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Member, ASHE This work presents a finite element study of elasto-plastic hemispherical contact. The
Itzhak Green results are normalized such that they are valid for macro contacts (e.g., rolling element
Fellow, ASME bearings) and micro contacts (e.g., asperity contact), although micro-scale surface char-
acteristics such as grain boundaries are not considered. The material is modeled as
George W. Woodruff School of Mechanical elastic-perfectly plastic. The numerical results are compared to other existing models of
Fngineering, spherical contact, including the fully plastic truncation model (often attributed to Abbott
Georgia Institute of Technology, and Firestone) and the perfectly elastic case (known as the Hertz contact). This work finds
Atlanta, GA 30332-0405 that the fully plastic average contact pressure, or hardness, commonly approximated to be
g-mail: g{2433a@prism.gatech.edu a constant factor of about three times the yield strength, actually varies with the deformed
contact geometry, which in turn is dependent upon the material properties (e.g., yield
strength). The current work expands on previous works by including these effects and
explaining them theoretically. Experimental and analytical results have also been shown
to compare well with the current work. The results are fit by empirical formulations for a
wide range of interferences (displacements which cause normal contact between the
sphere and rigid flat) and materials for use in other applications.
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Introduction It should be noted that Abbott and Firestof$§ intended their

The modeling of elasto-plastic hemispheres in contact with model to be used to describe a wear process rather then a defor-

- LY ; b mation process, but literature has still traditionally attributed this
rigid sgrface IS Important in contact meCh"’.‘”'CS on both the ma 4 y plastic truncation model to thertsee Appendix A for a de-
and micro scales. This work presents a dimensionless model t

; . . ed description Although these previous models have proven
is valid for both scales, although micro-scale surface characterlljss-eful they contain clear pitfalls which may be detrimental to

tics such as grain boundaries are not considered. In the form[oﬁreir v’alidity

te|?1 ro)l(llng ei\llem%nthbelartltn?s, load mayri:)e h'gth atnd trr;e(?elfoama‘AdditionaIIy, the reversed case of a rigid spherical indentation
Ons EXCESSIVe. € latter, €.9., asperity contact, a model o a deformable half-space has been thoroughly investigated ex-
micro-scale is of great interest to those investigating friction a

wear. In addition, the real area of contact of such asperities rimentally [12-14 and numerically{15-19. Work has also

foct the heat and electrical duction bet ’ | en done on the contact of a rigid cylinder contacting an elasto-
ariect the heat and electrical conduction between surfaces. In Gl g layered half-spack20]. More generally, various experi-
ther scale contact is often modeled as a hemisphere againstar

; ; . i tal and numerical works have investigated other contacting
flat. Much interest is devoted in the literature to the reverse casg,metries and hardness tefd$,21,22. The two works by Bar-
of indentation loading where a rigid sphere penetrates an ela S

lastic half ) h hasi hat | '8t et al[23] and Liu et al[24] provide a more in-depth look at
plastic half-space. It s worthy to emphasize that 'ndemat'%st and more recent findings in the field of contact mechanics.
(other workg and hemispherical deformatidthis work) are sig- Perhaps a most important and relevant work is by Johfi26h

nificantly different in the elasto-plastic and fully plastic regimes, experimentally measured the plastic strains between copper

and only the latter is the subject of this work. cylinders and spheres. Johnson’s experimental results compare fa-

One of the earliest models of elastic asperity contact is that 9 ap1y with the findings of the current work. Despite the exten-
Greenwood and Williamsoft]. This (GW) model uses the solu- gjye hody of works, the results, trends, and theories presented in

) YHe present work, to the authors’ knowledge, have not yet been
flat plane, otherwise known as the Hertz contact soluf@jn to thoroughly documented.

stochastically model an entire contacting surface of asperities Withtpe current work uses the finite element method to model the
a postulated Gaussian height distribution. The GW model assumese of an elastic-perfectly plastic sphere in frictionless contact
that the asperities do not interfere with adjacent asperities and tﬂﬁt‘h a rigid flat (see Fig. 1 The von Mises criterion defines the
the bulk material below the asperities does not deform. Thg.ging of the material. The resulting numerical data is also fitted
Gaussian distribution is often approximated by an exponential digy continuous functions that capture deformations all the way
tribution to allow for an analytical solution, although Gre8]  ¢om purely elastic to fully plastic conditions. These expressions,
has analytically solved the integrals using the complete Gauss(gich have a relatively low statistical error, may be used in other
height distribution. Supplementing the GW model, many elastgyyjications whether they are on macro or micro scales. For ex-
plastic asperity models have been devised8|. Appendix A pro- ample, a statistical model for asperity contémtich as GW1])
vides a summary of these models. Many of these elasto-plast greatly benefit from such expressions.
models make use of the fully plastic Abbott and Firestone model tq finjte element analysis presented in this work produced
[9], while Greenwood and Tripp derive a very similar moHE)].  yifterent resuits than the similar Kogut and EtsiétE) model[4].
- The current work accounts for geometry and material effects
ICurrently at the Department of Mechanical Engineering, Auburn Universityyhich are not accounted for in the KE model. Most notable of
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Fig. 1 Spherical contact model before contact (a), during mostly elastic deformation (b), and during mostly plastic deforma-
tion (¢)

