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A Finite Element Study of
Elasto-Plastic Hemispherical
Contact Against a Rigid Flat
This work presents a finite element study of elasto-plastic hemispherical contact
results are normalized such that they are valid for macro contacts (e.g., rolling elem
bearings) and micro contacts (e.g., asperity contact), although micro-scale surface
acteristics such as grain boundaries are not considered. The material is modele
elastic-perfectly plastic. The numerical results are compared to other existing mode
spherical contact, including the fully plastic truncation model (often attributed to Ab
and Firestone) and the perfectly elastic case (known as the Hertz contact). This work
that the fully plastic average contact pressure, or hardness, commonly approximated
a constant factor of about three times the yield strength, actually varies with the defo
contact geometry, which in turn is dependent upon the material properties (e.g.,
strength). The current work expands on previous works by including these effect
explaining them theoretically. Experimental and analytical results have also been s
to compare well with the current work. The results are fit by empirical formulations fo
wide range of interferences (displacements which cause normal contact betwee
sphere and rigid flat) and materials for use in other applications.
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Introduction
The modeling of elasto-plastic hemispheres in contact wit

rigid surface is important in contact mechanics on both the ma
and micro scales. This work presents a dimensionless model
is valid for both scales, although micro-scale surface characte
tics such as grain boundaries are not considered. In the for
e.g., rolling element bearings, load may be high and the defor
tions excessive. In the latter, e.g., asperity contact, a model on
micro-scale is of great interest to those investigating friction a
wear. In addition, the real area of contact of such asperities
affect the heat and electrical conduction between surfaces. In
ther scale contact is often modeled as a hemisphere against a
flat. Much interest is devoted in the literature to the reverse c
of indentation loading where a rigid sphere penetrates an ela
plastic half-space. It is worthy to emphasize that indentat
~other works! and hemispherical deformation~this work! are sig-
nificantly different in the elasto-plastic and fully plastic regime
and only the latter is the subject of this work.

One of the earliest models of elastic asperity contact is tha
Greenwood and Williamson@1#. This ~GW! model uses the solu
tion of the frictionless contact of an elastic hemisphere and a r
flat plane, otherwise known as the Hertz contact solution@2#, to
stochastically model an entire contacting surface of asperities
a postulated Gaussian height distribution. The GW model assu
that the asperities do not interfere with adjacent asperities and
the bulk material below the asperities does not deform. T
Gaussian distribution is often approximated by an exponential
tribution to allow for an analytical solution, although Green@3#
has analytically solved the integrals using the complete Gaus
height distribution. Supplementing the GW model, many elas
plastic asperity models have been devised@4–8#. Appendix A pro-
vides a summary of these models. Many of these elasto-pla
models make use of the fully plastic Abbott and Firestone mo
@9#, while Greenwood and Tripp derive a very similar model@10#.

1Currently at the Department of Mechanical Engineering, Auburn Univers
Auburn, AL, 36849; e-mail: robert.jackson@eng.auburn.edu

Contributed by the Tribology Division for publication in the ASME JOURNAL OF
TRIBOLOGY. Manuscript received by the Tribology Division April 29, 2004; revise
manuscript received September 8, 2004. Review conducted by: J. Tichy.
Copyright © 2Journal of Tribology
a
cro
that
ris-
er,
a-

the
nd
ill
ei-

rigid
ase
sto-
on

s,

t of

gid

ith
mes
that
he
is-

sian
to-

stic
del

It should be noted that Abbott and Firestone@9# intended their
model to be used to describe a wear process rather then a d
mation process, but literature has still traditionally attributed t
fully plastic truncation model to them~see Appendix A for a de-
tailed description!. Although these previous models have prov
useful, they contain clear pitfalls which may be detrimental
their validity.

Additionally, the reversed case of a rigid spherical indentat
of a deformable half-space has been thoroughly investigated
perimentally @12–14# and numerically@15–19#. Work has also
been done on the contact of a rigid cylinder contacting an ela
plastic layered half-space@20#. More generally, various experi
mental and numerical works have investigated other contac
geometries and hardness tests@11,21,22#. The two works by Bar-
ber et al.@23# and Liu et al.@24# provide a more in-depth look a
past and more recent findings in the field of contact mechan
Perhaps a most important and relevant work is by Johnson@25#,
who experimentally measured the plastic strains between co
cylinders and spheres. Johnson’s experimental results compar
vorably with the findings of the current work. Despite the exte
sive body of works, the results, trends, and theories presente
the present work, to the authors’ knowledge, have not yet b
thoroughly documented.

The current work uses the finite element method to model
case of an elastic-perfectly plastic sphere in frictionless con
with a rigid flat ~see Fig. 1!. The von Mises criterion defines th
yielding of the material. The resulting numerical data is also fit
by continuous functions that capture deformations all the w
from purely elastic to fully plastic conditions. These expressio
which have a relatively low statistical error, may be used in ot
applications whether they are on macro or micro scales. For
ample, a statistical model for asperity contact~such as GW@1#!
can greatly benefit from such expressions.

