A Finite Element Study of the
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aemean e | IN Hemispherical Contacts

Itti Chusmpm This work presents a finite element model (FEM) of the residual stresses and strains that
are formed after an elastoplastic hemispherical contact is unloaded. The material is
Itzhak Green modeled as elastic perfectly plastic and follows the von Mises yield criterion. The FEM
Fellow, ASME produces contours for the normalized axial and radial displacements as functions of the
removed interference depth and location on the surface of the hemisphere. Contour plots
George W. Woodruff School of Mechanical of the von Mises stress and other stress components are also presented to show the
Engineering, formation of the residual stress distribution with increasing plastic deformation. This
Georgia Institute of Technology, work shows that high residual von Mises stresses appear in the material pileup near the
Atlanta, GA 30332-0405 edge of the contact area after complete unloading. Values are defined for the minimum

normalized interference, that when removed, results in plastic residual stresses. This work
also defines an interference at which the maximum residual stress transitions from a
location below the contact region and along the axis of symmetry to one near to the

surface at the edge of the contact radius (within the pileip)Ol: 10.1115/1.1843166

Introduction their model produces qualitatively similar results to the one pre-

The case of an elastoplastic hemispherical contact with a rigﬁﬁmed here. While Kral et al. apply a load up to 300 times the

lane has important enaineering aplications in both the mac itial load to cause yieldingcritical load, the current work more
P nas imp 9 Ing applicati . : an doubles this value by modeling a load of 750 times the criti-
and microscale. The current model is normalized to be valid

; ) ; . I load. Practical experience indicates that in applications such as
both scales(i.e., the hemlspherl_cal rad'“;ﬂl can assume any gpq peening, EHD, and other forms of contact, large amounts of
value, and as long as the material can still be modeled as a cQzormation can occur far into the elastoplastic regime. In the
tinuum). It has been well established that asperities will deforrgspemy contact between rough surfaces, some very high asperi-
plastically during the contact of rough surfaces. Itis also clear thglg o, peaks are likely to be heavily Ioadéd.
in many applications the load will periodically be removed or ve ang Komvopoulo9] also simulate the contact in a layered
cycled. This action makes it desirable to know the effect the cogeforming half space and a rigid sphere, although they manually
tact has had on the surface material and the geometry throughy 5 hydrostatic residual stress prior to contact. These applied
plastic deformations and residual stresses. Such information mg¥idual stresses model surface treatments such as shot peening.
be useful in analyzing the friction, wear and deformation of conrpey then attempt to quantify the effect of the applied residual
tacts, as for example, in microswitches, boundary lubrication, rolitresses on the contact deformation and stresses. In addition, they
ing element bearings, metal forming, fretting, and shot peeninga|so investigate the effect of sliding on the resulting stresses. De-

Jackson and Greefi], Kogut and Etsior{2], and Mesarovic spite these works and other previous works, there is currently no
and Fleck3] provide results for the loaded condition case. As & depth analysis of the residual stresses and deformations of an
continuation of these previous results, the current work is focusgglioaded elastoplastic spherical contact against a rigid flat.
on the residual stress and deformation, which remain after thejn the previous model by Jackson and Gregh the model was
interference has been removsgte Fig. 1. The model by Jackson simulated under the loaded conditions for many interferences and
and Greer1] is regenerated to simulate the loaded condition arffle steel materials, during which the hemisphere deforms in the
the unloaded condition. The von Mises yield criteria is used t@lastic, elastoplastic, and fully plastic regimes. The following defi-
indicate whether the hemisphere material is deformed elasticaflitions are given for the regimeét) the elastic regime considers
or plastically. The material is assumed to act elastic perfectly plageformation absent of plasticity?) the elastoplastic regime con-
tic, so that there is no strain hardening effect. tains plastically deformed material but the contact area still con-

Experimentally, Johnso] observed the contact of bronze andains an elastic region, ar@) the fully plastic regime defines the
steel spheres pressed against a steel flat. In order to make me&e of a contact whose area of normal pressure yields entirely.
surements of the deformation, he also unloaded the spheres. Onise measurement of hardness requires that the contact reaches the
unloaded, he observed permanent indentation of both the sphien plastic regime, where the average contact pressure has tradi-
and the flat surface, along with a pileup or crown of raised matdienally been regarded as the hardness. However, the hardness
rial around the contact area. These findings match those fousitbuld not be implemented as a material property, as it also varies
through finite element mod¢FEM) simulation in this work. Ta- with deformation, geometry, and material properties such as yield
bor [5] also recognizes the need to consider these effects whstrength, Poisson’s ratio and the elastic modukee Ref[1]).
measuring the hardness of a surface using an indentation test.The nomenclature here conforms with the said work.