properties as proven in this work. Moreover, the current work usesThe critical load,P.., is then calculated from the critical inter-
a mesh that is orders of magnitude finer than tha#tirwhich was ference,w., by substituting Eq(1) into Eq. (A2). The resulting
mandated by mesh convergence. The current work models defonitical contact force at initial yielding is thus

mation surpassings/w.=110 (the limit of KE), and likewise

models five different material strengtf,, that showed a mark- ) :f 5 2(977. Sy)s @)
edly different behavior in the transition from elasto-plastic to fully ¢ 3\E') |2

plastic deformation. The formulations derived in the current Worg'milarl the critical contact area is calculated from BA) and
are also continuous for the entire range of modeled interferenc d y:

whereas the KE model is discontinuous in two separate Iocati0|l15s.g'ven by

There is ambiguity and a lack of a universal definition of hard- CSR 2
ness. Not only are there various hardness tests for various scales Ac= 773(?) 4)
and material¢Brinell, Rockwell, Vickers, Knoop, Shore, etcthe
Metals Handbook12] defines hardness as “Resistance of metal tbhese critical values predict analytically the onset of plasticity.
plastic deformation, usually by indentation. However, the termhese values are, therefore, chosen to normalize the results of all
may also refer to stiffness or temper, or to resistance to scratchitige models. The normalized parameters are
abrasion, or cutting. It is the property of a metal, which gives it

the ability to resist being permanently, defornieent, broken, or w* =0l ®)
have its shape changedvhen a load is applied. The greater the * _

: ) P*=P/P, (6)
hardness of the metal, the greater resistance it has to deforma-
tion.” Another definition is that hardness measures the resistance A*=A/A, 7)

to dislocation movement in the material, in which case it is di- o .

rectly related to the yield strengtand thus is interchangeable andNormalizing the Hertzian contact argq. (A1)] and force[Eq.
perhaps redundanta common definition that has gained status itA2)}: and the AF contact ard&q. (A5)] and force[Eq. (A6)], by
the field is that hardness equals the average indentation presd{ifecritical values given in Eqs3) and(4), results in the follow-
that occurs during fully plastic yielding of the contact area. As €19 Simplified expressions:

shown in this work, hardness of this type of definition varies with AF = o ®)
the plastic and elastic properties and the contact geometry of the E
surface, i.e., with the deformation itself. A hardness geometric PL=(w*)%? 9)
limit will be defined and discussed in the foregoing.
Arr=2w* (10)
Critical Interference L 3H
While in the elastic regime, the stresses within the hemisphere AF_EQ) (11)

increase withP and w. These stresses eventually cause the mate-

rial within the hemisphere to yield. The interference at the initigrinite Element Model
point of yielding is known as the critical interference, . The
current work derives this critical interference analytically usingi
the von Mises vyield criteriofivM). The following equations, for
the critical interference, contact area, and load, are all independ
of the hardness, which the current work shows not to be constqg%
with respect toS,. This is a notable improvement compared t% :
previous elasto-plastic contact modé#s—6]. The derivation is
given in Appendix B, resulting in

To improve upon the efficiency of computation, an axisymmet-
¢ 2-D model is used. The present study utilizes the commercial
rogram ANSYS™, while ABAQUS™ produces the same results.
ut and Etsioi4] also use ANSYS™, However, the mesiee
2) in the current analysis is orders of magnitude more refined,
s necessitated by mesh convergdr&@. The nodes at the base
of the sphere are fixed in all directions. This boundary condition
may be valid for the modeling of asperity contacts for two rea-

7-C-S, 2 sons:(1) The asperities are actually connected to a much larger

Wc= (T) R (1)  bulk material at the base and will be significantly restrained there,

and (2) since the high stress region occurs near the contact, the

whereC is derived in the Appendix to be boundary condition at the base of the hemisphere will not greatly

_ effect the solution because of Saint Venant’s principle. The change

C=1.295exp0.736v) @ in results between the said boundary conditions and one in which
The Poisson’s ratioy, to be used in Eq(2) is that of the material the nodes along axis are allowed to translate radially have
which yields first. Forr=0.32, as is used in this work, ER) shown only marginal differencéess than 3% difference in area,
results inC=1.639. and less than 1% in loadWhile these boundary conditions may
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B e ANSYS contact areas are calculated from the radii, the maximum error

i AR 10 2002 increases to 17%. The smaller error in the contact force is attrib-
e T e . uted to overall force balandstatic equilibrium enforced by the
IS =2 G0 FEM packages. However, the contact radius is obtained from a

