show the distributions for the
frictionless and frictional sliding cases for a vertical interference

of �∗ = 9. While some of the stresses are found to remain
at yield value (i.e., residual plastic strain) for the frictionless
sliding case, no such stress magnitudes remain after sliding is
completed with friction.

3.6.4. Energy loss
In the absence of displacement in the vertical direction in

the overall sliding process, the net energy loss purely due
to plastic deformation in frictional sliding can be extracted
by

Unet = Utotal − Ufriction,

Unet =
∫ x2

x1

Fx dx − 	
∫ x2

x1

Fy dx, (6)
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where x1 and x2, respectively, represent the starting and ending
sliding positions of the top cylinder. Thus, energy loss due to
plasticity in frictional sliding for individual preset vertical in-
terference cases is essentially the difference between the area
under the true horizontal reaction curve and the true vertical
reaction plotted against the true sliding distance scaled by the
coefficient of friction, 	. The value thus obtained is called the
net energy lost due to plastic deformation, Unet, and is nor-
malized by Uc from Eq. (3). A second order polynomial curve
is then fitted to the numerical data. It represents the trend fol-
lowed by energy loss in frictional sliding for the range of the
applied vertical interference, �∗, and is found to closely cap-
ture the increasing energy loss with increasingly elastic–plastic
loading. The fitted equations are as follows:

Unet

Uc
= 0.690 − 2.980(�∗ − 1)

+ 16.991(�∗ − 1)2, 1��∗ �6,

Unet

Uc
= 410.557 + 240.080(�∗ − 6)

+ 9.809(�∗ − 6)2, 6��∗ �20. (7)

These equations are continuous at �∗ = 6.
Fig. 17 shows curves representing energy loss due to plas-

ticity in frictionless as well as frictional sliding. It is seen that
the magnitudes of energy lost due to plasticity, Unet/Uc, are
found to be consistently higher in the case of frictional slid-
ing for the various vertical interferences in the elastic–plastic
regime. Moreover, these magnitudes are seen to progressively
get larger as the vertical interference increases. This observa-
tion can be attributed to the occurrence of greater plastic de-
formation in sliding in the presence of friction as compared to
sliding without friction.

3.6.5. Contact half-widths
Fig. 18 shows a comparison of the contact half widths, b∗,

for �∗ = 12 and 20 between frictionless and frictional sliding
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Fig. 18. Comparison of normalized contact half-width plots for steel–steel
sliding with and without friction.

between two steel cylinders. It is interesting to note that the
curves for frictional sliding are more or less symmetric about
x/R = 0, whereas for frictionless sliding they are skewed to-
wards the left of the vertical axis of alignment. The magnitudes
of b∗ for frictional sliding are found to be much larger than
those for frictionless sliding.

4. Conclusions

This work presents the results of a FEA of sliding between
two elastic–plastic bodies in cylindrical contact. The material
for both the cylinders is modeled as elastic—perfectly plastic
and yielding occurs according to the von Mises yield criterion.
A 2D plane strain finite element model is utilized to explore the
deformations, forces, stress formations, and energy losses for
such frictionless sliding contact. Then a coefficient of friction
of magnitude 0.3 is introduced between the two surfaces to
simulate frictional sliding.

The maximum deformation at the contact interface increases
with the increase in vertical interference. As sliding progresses
into the unloading phase, the deformation curves flatten out
at the end to signify permanent plastic deformation at the end
of sliding. Significant pile-up is found in the cylinders for
frictional sliding for high vertical interferences, whereas the
pile-ups found after frictionless sliding for the same vertical
interferences are not as pronounced.

The trends followed by the reaction forces show that more
energy is invested in pushing one cylinder across the other
than that restored when the cylinders are repelling each other.
Also, it is established that at the point of normal contact during
sliding, i.e., when the cylinders are exactly vertically aligned,
the ratio of the horizontal to the vertical reaction force is not
zero. Upon comparison, it is found that the horizontal reactions
are much lower for sliding with friction as compared to those
found in frictionless sliding. Interestingly, there is not much
difference between the patterns of the vertical reactions of the
two cases. By calculating the areas under the horizontal reaction
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force curves for a range of vertical interferences, equations are
derived to capture the energy loss due to plastic deformation
in such sliding. It is discovered that there is greater energy loss
due to plasticity in frictional sliding than in frictionless sliding.