Kral et al.[6—8] modeled the inverse case of a repeated elas-This work defines the interference depth,as the distance the
toplastic contact of a rigid sphere against a nonlayered and layeweiyjinal hemisphere shape is pressed into the rigid $le¢ Fig. L
half-space using FEM. Although based on a different cas€he normalized interference depih?, is defined as

-0 w
Present address: Department of Mechanical Engineering, Auburn University, Au- 0¥ =— (1)

burn, AL 36849-5341. We

Contributed by the Tribology Division for publication in the ASMBURNAL OF . L. . . .
TRIBOLOGY. Manuscript received by the Tribology Division February 20, 2004,Wherewc is the critical interference and is given by Jackson and

revised manuscript received October 20, 2004. Review conducted by: R. W. SnkﬂEl’een[l] as

484 |/ Vol. 127, JULY 2005 Copyright © 2005 by ASME Transactions of the ASME



\I/p -0,0%~0 P s1,0"> 1 p =0,60" =0

R Plastically

Rigid Arn of Contact
Flat Smface Undefumed Geometry

@ (b) ©

Fig. 1 Diagram of loaded (b) and unloaded (c) contact of deforming elastoplastic hemispheres
and a rigid flat

7CS, conditions and one in which the nodes along axése allowed to

W= ( - ) (2) translate radially, have shown only marginal differefless than

2E 3% difference in area, and less than 1% in Jodd principal,
The corresponding critical contact radius is however, when large deformations are imposed, boundary condi-
tions may significantly influence the results. Also in this case, the

a.= JwR (3) rigid contact line is constrained in the(radia) direction, while

the interferencegw, is applied as a displacement in thgaxial)
where C=1.295exp(0.736), S, is the yield stressgE’ is the direction.

equivalent elastic modulus, alis the equivalent radius. When A large range of interferences are applied to the FEM model
»*<1 then the hemisphere deforms in elastic regime. Whemd then the contact force, stress tensor, von Mises stresses, and
»*>1 the deformation is in elastoplastic regime. At approxithe displacement in both the radial and axial directions are re-
mately 76<w* <110, the deformation reaches the fully plastic recorded. After the loaded condition has been simulétgdng the

gime [1,2]. For residual stresses and strains to remain once te@me results as in Refl]) the solution is then restarted and
hemisphere is unloaded, & greater than one must be applied
(see diagram in Fig.)1The critical contact radius, , defines the
radius of the area of contact at an interference depih.ofFrom
this point forward residual stress and residual displacement wi
refer to stress and displacement that remain in the elastoplas'
hemisphere after the load is completely removed.

Finite Element Model

displacement is computed. In the second approach an interferenn
o, is applied and the contact force is calculated. In this work, th¢
second approach is used because the solution converges more r
idly than the first one. The contact forces are determined by sun-
ming the reaction forces on the base nodes of the hemisphere. [

The finite element solution is generated by the Ansys™ soft™
ware packages. To increase the efficiency, a two-dimensiabal
axisymmetric model is used. Several mesh refinements have b
performed to reduce the errors in the residual stretsss Fig. 2
for example mesh For this investigation ANSYS element types -
plane 82, contact 169, and contact 172 are used. The fine areaf+ -t
the mesh near the tip of the hemisphere is varied in order t i
encompass the region of high stress near the contact. The mesk—+
constructed using eight node solid elements and 100 contact el
ments at the area of contact. The meshed contact area is ale
varied to ensure that at least 30 contact elements are in contact for
each applied interferencémaximum contact radius error of
3.3%. The resulting mesh consists of over 11,101 elements. The (axial)
mesh has extensively been verified for model convergence by y
Jackson and Gredr] and Quicksall et al[10].