discrete mesliwhich has a finite resolutionMoreover, the mag-
nitude of the contact element stiffness also has some effect upon
such radii, although not on the overall force balance. Generally,
though, the differences are small enough that the FEM solution
practically conforms to the Hertzian solution at interferences be-
low critical (and even slightly aboye
There are two ways to simulate the contact problem. The first
applies a force to the rigid body and then computes the resulting
displacement. The second applies a displacement and then com-
putes the resulting contact force. In both methods, the displace-
SEESEEE ment, stress, and strain in the elastic body can be determined, as
i T amumwenaan well as the contact pressure. In this model the latter approach is
used, where the base nodes of the hemisphere are displaced a
distance or interference, approaching the rigid flat surface. The
radial displacements of the base nodes are restricted. This method
is used because the resulting solution converges more rapidly than
the former.
not represent all possible loading scenarios, the conditions asThe contact problem and the elasto-plastic material property
stated are consistent with other models to facilitate an equitabieake the analysis highly nonlinear and difficult to converge. An
comparison. iterative scheme is used to solve for the solution, and many load
The contact region is meshed by 100 contact elements. Té@ps are used to enhance solution convergence. Initially, a small
meshed contact area is also controlled to ensure that at leasti@@rference is set of the total interference and then it is incre-
contact elements are in contact for each applied interferérece  mented after the load step converges. ANSYS™ internally con-
maximum contact radius error of 3.3% hese are in essence verytrols the load stepping to obtain a converged solution by using the
stiff springs attached between surface nodes, and they activBisection method. This continues until a converged solution is
only when penetration onset into the rigid flat is detected. It ®und for the desired interference.
important to assign a large value of stiffness for these contact
elements so that negligible penetration occurs between the sNimerical Results and Discussion
faces. However, using too high of a stiffness can result in conver- . . .
gence problems. This work uses a stiffness that is approximately! € results of the described finite element hemisphere model
the elastic modulus multiplied by a characteristic len@tpproxi- are presented fo_r a Yanet_y of interferences. While the elastic
mately the contact radius of the problerin addition, if the pen- modulus and_ P0|ss_ons_rat|o are heI(_:i co_nstant at 200 GPa and
etration is greater than a defined valt@erance, the Lagrangian 0.32, respectively, fl\_/e different material yield strengths are mod-
multiplier method is used. This ensures that the penetration of tfled. These are designated Mat.1 through Mat.5 corresponding to
converged solution is less than the assigned tolerance. The tolBgir yield strengths which are 0.210, 0.5608, 0.9115, 1.2653, and
ance of the current work is set to 1% of the element width. The619 GPa. The yield strengths cover a typical range of steel ma-
contact elements thus apply forces to the nodes of the eleméi§idals used in engineerir@7]. The generated numerical data for
that are in contact. five steel materials is given in Table 1. The results have also been
The model refines the element mesh near the region of contgepfirmed for a larger range of material properti@sher than
to allow the hemisphere’s curvature to be captured and accuratél§®) in Quicksall et al[28]. Once the mesh is generated, com-
simulated during deformation. The model uses quadrilateral, folptation t_akes from 10 min for small interferences to several hours
node elements to mesh the hemisphere, but the results have f§darge interferences on a 2.5 GHz PC.
been confirmed to yield identical results using a mesh of eight IN€ dimensionless contact area is normalized by the Hertz so-
node elements. The resulting ANSYS™ mesh is presented in Hgtion [Eq. (8)] and plotted as functions @$* in Fig. 3. The data
2, where ABAQUS™ produces a similar mesh. The quarter-circle presented on a log scale to capture the entire range of interfer-
mesh represents the axisymmetric hemispherical body, and gf€es. Whilew* <1.9 the finite element model agrees well with
straight line represents the rigid plane. the Hertz solution A*/w*=1). This is likely because the plastic
The contact force acting on the hemisphere is found from tigkeformations are still relatively small such that the Hertz solution
reaction forces on the hemisphere base nodes that retain theislgaot dramatically affected. As the sphere begins to plastically
sired interference. The radius of the contact area is determineddsform below the surface, the sphere weakens and thus does not
finding the edge of the contact, or the location of the last activateetain its shape as well as if it were perfectly elastic throughout.
contact element. Thus the area of contact eventually becomes larger in the elasto-
In order to validate the model, mesh convergence must be splastic case than in the perfectly elastic case. The FEM model
isfied. The mesh density was iteratively increased by a factor ov2lues for the dimensionless contact area continue to increase
until the contact force and contact area differed by less than Mith interference even past Abbot and Firestone’s fully plastic
between iterations. The resulting mesh consists of at least 11,18F) model[9] at A*/w* =2. Since the AF model is based on the
elements, since the number of meshed elements will vary with ttrencation of the contacting geometries, it does not model the
expected region of contact. The stiffness of the contact elemeatgfual deformation of the hemisphere. It seems reasonable, then,
was also increased by an order of magnitude in successive itetat the FEM solution for contact area could continue past the AF
tions until the contact force solution differed by no more than 1%hodel.
between successive iterations. Overall though, the FEM predicted contact area generally fol-
In addition to mesh convergence, the model also compares wellvs the Hertz elastic solution near the critical interference and
with the Hertz elastic solution at interferences below the criticsthen increases past the AF model as the interference increases.
interference. The contact force of the model differs from the Hert-ater in this work, this trend will be followed by empirical for-
zian solution by no more than 2%. The contact radius differs byraulations fitted to the data. The FEM results also indicate a ma-
maximum of 8.1%, but the average error is only 4.4%. When therial dependence of the normalized contact area. Since the con-

Fig. 2 Finite element mesh of a sphere generated by ANSYS™
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Table 1 Tabulated finite element results ~ (radius =1 um, E also agree fairly well on average, except at large interferences.
=200 GPa, »=0.32) The KE model clearly shows a slight discontinuityeit =6 and