It is found that for lower ranges of elasto-plastic loading, the
maximum von Mises stresses arise in the region surrounding
the contact interface for all cases of sliding. However, as higher
vertical interferences are applied, the plastic region propagates
towards the contact region and higher stresses are found to de-
velop at the base of the cylinders. It is thus postulated that
failure would occur in this region for extremely high vertical
interferences even though the contact region may still yield
first. This phenomenon is observed in both 2D frictional and
frictionless sliding. The occurrence of such failure would be ac-
celerated due to the presence of friction. Stress formations are
symmetric about the vertical axis of alignment for steel–steel
sliding for both the frictionless as well as frictional sliding.
A significant observation is that while some of the residual
stresses are found to be at the yield value for frictionless slid-
ing with high vertical interferences, for frictional sliding these
stresses do not quite reach the same magnitudes.
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Appendix

This is only a concise summary of the analysis by Green [28],
and the nomenclature herein is consistent with that work. Let x
be the axis along the line of contact, the y axis is tangent to the
two cylinders, and the z axis is the coordinate into the cylinders.
Subject to normal loading the maximum (and principal) stresses
occur at x = y = 0. Under a total load per unit length, P/L,
maximum Hertzian pressure is generated at the origin

po = 2P

�bL
, (8)

where the Hertzian half-width is given by

b =
(

4(
1 + 
2)PR1R2

L(R1 + R2)

)1/2

=
(

4PR

�LE′
)1/2

,


i = 1 − �2
i

�Ei

, i = 1, 2,
1

E′ = 1 − �2
1

E1
+ 1 − �2

2

E2
. (9)

Now defining�= |z/b|, then the stresses for cylindrical contact
are

�y =
(

2� −
√

1 + �2
(

2 − 1

1 + �2

))
po, (10)

�z = − po√
1 + �2

. (11)

These two stresses are calculated in either material 1 or 2,
where only ��0 is allowed in both materials, noting that both
stresses are independent of Poisson’s ratio. Assuming the state
of plain strain then the transverse stress is �x = �(�z + �y)

which reduces to

�x = 2

(
� −

√
1 + �2

)
�po (10)

The discussion is limited to the range 0 ��� 1/2. Conveniently,
letting � approach zero leads to a bi-axial stress state (i.e., plane
stress). The maximum von Mises stress, �e, normalized by the
contact pressure, po, is calculated by

�e

po
=

√
[1 − 2�(

√
1 + �2 − �)][1 + 4�2 + 4(1 + �2)(� − 1)�]

1 + �2

(12)

The above varies with �, where � is a parameter. The maximum
von Mises stress is obtained from d(�e/po)/d� = 0. Defining,
C =po/�e−max, results in C =C(�), and the analysis of which
gives the following:

C =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
1 + 4(� − 1)�

�m = 0 @ ��0.1938,

1.164 + 2.975� − 2.906�2 �m = 0.223 + 2.321�

−2.397�2 @ �>0.1938.

(13)

This value of C is valid for as long as the material is elastic,
i.e., up to yielding onset. This value is used to calculate critical
parameters. The maximum deformation in a cylindrical line
contact is given by

� = 1

�E′
P

L

[
ln

(
4�E′R
P/L

)
− 1

]
. (14)

Using the distortion energy (von Mises) theory to predict yield-
ing onset, then with the aid of the definition of C, the critical
values for force per unit length, interference, and half-width
are derived,

Pc

L
= �R(CSy)

2

E′ , bc = 2R(CSy)

E′ ,

�c = R

(
CSy

E

)2 [
2 ln

(
2E′

CSy

)
− 1

]
, (15)

where CSy = min(C(�1)Sy1, C(�2)Sy2) accounts for the pos-
sibility of two different material properties. The maximum po-
tential (strain) energy per unit length that can possibly be stored
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(up to the point of yielding onset) is

Uc

L
= �(CSy)

4R2

4E′3

{
4 ln

[
2E′

CSy

]
− 3

}
. (16)
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