Fig. 2 Example of used FEM mesh

| migisune_

/]
As shown in Fig. 3, constraints in theandy directions were [>
applied to the nodes on the base, while a radial constraint is ap- D
plied to the symmetric axis. This boundary condition may be valid R-td
for the modeling of asperity contacts for two reasofly: The D
asperities are actually connected to a much larger bulk material at D
the base and will be significantly restrained there, &)dsince N x (radial)

. X ; NN
thg high stress region occurs near the contact, the boundary con AN AN ANy AN
dition at the base of the hemisphere will not greatly effect the

solution because of Saint Venant’s Principle. On sample problemig. 3 Schematic of the coordinate system and boundary con-
given in Ref[1], the change in results between the said boundaditions used in the FEM
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Table 1 The material properties and critical interferences for aluminum and steel

Young'’s Yield Critical
modulus E) Poisson ratio strength §,) interference
Material GPa () (GPa (wc/R) Yelwe(R=1)
Aluminum 70 0.33 0.310 1.03x 1074 1.69% 1073
Steel 200 0.32 1.619 3.50% 104 3.12x 1078

unloaded completely to simulate the residual stresses and the éisee depth. The boundary between the contact region and the free
placements. Since the problem is nonlinear, small load steps Amindary of the hemisphere can be clearly seen through the sharp
used to increment toward a solution in both loading and unloadhanges of the slope in the radial displacement (ge¢ Fig. 4. In

ing. the low interferences, the surface displaces radially in mostly the
negative direction. This is because at the small normalized inter-
Results and Discussion ferences most of the material in the hemisphere is deforming elas-

h | f ¢ i . ftically and allowed to compress. As the interference significantly
The results are presented for a range of normalized interfehe eases past the critical interference, the hemisphere increas-

encesw”, from 0.571 to 171. The material properties used are fgqq . deforms plastically and the material in the contact region
a steel materiafextracted from Refl11]) and presented in Table jncreasingly displaces outward into the positivelirection. This
1. These material properties allow for effective modeling of all thﬁulging occurs because as the deformation increases, yielded ma-

elastoplastic contact regimes. The computation time is about @hia| flows plastically, and is assumed incompressible abiding by
hour for small interferences and 2—3 h for large interferences on,a4isson's ratio effectively equal to 0.55].

3.2 GHz PC.

As an additional check of the model's validity, the contact Unloaded Displacement. In this section the unloaded or re-
forces during the unloaded conditions are calculated. Based on si@dual displacement along both the radial and axial direction
force balance solution, once the contact is completely unload€éd,/y. andU,/w.) of the hemisphere are monitored with respect
the reaction force should be identically zero. This trivial conditiotp the normalized radial distance/a. (see Figs. 6 and)7 The
is consistently satisfied with an eight-node FEM model whictesidual displacement is defined here as the displacement on the
computes the reaction force to be about ten orders of magnitugleface which remains after the hemisphere is completely un-
smaller than the load originally applied to the hemisphere. loaded from a normalized penetration deptf,. The residual
isplacements occur when the hemisphere has plastically de-

. . . . I
Displacement. The axial and radial surface displacements q?brmed and does not fully recover to its original shdgee sche-
the nodes on the hemisphere surface are monitored in order to

investigate the deformation of the hemisphere. As shown in Fig. 3
the axial and radial directions correspond to theand x-axis,
respectively. Whilew, effectively normalized the axial displace- 150 ———w'=0.57

ment,U, , itis ineffective in normalizing the radial displacement, 100 -——]LN;E”—AMO” ”
U,. It is found (see the Appendixthat to some degred, is / / -
effectively normalized byy.=(1/6)[ (wc)¥% JR] which is the
relative radial displacement of the critical contact radius before g
and after loading. In this section plots of the normalized axial anc%
radial displacements), /vy, andU, /., with respect to the nor-
malized radial distance,/a., are presented for both the loaded
and unloaded conditionsee Figs. 4—J7 Note thatr is the radial
distance from the axis of symmetiy axis) to a point on the
surface. Thust is analogous to th& coordinate of a location on

the hemisphere surface. The displacements are presented relat
to the hemisphere surface, such that curvature is mitigated. Al rla,

though the main focus of this work is the unloaded case, the . . .
surface displacements for the loaded case are also presented. , (&) small normalized loaded interferences,
though, Fischer-Cripp§l2] has provided results for the purely

elastic case of Hertz contact. 1.42E+04

The current results have also been compared to the analytici  {sse.n4 /\
predictions of Kogut and EtsionElL3] given for the separation «.-ms/ \
between the deformed sphere and the rigid flat. The results a1~ 1026+04 \
compared at benchmark values ©f =4.29 andw* =100 (near 8206+03 inereasing

the benchmark values @f* =4 andw* =110 used in their work é— 6206400 =143 "\ , Nomaiized
When the deformation is nearly elasticaft=4.29, the results are > / /\SQ"MN
almost exactly equivalent until approximatelja.=5. Past this 420403
value the results differ significantly. For the elastoplastic deforma:
tion atw* =100, the results differ significantly aftefa. increases
past a value of approximately 14. The reason for these difference
is likely because Kogut and Etsion’s equations are based on
perfectly elastic contact solution given in Muller et gl4].