N then terminates ab* =110. The KE model does not connect with
(E=200 GPa, v=0.32) 21 . . e Hertz elastic solution at the critical interference depth. Also,
SE1% 17| 1255000 | 1207%00 the Hertz elast lut t th tical interf depth. Al
T = 2 the nondimensional KE model is material independent such that
LG | 4507E02 - its contact area falls between the data of materials 1 and 5 of this
B v work. , _
53?25 —%EE%— Qe 2 The dimensionless contact force is normalized by the Hertz
AT e e o solution[Eq. (9)] and plotted as a function @é* in Fig. 4. This
T AN ARt EETE plot uses a log scale to capture the entire range of interferences.
07.63 L. 766E+02 272E+03 [ & .
ateo | asepeica [ 2arien0s F O A A el IRk The normalized contact fochD*/(w*)S/z] calculated from the
05 5417 108E-G3 | 28806+05 e s current model follows precisely the Hertz elastic solution
g_osm 2382 | 3.382E+01 B15E+01 | 787.16 | 38216702 | 8.608E+02 % %132 ! ) X . :
520 7ot | 7 7o0me0n | 1.o8Ev02 — 0% | S1mECT | 1.56E0] [P*/(w*)**=1] at small |nterferen_ces. With increasing interfer-
T 7225z | 3064602 cha 043 | azeesor | a7seesr ence the current model eventually increases toward the AF model
119:10 .249E+02 5:453&02 0.57 8.270E-01 [ 4.324E-01 . . . . .
Dol paen] suy 07T TenED | 8 SaE] [9]. It is interesting to note that the AF model predicts higher
19057 | 55108402 | S402E-02 14 11 loads at small interferences than the Hertzian solution, but even-
— el oveal 2o LA 156400 tually crosses over to become the lesser of the two. This is be-
S 25| 24teze00 | savseoo 00| seuEsc] Loneit cause the AF model assumes a constant pressure distribution,
4 [ 77815000 | 14306001 which is equal to the hardness, while the average pressure of the
.86 | .090E+00 | 1.876E+01 | Hertzian solution is initially lower than the hardness. At higher
857 | 1.108E+  A11E+01 | . A h
220 [ LIU7E01 1 254880t !nterferences, the FEM data displays a material dependent behav-
- ior.
2 The nondimensional contact force trends of all the models are
16051 |5 644E+05 | 8 531E702 2%% I similar; however, the ZMC again crosses to the AF model prema-
e i turely. At low interferences, the KE and ZMC models predict a
0.01 . . .
55 | ¢ contact force that is greater than the elastic model. This cannot be
gg?g; I the case, as the yield strength of the material limits the stiffness of
5001 1 the hemisphere. Again the KE model shows a discontinuity at
1140 [ 2 w* =6 and then terminates at* =110. Generally the KE model
22881 | 4.846E+02

and the current FEM results are very similar. At abetit=50 the
KE model crosses over the current model and continues to over-
estimate the contact force unal* =110. The KE and ZMC mod-
tact area is calculated by counting the number of elements éis also fail to capture the material dependence effects at large
contact, and there are only a finite number of such elements, th#rerferences.
is an inherent error in the data. The scatter in the data can belhe average contact pressure to yield strength r&i¢AS,),
attributed mostly to this, and to the fact that the FEM is yet & calculated from the data and plotted in Fig. 5, alongside the
discrete formulation. Hertz contact solution. The Firestone and AbK&itfully plastic

For the contact area, all the models follow the same genef&lF) model is represented by the horizontal linePd{AS,) =3.
trend, but they differ in magnitude. The ZMC model follows theélhe average contact pressure should approach the hardness of the
Hertz elastic solution at low and moderate interferences, buonaterial as the contact becomes fully plastic. It is widely accepted
abruptly migrates to the AF model before the current model aridat the hardness is approximated byS3[11]. It becomes evi-
the KE model. The KE model and the current empirical modelent in this plot that this is not always the case. From the data it
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seems that hardness is not a constant material property. The cangecoefficient and is fit to the numerical data. Figures 3—5 show
of this trend will be discussed later in greater detail. The work iat there are two distinct regions in the FEM data; thus a piece-
Mesarovic and Fleckl15] also confirms this trend, but does notwise formulation is used to fit the data. At small interferences the

address the trend theoretically.

Empirical Formulation For O<o*<o?

General empirical approximations of the FEM data are desired . .
for use at any deflection and for any set of material properties. Ar=w
This will help designers in a variety of single contact problems, N .
and it will be readily incorporated into statistical models to modéind forof <w
rough surfaces. B

As mentioned previously, the FEM solution for the area of con- Ar = o* ( “’7)
tact continues past the AF model with increasing interference. F *
Hence, the leading coefficient in EQ.0) is allowed to vary when
equations are fitted to the FEM data. This is reasonable, since ieere
AF model is not an exact solutiofit is based on a truncation
assumption Here a power function is used in place of this lead- B=0.14ex1023e)
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Fig. 5 Average contact pressure to yield strength ratio
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Hertz solution is assumed and at large interferences the power
function is fit to the FEM data, resulting in the following:

(12)

(13)

(14)
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S He a\ —o7
ey=E (15) §=2.8 1—exp —0.8 ﬁ (17)
* __ . . . . . .
w;f =1.9 (16) This formulation is plotted alongside the data in Fig. 6. Interest-

* - ) . _.ingly, as a/R approaches zero, the limiting value &fg/
The _value “r r_epresents the trz_insmon 'pomt from elas_t|ca||y:2 84 agrees almost precisely with the theoretical value of 2.83
dominant behavior to elasto-plastic behavior. The formulation fo{WiI.Iiams [[29], p. 109). Equation(17) is only valid for the range '
l.OWS the Hertzian solutic_)[Eq. (12)] for 0* <1.9. Ther_l it transi- f fitted data(c;r 0<a/R=0.412). Caution should thus be taken
tions to the elasto-plastic case and eventually continues past n using this function outside this range. This range is accept-
. N ; 3
AF model for high values ob*. Equation(13) is also somewhat apie for many applications, particularly tribological applications
dependent on the material properties, according to the definitionyhere deformations above this range are either unlikely or unac-
5qs.$14) ﬁr}d (19. St?"t:St'gally' Eq.(13) dlfff(irse)of/rom Jhe FEM ceptable. From the relatioh= - a2, a is solved for and normal-
ata for all five materials by an average of 1.3% and a maximum A% . : .
of 4.3%. An equation of the same form as the ZMC model fitted 5ed byR. Then/;\c A Is substituted foA. Eguayon(l:%) 's then
the FEM data results in an average error of 43.2%. Notably, Eqé!Pstituted forAz , andEq.(4) for A, thus yielding

(12) and(13) are continuous aby; .

In order to formulate a fit for the FEM contact force, the a_ VAG AL _ \/Ws(cs’\/R)zw*(“’*/wr)B
material-dependent trend at high interferences shown in Fig. 4 is R J7R 4m(RE")?
modeled. To assist in this model, a plotRf(AS)) as a function
of a/R in Fig. 6 reveals the cause of the material dependency. In _7Ce|  [0* BV
this plot a limit appears to emerge for the fully plastic average T |v E (18)

pressure, commonly referred to as the hardness. Here the hardness
appears to change as a functionafR, or with the evolving Thjs substitution is valid only whem* = w? . Equation(18) can

geometry of contact. The trend may be explained by the progrefian pe substituted into EGL7) so it may then be rewritten as a

sion schematically shown in Fig. 7. As the interference increasgction of w* as follows:

and the contact geometry changes, the limiting average pressure to

yield strength ratioH /S, , must change from Tabor’s predicted He nCe, w* | B2\ —07

value of 3 to a theoretical value of 1 when=R. The contact —=2.84{1—exp( —O.SZ(T \/w*(—*) ) H
region whena=R is essentially the case of a deformable blunt Wy

rod in contact with a rigid flat whose s /S, value is theoretically (19)
i(i]ne. A Weibull funciion fited to the limiting values éig results This results in a formulation folH ¢ as a function of the material

propertiesE, S,, andv (not just uponS, as suggested by Tabor
[11]).

To formulate an approximation of the contact force as predicted

by the FEM results, the AF model for contact force must first be
/ N ; N J corrected by way of substituting E¢L7) or (19) into Eq. (11),
letting Hg replaceH, and by allowing the AF contact area to

deviate from Eq(10) [see reasoning for Eq17)]. This results in

Helfy=s 3> Hgt$>1 He/Sy~1 an equation for a corrected fully plastic model. Once again a
a/R=0" 0<a/R<1 W/R=1 piecewise solution is fit to the FEM data. At small interferences,
the Hertz solution is assumed. The resulting piecewise equation fit
Fig. 7 Progression of change in hardness with deformed to the FEM data is given as follows:
geometry For Oso* <oy
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PE=(w*)3? (20) is considered to be the “hardness.” The ZMC and KE models
both estimate the average pressure in the transition from the elas-
tic to the elasto-plastic regime fairly well. It is also apparent that

1 these models do not intersect with the Hertzian solution at
exp{ - (o* )5/12) }(w*)” P/(AS))=2-C/3. The discontinuity in the slope in the KE model

4 at a value of 6 and in the current model at a value of 1.9 is also
clearly evidenf{see Eqs(A8) and(A9) and Eqgs(12)—(21)].

and for o} <w*

P =

4Hg

E—— w* (21)

1
kexp( —5g(0*)*°
] ) , Comparison with Experimental Results
where of =1.9. This formulation approaches asymptotically the

Hertz elastic model at small interferences, and approaches ndohfnsor[25] pelr_formed experlhments on the elasto-plastic conr-]
continues past the AF model at large interferences. Statistic t of copper cylinders and spheres. During one experiment, he
this formulation differs from the FEM data for all five materials sted the contact of a copper sphere and a comparatively rigid
by an average error of 0.94% and a maximum of 3.5% when E%{;?' surface. These test conditions are comparable to the sphere
(19) is used forH against a rigid flat case modeled |n.th|s work. For the hlghgst load
The soermen p(rae'ssure to yield strength ra{AS,), can now tested, t_he qo_nte_lct has a nearly qnlforr_n pressure distribution, thus
be modeled by combining EG&L2)—(16) and Eqs(zo)’and(21). suggesting it is in the fully plastic regime. At this load, th&R
Since these equations are normalized by their critical values, :{r?é'o IS gllver;] as 0.204 and the a_vek:age presl.sufe as 2,59n-
resulting formulation for the average pressure is efestingly, the predicted geometric hardness limit or average pres-
sure for the sama/R using Eq.(17) is 2.61: S, . In comparison,
P 2 Pf the KE model, which assumes the AF model at this interference,
E: 3Car (22)  predicts an average pressure of-Bg.
F Johnson provides the contact radius and load in his results,
This ratio is shown in Fig. §only the weakest and strongestwhich can also be compared with the predictions of the current
materials are plotted for clarityThe largest differences betweenformulations[Egs. (12)—(21)] and those of the KE modé¢Eqgs.
the ZMC and KE models and the current FEM model then appeé&h8) and (A9)]. Table 2 presents this comparison. The material
It is apparent that the KE and ZMC models do not account f@roperties provided by Johnson were used when available; other-
material dependence in the limiting average pressure to yieldse values fronj27] were used. All material properties are given
strength ratioHg /Sy. Both the ZMC and KE models are mono-in Table 2. Since Johnson does not provide the interference at
tonically increasing and truncated at some point that traditionalgach load, the predicted pressure is calculated from the experi-