t/a,

Loaded Displacement. Figures 4 and 5 show the surface dis- (b) large normalized loaded interferences, &
placement in both the axialf, /w.) and radial U,/y.) direction
for the loaded hemisphere. These plots show the evolution B 4 The normalized radial surface displacement vs the nor-
hemisphere surface deformation with increasing interferences. Malized radial distance in the loaded condition for (a) small and
expected, the displacements increase with the normalized interf@r- large normalized interference depths
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r/a, (b) large normalized unloaded interferences, &
(b) large normalized loaded interferences, @ Fig. 6 The normalized radial residual displacement vs the nor-
) ) o ) malized radial distance of the hemisphere unloaded from (a)
Fig. 5 The normalized axial displacement vs the normalized small and (b) large normalized interference depths

radial distance in the loaded condition for (a) small and (b)
large normalized interference depths

hemispherdsee Figs. %) and 5b)]. However, there are some

matic in Fig. 1. The displacements are also labeled for each naregions which still remain elastic and tend to return to their unde-
malized penetration depthy*, from which the hemisphere is formed shape when unloaded. Therefore, the overall magnitudes
unloaded. of the residual displacements are less than that of the loaded con-

As seen from the normalized residual displacement fflitgs. ditions. Also, the residual displacements in the axial direction tend
6 and 73, once the hemisphere is loadeddd>1 (which marks to change direction when unloaded and cause a crown of material
the transition from the elastic to elastoplastic regiraad then to rise around the unloaded contact regisee Fig. 7. This oc-
unloaded, the residual displacements tend to increase with thes near the edge of the contact area and is referred to as the
magnitude of the removed loddee Fig. 8. Comparing Figs. @) previously mentioned residual pileup. The peaks of deformation in
and Ga), at small normalized interferences the trends between theth thex andy direction are located at the sam&, and corre-
loaded and unloaded cases are very different. After a small ngpond to the residual pileup. As the load that the hemisphere is
malized interference is removed, the hemisphere is still mostiyloaded from increases, the pileup acquires a sharper edge.
elastic, with only a small region of plastic deformation. Most of The residual pileup marks the sharp transition from the contact
the hemisphere material then tries to restore its original shapegion to the free boundary and it also increases in magnitude
while only a small portion resists. In the radial and axial directiowith the normalized interferences from which the hemisphere is
this results in regions of negative and positive deformation whemloaded. Kral et al[6—8] and Ye and Komvopoulof9] also
the hemisphere is unloaded. The negative deformation occamnfirm the occurrence of pileup during the FEM analysis of the
above the plastic core, while the positive deformation occurspeated indentation of a half-space by a rigid sphere. JoljA$on
mostly outside of this region. This phenomenon is known asaso experimentally confirms the existence of a residual pileup.
residual pileup, which is further enhanced for larger deformationResidual pileup readily occurs during indentation type hardness
The curvature of the hemisphere has the effect of negating tests after unloading, and must be accounted for when making
material pileup so that the unloaded hemisphere is essentially flagrdness measuremenss.
tened, resulting in “out-of-roundness” for the hemisphere. A These deformations change the surface profile of the hemi-
dimple or indentation will form on a surface with little curvaturesphere. Also, the contact of the asperities on rough surfaces is

After large interferences are removed, the plastic regions donsemmonly modeled by hemispherical contact. This indicates that
nate, and the material remains more in the plastically deforméue surface topographies of heavily loaded rough surfaces will
geometry{see Figs. ) and 7b)]. In contrast to smaller residual also change after the load is removed. The current analysis sug-
deformationg Figs. §a) and 7a)], the residual surface displace-gests that after a rough surface is unloaded from plastic deforma-
ments after large loads mimic the deformations of the loadéidn, the surface asperities will be flattened and have a pileup
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05 the surface near the edge of conteete Ref[1]). Then there is an
elastic core below the contact area that is surrounded by plasti-
cally deforming material. At a much higher load, anywhere within
70<w* <110 (depending on the material properdiethe plastic
ne region covers the entire contact area and occupies a large portion
Inertescnce. et of the space in the hemisphere. This is known as the fully plastic
regime. As mentioned earlier, the average contact pressure in the
w'=3.67 fully plastic regime is traditionally defined as the hardness. The
8 \ 7& w428 hardness, however, is not a material property and varies with the
undeformed and deformed geometry as predicted by T&and
)( a0 numerically verified by Jackson and Grefds.