Table 2 Comparison of experimental [25] and numerical results

2 A P % P’ %
(EXPERIMENTAL)(EXPERIMENTAL)|(CURRENT)| DIFF. (KE) DIFF.
360.1 159.4 404.3 10.9 400.9 10.2
1230.5 527.4 1306.3 5.8 1331.9% 7.6
2401.0 1042.8 2442.6 1.7 2633.3% 8.8
Material Properties, Copper: Sy=265.5 kPa E=115 GPa 1=0.34 Steel: E=200 GPa 1=0.33

The KE model assumes the results of Abbott and Firestone [9] for fully plastic contact.
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Fig. 9 Displacement at edge of contact area plotted as a function of penetration depth

mental contact area using the current formulations and the Kjion of elastic materialsee Fig. 1(a)]. It should be noted that
model. Both numerical models compare well with the experimelvecause of plotting resolution the region of plastic deformation is
tal results and differ by a maximum of just over 10%. Howevegmaller then the highest stress region shown in each plot. For
overall the current model proves to be a more accurate model.ifistance, the highest stress region in Fig(blhas a von Mises
fact, at the largest load the difference is merely 1.7%. These i@ress range between 1.444 and 1.624 GPa, and thus not the entire
sults also indicate that there is a definite need for formulatiomegion in this stress range is at the yield stress of 1.619 GPa. With
which can accurately capture elasto-plastic hemispherical contamtreasing interference, the plastic region expands until it reaches
at large interferences. The experimental results also show agtie surface of the sphef€igs. 1Gb) and 1@c)]. From close in-

that the hardness or the fully plastic average pressure varies wsffection of postprocessing data, according to the current model,
deformation and is not constant at 25§ or 3-S, [4,9]. the interference at which the plastically deformed region first
) ) reaches the surface is approximately whgn= 9.6, for material 5
Evolution of Deformation (this differs from the valuev? =6 as reported by Kogut and Et-

As long as the deformations are purely elastic, i.e., below tiséon [4]). The value ofw} also varies slightly with the material
critical interferences, the entire hemisphere will abide to 3Bield strength and the deformed contact geometry for the same
Hooke’s law. Conforming to Poisson’s effect, the material volumgeason that the average pressure or hardness varies with strength.
should compress with a compressive contact pregageshown Repeated FEM analyses were performed to search for the inter-
schematically in Fig. (b)]. To investigate this phenomenon Fig. %erences of two important casé4) when plastic deformation first
shows the radial deformation of the last contact point between theaches the contacting surface at the far right end point,(2nd
deformed hemisphere and the rigid flat as extracted from the FEMhen the contact surface first becomes entir@iyly) plastic.
postprocessing data. Indeed at relatively small valuas*ofhere Table 3 gives these results. To pinpoint precisely these values,
seems to be a shrinkage in volurfeven though that some plasticmuch more arduous searches are needed. The search performed
deformation has already taken place, but overall the elastic defbere, albeit intensive, was not exhaustive and, therefore, the val-
mation of the entire hemisphere dominates values below an ues given here contain some uncertaif@iven as the resolution
approximate value ofo* =22, the radial displacements are alln Table 3. Searches were done on the stronger materials exclud-
negative, very small, and are generally strength indepen@est ing materials 1 and 2, which have the slowest convergence rates.
insed. In plasticity, however, volume is conserved. As the defor- After plastic deformation has reached the surface, an elastic
mation increases, the yielded material flows plastically and is iMolume on the loaded tip of the sphere is still maintaifE.
compressible, making Poisson’s ratio effectively equal to8.  10(c)] by the presence of hydrostatic stresses, which suppress
The FEM results find that beyond* =22 (approximately, the Yielding according to the von Mises criterion. Eventually this elas-
radial deformation of the last contact point displaces positivel{jc region will turn plastic as the interference is increased. Figure
i.e., the schematics of the deformation follows the geometry dé0(d) shows a state of stress just before the fully plastic state is
picted in Fig. 1c). The positive displacement becomes materigeached on the contact surface. Although an exhaustive analysis of

dependent, which increases with material strength. w}*p is not performed here, this initial fully plastic interference
o ] seems to range betweest =70 andw* =80, depending on the
Stress Distribution and Evolution material yield strength. This range of values is also close to the

Initially, at small interferences, the sphere will deform only@lue of 68 as predicted by the KE model.
elastically. While in the elastic regime, the maximum von Mise .
stress will always occur beneath the contact surface and within t é)nclusmns
bulk material. Eventually, as the interference increases and theThis work presents a 2D axisymmetric finite element model of
stresses increase, yielding will initiate at the point of maximuran elastic-perfectly plastic hemisphere in contact with a rigid flat
von Mises stress. surface. A comparison is also made with other existing models.