10 12 14 16

®*=5.72
25 Residual Stress Formation. The value of the von Mises
/\w‘-a-57 stress is used in this analysis to predict yielding of the hemisphere
r/a, material. However, by calculating the von Mises stress some in-
. formation about the material stress tensor is lost. The von Mises
(2) small normalized unloaded interferences, o stress shows how “intense” the stress state is relative to the yield
strength. However, as a positive quantity it does not reveal if the
material is in tension, compression, undershear, etc. In the study
of crack initiation and propagation it is important to know the
20 AN orientation of stress in relation to a crack and if stress is tensile or
)x m..:’;},’” compressive[17]. Thus, it is important to first understand the
-0 %7\4‘&““ distribution of the complete stress tensor throughout the hemi-
- sphere.
/\ 7<\m-so.o When the plastically deformed hemisphere is unloaded, the
/< x "=100.0 elastic material attempts to restore its original shape. However, the
Unloaded Normalized plastically deformed regions inhibit this since the material
120 “memory” or “state” has changed. This results in regions of ten-
/\m'=114-3 sion and compression, even though the overall force applied to the
140
o*=1715 system sums to zero. The plots of the 3D stress tensor
-160 (0x,0y,0,,7xy) for a hemisphere unloaded fromt =3.92 show
rfa, clearly these regions of tension and compresdiege Fig. 8.
. Since the problem is axisymmetric the shear stresggand 7,
(b) large normalized unloaded interferences, @ are identically zero. These results are also given for a hemisphere
unloaded fromw* =35 in Fig. 9.
Fig. 7 The normalized axial displacement vs the normalized The distribution ofo, shows compressive and tensile radial
radial distance of the hemisphere unloaded from  (a) smalland  gyess regions. Figure(t® shows the interesting distribution of
(b) large normalized interference depths stresses in thg direction. Near the plastic core, is tensile and
oy is compressive. Faw, there is a band of compressive stresses
below the edge of contact and also along the axis of symmetry but
region around each contact. If the asperity has a large radiusCSer 10 the center of the hemisphere. The differing stress distri-
curvature in relation to the contact radius, the pileup may a@ytlons .Of‘fx a_md oy wil _contnbute to Iar_ger von Mises stresses
E@ ertain regions. For instance, a region will have higher von

20 30 40 50

8

Uyl())c
&

-100

cause an indentation in the surface. These changes in topogra; ¢ d be ol 1o vielding if orth | |
are important in such cases as boundary lubrication and slidifg>¢S Strésses and be closer 1o yieiding 1t orthogonal norma
esses differ in sign or magnitude.

friction. The changes in the surface profile will also affect heavil§ i dei for th idual h
loaded ball bearings. For ball bearings to operate properly, thel [9ure &) depicts stress contours for the residual hoop stress,

balls must be as close as possible to spherical in shape. This w8k If the stress va!ues are followed along the axis of symmetry,
shows that after unloading from heavy loads, the balls may lole!S @pparent that it switches between tension and compression
veral times. As mentioned, this results in complex formation of

their original spherical shape and have the potential to cause b .
the von Mises stress.

ing failure. The contour plot of the residual shear stresg ) in Fig. 8(d),

Stress Formation. Since the stresses of loaded spherical corfier a hemisphere unloaded from* =3.92, shows an interesting
tacts deforming elastically and plastically are well documentedistribution. Near the edge of unloaded contact, there is a region
they will not be presented in detail here. Extensive analyses of tbepositive shear stress close to the axis of symmetry that lies next
stress evolution in loaded hemispheres are given in RE8$.[1], to a region of negative shear stress. The shear stress seems to peak
[2]. However, in order to understand the residual stress evolutiahpoints away from the axis of symmetry, thus forming hoops of
it is important to understand how the stresses originally developbijh shear stress around the circumference of the hemisphere.
during the loading of the hemisphere. For this reason a brief suifhis shear stress amplifies the von Mises stresses within the hemi-
mary of the stress evolution during loading is given next. sphere.