At interferences just above the critical, the plastically deformethe material is modeled as elastic-perfectly plastic, and yielding
region is small and confined below the surface by a sizeable @ecurs according to the von Mises criterion. A concise form is
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Fig. 10 Stress plots from ANSYS™, showing the evolution of the stress distribution from (a) elasto-plastic (not yet plastic on
surface ) to (d) just before fully plastic

presented for the critical interference at which plastic deformati@ithough still does not capture the varying hardness trend. An
initiates within the hemisphere. It is derived from the Hertziaempirical formulation for the contact area is also fitted to the FEM
solution and the von Mises yield criterion. An a priori definition ofdata as a function of the material properties and interference.
the hardness is not needed. The FEM results of the contact force predict a lower load car-
The resulting plots indicate that the FEM results for the contagting capacity than the AF model for most materials and values of
area agree closely at small interferences with the trends of thé&. This is because the AF model assumes that the average pres-
Hertzian solution. While at large interferences the FEM predicture distribution is simply the hardness, which is approximated by
contact areas that surpass Abbot and Firestone’s fully plasBeS, . It is found, however, that the fully plastic average contact
model [9] (that is based upon truncatipriThe ZMC model is pressure or hardness is not constant as is widely accepted. Rather,
found to differ significantly from the FEM results, where the KEBhe limiting value of the fully plastic average pressure varies with
model(which is also based on FEM resulfsllows more closely, the deformed contact geometry, which in turn is coupled to the

Table 3 FEM generated interferences for initial yield of the surface and the fully plastic regime

MATERIAL o* AT INITIAL o* AT INITIAL
(Sy/E) SURFACE YIELD [RESOLUTION| FULLY PLASTIC |RESOLUTION
0.00456 7.89 +/-1.13 81.13 +/-9.01
0.00633 9.36 +/- 0.58 81.87 +/- 11.70
0.00810 9.64 +/- 0.36 74.23 +/-5.71
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material yield strength. This is accounted for in an empirical for- t = transitional value from elastic to elasto-plastic behav-

mulation for the limiting average pressure to yield strength ratio, ior
Hg /S, . Aformulation usingHg /S, is then fit to the FEM contact Superscripts
force data. . . . . valent
A comparison is also made with the experimental results pro- . equivalen
vided by Johnsor25]. The current model compares very well, = dimensionless.

and predicts the sparse experimental results significantly better

than t_he KE model, particularly in the fully plastic regime. They pendix A: Existing Hemispherical Contact Models
experimental results also show that the hardness trend at Iarg%

deformation is a very real phenomenon that can affect practicalThe Hertzian solutiori2] provides closed-form expressions to
engineering applications. the deformations and stresses of two spheres in a purely elastic
This work reveals large differences between approximate arf@ntact. The two spheres may have different rad|_| and different
lytical models and other numerical solutions. More importantiglastic properties. However, the closed-form solutions render an
the contact area, force, and pressure are found to be particulzﬁﬂ}‘“valem case where a single elastic sphere, having an equivalent
dependent upon the deformed geometry in all regimes and eff@astic modulusg’, and an equivalent radiu®, is in contact
tively dependent upon the material propertiesy., strengthin ~ With a rigid flat[see Fig. 1, and Eq$A1)—(A4) that follow]. The
the elasto-plastic and plastic regimes. The fit-them-all equatiolféerferencey, can be described as the distance the sphere is dis-
that solely depend upon deformation, which are found in previo@#¥aced normally into the rigid flat. The Hertz solution assumes
works, are imprecise when compared to current FEM results. @t the interference is small enough such that the geometry does
example, the average contact pressure to yield strength ratio inf change significantly. The solution also approximates the
previous work is shown to increase monotonically with deforma&phere surface as a parabolic curve with an equivalent radius of
tion, and is assumed to termindte truncatg at the hardness. In curvature at its tip. The resulting equations for contact radius and
this work it is shown that such a truncation is not warranted9ad from the Hertz solution are

Particularly, it is shown that the truncation model of Abbott and A-= 7R (A1)
Firestond 9] cannot be justified. This work discovered significant E

geometrical and material nonlinearities, and that the hardness de- 4 y

pends not just upon strength but also upon the modulus of elas- Pe=3F' VR(w)¥?2 (A2)

ticity, Poisson’s ratio, and most importantly upon the deformation
itself (i.e., hardness is not a unique or fixed material property sgere
indicated by Tabof11], and assumed by others after hirffhe

2 2
results are based on the finest and adaptive mesfoyet 11,000 1 17 + 1v (A3)
four- and eight-node elements for a single hemispherical asperity E' E: Ez
in contact with a rigid flat, and 100 contact elementsat is 1 1 1
necessary for finite element convergence. The results were ob- (A4)

_——— + J—
tained by using ANSYS™ and then independently confirmed by R R R

using ABAQUSTM‘. In the_ future it ‘.NOUId be useful_ to inves_tigateandEl’ v1, Ry andE,, vy, R, are the elastic properties and radii
the effect of material strain hardening and tangential loadfig- sphere 1 and 2, respectively.

ing). Abbott and Firestong9] stated that under fully plastic condi-
tions the area of contact of an asperity pressed against a rigid flat
Acknowledgments can be approximately calculated by truncating the asperity tips as

The contribution of Dawei Shen of Georgia Tech in helping t§€ rigid flat translates an interferenae, For a hemisphere, this
construct the ANSYS™ FEM model is gratefully acknowledged®PProximated fully plastic area is given by

The contribution of Scott Shipley of Georgia Tech in confirming Axr=27Ro (A5)
the results using ABAQUS™ software is also gratefully acknowl- | ) ) o
edge. Using Eq.(A5) the contact load of the hemispherical asperity is
simply the contact area multiplied by the average contact pressure,
Nomenclature which in this case is the hardness, since the contact is assumed to
be fully plastic. The approximated fully plastic contact force is
A = area of contact thus
C = critical yield stress coefficient
E = elastic modulus Par=27RwH (A6)
H = hardness o From this point forward, Eq<A5) and(A6) will be referred to as
Hg = hardness geometric limit the AF model. Greenwood and TrigdO] also independently
K= hardness factor model fully plastic contact between hemispheres using a similar
P = contact force . . truncation method.
R = radius of hemispherical asperity Chang et al[5] (CEB mode) approximated elasto-plastic con-
S = y|e|_d strength tact by modeling a plastically deformed portion of a hemisphere
a = rac_ilus_ of _the area of contact using volume conservation. This CEB model assumes(fhahe
e, = uniaxial yield strainS, /E hemisphere deformation is localized to near its (&), the hemi-
k = mean contact pressure factor sphere behaves elastically below the critical interferemge,and
Po = Maximum contact pressure fully plastically above that value, an@) the volume of the plas-
z = axis of symmetry for hemisphere tically deformed hemisphere is conserved. Also, the critical inter-
o = interference between hemisphere and surface ference used in the CEB model is given by
v = Poisson’s ratio ;
Subscripts .= 7TKH) (A7)
_ . . ¢\ 2E’
E = elastic regime
F = fit to current FEM data whereK is the hardness factor given by=0.454+ 0.41v and the
¢ = critical value at onset of plastic deformation hardness is assumet=2.8-S,. While from an engineering per-
0 = maximum spective the corresponding values given by Edsand (A7) are
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very close, the CEB model is limited to this fixed relationshif’he resulting Eq.B4), which must be positive, dictates where
between the hardness and the yield strength. It should be notgthin the hemisphere initial yielding occurs. This is obtained by
that Eq.(1) is not limited by any such assumption. Likewise thesetting the derivative with respect tto zero. Hence,

CEB model contains a discontinuity af, .

Zhao et al.[6] devised an elasto-plasti@MC) model, which 1(3) =—aza¥(4+v)+(1+v)Z]
interpolates between the elastic and fully plagfi&) models. The dz\ p,
ZMC model divides the interference into three segmefifselas-
tic (Hert2), (2) elasto-plasti¢using a template and(3) fully plas- +(1+v)(a2+ 222 tan ! E”
tic (AF). A template function satisfies continuity of the function z

and its slope at the two transitions. The wotks8] take semi- _o B5

analytical approaches to the problem. - (B5)
Kogut and Etsion[4] also performed a FEM analysis of theThis equation is solved numerically for Poisson’s ratios between

same case of an elastic-perfectly plastic sphere in contact witlD.®1 and 0.50 to find the locations, at initial yielding. These

rigid flat. Again in their analysis, the value &f is set to be fixed locations are then substituted in E&4) to find the applied maxi-

at 2.8 S;. Notably, the slope oP/(AS,) is not zero(it still in-  mum contact pressure to yield strength rafig,/S, . This ratio,

creases monotonicallyat the point where full plasticity is as- p,./S, is referred to as the yield strength coefficient and desig-

sumed. Their work gives a very detailed analysis of the stresated by the symbdl. An empirical function is fitted to the final

distribution in the contact region, and empirical expressions an@merical data, which is given by

provided for the contact area, the contact force, and the average

contact pressure. The resulting equations have a discontinuous &:=C=1.295 exp0.736v) (B6)
slope atw* =6, and they describe the deformation only up to S
w*=110, at which point _fU” plasticity is assumed. These argquation(B6) differs from the numerical solution by an average
given in a piecewise form: of 1.2% and by no more than 3.1%.
For lso*<6 The interference, is given as a function op, by the Hertz
PEo=1.03 0*)142 elastic solution in Johnsdr20] as
AX_=0 93(0*)1.136 (A8) _ 7 Po 2
KE™ Y- 0= SET R (B7)
— | = *0. us, to find the critical interference, or the interference at the
( ) 1.19 w*)0-28 Thus, to find the critical interf the interf t th
AS)) e initial point of yielding, the maximum pressure when yielding first

OCCUrS,pyc, IS substituted into EqB7) for p,. This maximum

*
For 6<w®<110 pressure is the pressure given by the maximum contact to yield

PE = 1.40 * ) 1263 strength ratio given in EqB6). The equatiorp,.=CS, is substi-
tuted into Eq.(B7), resulting in Eq.(1).
A¥e=0.94 *)140 (A9) A similar derivation is also given in Chani@1]. However, that
derivation assumed a fixed value between strength and hardness,
i =1.61w*)07 S,=0.35H, which resulted in an equation for the hardness coef-
AS)) e ficient, K=0.454+0.41y. Such an assumption is not made in this

. . ) work (see discussion oH g within).
These equations have a discontinuous slope’at 6, and they

describe the deformation only up &* =110, at which point full
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