At low interferences a high stress region starts to form below The various stress contours which map the complete stress ten-
the contact interface. Eventually the material yields in this higsor throughout the unloaded hemisphere are also presented for a
stress region and a plastic core forms. The plastic core is shemisphere unloaded from a larger interference deptbief35.0
rounded by elastic material, which diminishes as the hemispheneFig. 9. In comparison to Fig. 8, these contour plots show how
is subjected to larger interferences. At higher interferences tttee residual stresses evolve and spread through the hemisphere
plastic core expands in a three-dimensio(&D) fashion to the with increasing plastic deformation. Clearly, the stress distribu-
surface, and also inward toward the center of the hemisphere. Tloms can change significantly as load and plastic deformation are
reason the plastic region expands is because the material in ithe@eased. Although the residual stresses still exhibit similar re-
hemisphere that is flowing plastically can no longer resist addiions of tension and compression as shownJt#=3.92 in Fig. 8.
tional load. Therefore, any additional load is carried by the sur- Interestingly, in Figs. @) and 9c) there are regions of high
rounding elastic regions. At abouf* =8 the plastic core reachestensile stresses in the and z direction at a point near to the
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Fig. 8 Contour plots of the complete stress tensor for a hemispherical
contact unloaded from  «*=3.92: (a) radial stress, o,/S,, (b) axial stress,
o,/S,, (c) hoop stress, o,/S,, and (d) shear stress, 7,,/S,

unloaded edge of contact. These stresses correspond to the loc&ontour plots of the residual von Mises stré¢sgs. 10—-1]1 are

tion of the residual pileup identified earlier. It seems that when ttedéso generated in order to monitor the intensity of the residual

hemisphere is unloaded, the yielded material, in conjunction wittress formation in the hemisphere. Figure 10 shows purely elastic
the elastic restoring effect, push the pileup area upward irytheesidual von Mises stress distributions while Fig. 11 shows the

direction. This action causes tensile stresses inxtaedz direc- onset and formation of plastic regions. The plots display the re-

tions. sults for a hemisphere unloaded from a range of 24#<100.0.

(a) radial stress, 0,/S,

(c) hoop stress, 6,/S, (d) shear stress, 7,/S,
Fig. 9 Contour plots of the complete stress tensor for a hemispherical

contact unloaded from  «*=35.0: (a) radial stress, o,/S,, (b) axial stress,
o,/S,, (c) hoop stress, a,/S,, and (d) shear stress, 7,,/S,
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(a) @™=2.14 ®) »'=3.92

0455 0341 0.196 0784 0.589

(©) @™=5.71 (d) @"=15.00

Fig. 10 Contour plot of the normalized elastic residual von Mises stress
(oym/S,) at various unloaded normalized interferences: (@) w*=2.14, (b)
w*=3.92, (c) w*=5.71, and (d) w*=15.00

As the plastic deformation within the hemisphere increases duestivess location then transitions from a point on the axis of sym-
larger interferences and is then unloaded, the residual stressesmetry to a point near the surface at the edge of the unloaded
crease and migrate. This migration causes the maximum voontact area. The maximum stress location after the shift corre-
Mises stress to move from one location to another. The maximwsponds to the location of the residual pileup seen in Fig. 7. Table

(a) '=25.0

(c) @™=68.6 d) ©'=100.0

Fig. 11 Contour plot of the normalized residual von Mises stress (oym/S))
at various unloaded normalized interferences at the onset and formation of
plastic residual stresses: (a) w*=25.0, (b) w*=40.0, (c) w*=68.6, and (d)
w*=100.0
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Table 2 The location and value of the maximum von Mises residual stress appears to grow along the surface away from the

residual stress for various normalized interference depths unloaded area of contact. Since the unloaded hemisphere’s loca-
Maximum tion of maximum von Mises stress transitions to the surface, the
Normalized unloaded von location of plastic stress in the loaded and unloaded hemisphere
interference Mises stress do not always correspond.
depth(w*) (oum!Sy)) r/la rlag (R—y) o,

Comparison Between Aluminum and Steel. In order to

%"1‘2 8'2% 8'88 8-88 f’é-}lg measure the effect of the material properties on the hemisphere
357 0.344 0.00 0.00 61.64 deformation, an aluminum hemisphere is also modeled for a hemi-
3.92 0.371 0.91 1.90 1.81 sphere unloaded from @* =135. Table 1 shows the properties
4.29 0.408 0.91 2.02 2.07 used for aluminum as taken from Refl1]. As previously, the
5.00 0.511 0.95 2.29 2.61 . .

5.72 0.615 0.94 2.46 3.03 radius,R, is held constant.

8.57 0.693 0.98 3.24 5.26 Figures 13 and 14 show the plot of the normalized axial and
10.00 0.754 1.03 3.73 6.97 ial di ; i ial dis-
15.00 0.883 102 270 1105 radial displacement as a functlgn of the normallzed.radlal dis
1750 0.952 102 511 1311 tance,r/a;, on both the loadedFig. 13 and unloadedFig. 14
20.00 0.986 1.03 5.59 15.65 condition and for both materials. An inset is provided for a plot of
25.00 0.994 1.03 6.38 20.46 displacement normalized by the constant hemisphere raRius,
30.00 1.000 1.05 7.25 33.57

From the plots, the deformation of the aluminum and steel hemi-

sphere tend to follow the same trend. However, the values of the

displacements normalized By (or by w., which is not showp

are quantitatively quite different. It appears that the normaliza-
Mions (Ux/y. andU,/w.) used are effective at generalizing the

The value R-y)/w, is the normalized depth of maximum Vonresults.for the tv\{o dlﬁereﬁt materialsee the Appendix A.S
Mises stress from the contacting tip of the hemisphereraagis stated in the previous section, the deformatlo_n of the hemlsphgre
the normalized distance of the maximum von Mises stress tg th&/SO depends on the properties of the material as well as the in-
axis. Examining the values ofa, and R-y)/w. in Table 2, the terference. Even though loaded to the_ same normgllzed interfer-
normalized location of the maximum von Mises stress shifts frof{1C€ the steel is compressed down with the real displacement of
the axis of symmetry to the surface for a hemisphere unloadéd % of R, while the aluminum is compressed down with only
from normalized interferences between 3.57 and 3.92. This shi#% of R. Without normalization, the differences in the interfer-
signifies the migration of the residual stresses from one location®ice are significantly large, causing the differences in the dis-
the plastic core to the residual pileup at the edge of unloadgtiicements to also be large. The residual pileup can still be spot-
contact. However, once the material remains plastic after unloded for both materials, as the contact was loaded to the fully
ing there is no single point of maximum von Mises stress singdastic regime.
regions of plasticity are formegsee Fig. 11 The maximum von . .

Mises stress normalized by the yield stress is plotted in Fig. 12 for RePeated Contact. As elastic perfectly plastic theory sug-
hemispheres unloaded from increasing valueswsbf This plot gests, W_hen an identical repeateq load is applied to the hemlsphere
also shows how the maximum von Mises stress levels off to tif&e" being unloaded from elastic perfectly plastic deformation,
yield strength for a hemisphere unloaded from a normalize intdfl€ hemisphere returns to precisely the same loaded state as the
ference within 25w*<30. This value signifies a threshold thatinitial loading. FEM results confirm that the deformation returns
indicates residual plastic stresses. In other words, this value maikgxactly the same values with repeated contact of the same load.
the minimum load that when removed, a region in the hemisphef&is occurs because the material undergoes no strain hardening,
has a high enough residual von Mises stress to remain plasti€:, the load carrying capacity of the hemisphere material does not
Then the region of plastic residual stress grows at the edge affange with contact, even though it has plastically deformed. In-
contact when the hemisphere is unloaded from increasing valuszducing history dependant strain hardening is expected to alter
of normalized penetration deptlm* (see Fig. 1L The plastic these results. It should be noted, that in the contact of real rough

2 shows the location of the maximum residual stress for he
spheres unloaded from various normalized interferences.

1.2

0.00 50.00 100.00 150.00 200.00

w*

Fig. 12 The normalized maximum von Mises residual stress of the un-
loaded hemisphere as a function of the unloaded w*
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Fig. 14 The normalized residual surface displacement of alu-
minum and steel hemispheres unloaded from w*=135 vs the
normalized radial location

Fig. 13 The normalized surface displacement of aluminum
and steel hemispheres loaded to  w*=135 vs the normalized
radial location

Contour plots of the stress tensor components and the von
surfaces in which the asperities do not align, bulk materials dgtises stress show the development of the residual stress distribu-
form, and there is slip or sliding, the asperity contacts may n@bn with increasing plastic deformation. This development results
align and behave as described earlier. in a high stress residual pile-up appearing near the edge of the
unloaded contact area. The approximate value for the minimum
Conclusions normalized interference, that when removed, a region of the re-

) ) sidual stresses in the hemisphere remains plastic is found to be

This work presents a FEM of the residual stresses and strafis\veen 25 o* <30. This work also defines a normalized inter-
that are formed after an elastoplastic hemispherical contact is Y8rence of about 3.5Zw* <3.92 at which the maximum residual
loaded. The material is modeled as elastic perfectly-plastic aggfess transitions from a location below the contact region and
follows the von Mises yield criterion. A 2D axisymmetric flnltea|ong the axis of symmetry to one near to the surface at the edge
element model of an elastic perfectly plastic hemisphere in Cogr the unloaded contact radigwithin the pileup.
tact with a rigid flat surface is used to calculate the residual inq|ly, this work analyzes the effect of material properties on
stresses and deformations. At even light loads the residual stresp@Ssyrface displacements. The deformation of the hemisphere is
and deformations change the surface geometry of the hemisphgiBendent on the properties of the material and the interferences.
significantly and must be accounted for in cases such as in ind&€Qiin a difference in Young’s modulus, Poisson’s ratio, and yield
tation tests and rolling element bearings. This effect can also §@ength, the aluminum tends to deform differently from steel at
applied to the repeated contact of rough surfaces when the alighls same normalized penetration depth. It appears that the normal-
ment between them changes between load cycles. ization used for the displacements is effective at generalizing the

The FEM produces contours for the axial and radial displacgssits for both sets of material properties, and the given geometry
ments as functions of the removed normalized interference de boundary conditions shown in Fig. 3.
and location on the surface of the hemisphere. The displacements
are given relative to the surface. The displacements show howrig‘amenclature
deformation changes from elastic to elastoplastic as the hemi-

sphere begins to bulge outward instead of compress. A material C = critical yield stress coefficient

pileup can clearly be seen in Fig(bJ of the residual axial dis- E = elastic modulus
placement of the hemisphere after it is unloaded. This occurrence P = contact force
is also verified experimentally by Johnsp#| and also by the R = radius of hemispherical asperity

FEM analysis of Kral et al.6—8] on the repeated indentation ofa S, = yield strength
half-space by a rigid hemisphere. Still, Kral et al. simulates the a = contact radius
contact for about half the range of the current work. r = radial distance from axis of symmetry
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y = radial displacement a
o = interference between hemisphere and surface .
v = Poisson’s ratio «
Subscripts
c = critical value at onset of plastic deformation
o = original
vm = von Mises stress

Superscripts

" = equivalent or displaced
* = normalized

Appendix: Normalization of Displacement

It is useful to find an effective method of normalization for the
surface displacements so that the presented results may be applied
to a general hemispherical contact with the boundary conditions
Flg. 3*, a radiuR and.materlall propertleE,'v, ands, . Thg VeI~ critical contact radius before loading  (solid line ) and after load-
tical displacement), is effectively normalized byw., which is iy (dashed line )
the relative distance that the contact point at the centerline travels
before and after loading is applied at the onset of plast|¢itys.

13(b), 14(b)]. A similar typical distance in the radial directiof, ,

is sought for normalizindJ, . The quantitya, identifies the radius

of the contact at the onset of plasticity. To find out the distance

that this point travels radially, its location before loadiag,, is
sought such thay.=a.—a.,. Finding this quantity results in the
normalization

Ié% 15 Schematic for the approximation of the location of the

1
6

We

B 1 (wc)3/2
ﬁ = —

s

Equation(A9) is tried as an effective normalization b, by vy, .

U The results of steel and aluminum hemispheres loaded and un-
= _* loaded fromw* =135 are presented in Figs. 13 and 14. It appears

Ye 8T 8co from the plots that the normalizations derived are effective to

By assuming no slip occurs between the hemisphere and §fme degree at generalizing the problem for the two different sets

Y™ (A9)

Ux
(A1)

rigid flat, a,, is easily approximated. As shown in Fig. 15 theof material properties. The ratio of./w. is also presented in

hemisphere surface essentially wraps onto the rig
results in the aréB deforming into the segmert’' B’
A’B’=AB. And sinceA’'B’' =a., KB=ac. The angled is then
calculated as

id surface. Thaple 1 for both materials. For both materials the valueyofs
such that much smaller tham,. .

References

g AB_2 (A2)
R R
Next, a., is calculated to be
aco=Rsin( 0):Rsin( %) (A3)

Substituting Eq(3) into Eq. (A3) and simplifying results in

\/(uCR) ) ( wc)
=Rsin \/=

R
Now v, is defined by

Ye=8c—aco= 8.~ R sin( \/ %) =vJow.R—R sin( \/ %)
(A5)
Then factoring ouR from the right side of the Eq(A5) gives

ac.,=R sin( (A4)

Rl /2 sin| \/= A6
Y= ﬁ_ SIn| ﬁ (AB)
Letting x=\w./R and using the approximation
o X X
S|nx—x—§+ a—ﬂ+ (A7)
results in
. X3
X—Ssinx~ 37 (A8)

after neglecting higher order terms. Then, EA6) is approxi-
mated using Eq(A8).
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