The finite element analysis presented in this work produ
different results than the similar Kogut and Etsion~KE! model@4#.
The current work accounts for geometry and material effe
which are not accounted for in the KE model. Most notable
these effects is that the predicted hardness is not a material
stant as suggested by Tabor@11# and many others; rather hardne
changes with the evolving contact geometry and the mate

ity,

d
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Fig. 1 Spherical contact model before contact „a…, during mostly elastic deformation „b…, and during mostly plastic deforma-
tion „c…
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properties as proven in this work. Moreover, the current work u
a mesh that is orders of magnitude finer than that in@4# which was
mandated by mesh convergence. The current work models d
mation surpassingv/vc5110 ~the limit of KE!, and likewise
models five different material strengths,Sy , that showed a mark-
edly different behavior in the transition from elasto-plastic to fu
plastic deformation. The formulations derived in the current wo
are also continuous for the entire range of modeled interferen
whereas the KE model is discontinuous in two separate locati

There is ambiguity and a lack of a universal definition of ha
ness. Not only are there various hardness tests for various s
and materials~Brinell, Rockwell, Vickers, Knoop, Shore, etc.!, the
Metals Handbook@12# defines hardness as ‘‘Resistance of meta
plastic deformation, usually by indentation. However, the te
may also refer to stiffness or temper, or to resistance to scratch
abrasion, or cutting. It is the property of a metal, which gives
the ability to resist being permanently, deformed~bent, broken, or
have its shape changed!, when a load is applied. The greater th
hardness of the metal, the greater resistance it has to defo
tion.’’ Another definition is that hardness measures the resista
to dislocation movement in the material, in which case it is
rectly related to the yield strength~and thus is interchangeable an
perhaps redundant!. A common definition that has gained status
the field is that hardness equals the average indentation pre
that occurs during fully plastic yielding of the contact area. As
shown in this work, hardness of this type of definition varies w
the plastic and elastic properties and the contact geometry o
surface, i.e., with the deformation itself. A hardness geome
limit will be defined and discussed in the foregoing.

Critical Interference
While in the elastic regime, the stresses within the hemisph

increase withP andv. These stresses eventually cause the m
rial within the hemisphere to yield. The interference at the init
point of yielding is known as the critical interference,vc . The
current work derives this critical interference analytically usi
the von Mises yield criterion~VM !. The following equations, for
the critical interference, contact area, and load, are all indepen
of the hardness, which the current work shows not to be cons
with respect toSy . This is a notable improvement compared
previous elasto-plastic contact models@4–6#. The derivation is
given in Appendix B, resulting in

vc5S p•C•Sy

2E8 D 2

R (1)

whereC is derived in the Appendix to be

C51.295 exp~0.736n! (2)

The Poisson’s ratio,n, to be used in Eq.~2! is that of the material
which yields first. Forn50.32, as is used in this work, Eq.~2!
results inC51.639.
44 Õ Vol. 127, APRIL 2005
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The critical load,Pc , is then calculated from the critical inter
ference,vc , by substituting Eq.~1! into Eq. ~A2!. The resulting
critical contact force at initial yielding is thus

Pc5
4

3 S R

E8D
2S C

2
p•SyD 3

(3)

Similarly, the critical contact area is calculated from Eq.~A1! and
is given by

Ac5p3S CSyR

2E8 D 2

(4)

These critical values predict analytically the onset of plastic
These values are, therefore, chosen to normalize the results o
the models. The normalized parameters are

v* 5v/vc (5)

P* 5P/Pc (6)

A* 5A/Ac (7)

Normalizing the Hertzian contact area@Eq. ~A1!# and force@Eq.
~A2!#, and the AF contact area@Eq. ~A5!# and force@Eq. ~A6!#, by
the critical values given in Eqs.~3! and~4!, results in the follow-
ing simplified expressions:

AE* 5v* (8)

PE* 5~v* !3/2 (9)

AAF* 52v* (10)

PAF* 5
3H

CSy
v* (11)

Finite Element Model
To improve upon the efficiency of computation, an axisymm

ric 2-D model is used. The present study utilizes the commer
program ANSYS™, while ABAQUS™ produces the same resu
Kogut and Etsion@4# also use ANSYS™. However, the mesh~see
Fig. 2! in the current analysis is orders of magnitude more refin
as necessitated by mesh convergence@26#. The nodes at the bas
of the sphere are fixed in all directions. This boundary condit
may be valid for the modeling of asperity contacts for two re
sons:~1! The asperities are actually connected to a much lar
bulk material at the base and will be significantly restrained the
and ~2! since the high stress region occurs near the contact,
boundary condition at the base of the hemisphere will not gre
effect the solution because of Saint Venant’s principle. The cha
in results between the said boundary conditions and one in w
the nodes along axisx are allowed to translate radially hav
shown only marginal difference~less than 3% difference in area
and less than 1% in load!. While these boundary conditions ma
Transactions of the ASME
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not represent all possible loading scenarios, the conditions
stated are consistent with other models to facilitate an equit
comparison.

The contact region is meshed by 100 contact elements.
meshed contact area is also controlled to ensure that at lea
contact elements are in contact for each applied interference~i.e.,
maximum contact radius error of 3.3%!. These are in essence ve
stiff springs attached between surface nodes, and they act
only when penetration onset into the rigid flat is detected. I
important to assign a large value of stiffness for these con
elements so that negligible penetration occurs between the
faces. However, using too high of a stiffness can result in con
gence problems. This work uses a stiffness that is approxima
the elastic modulus multiplied by a characteristic length~approxi-
mately the contact radius of the problem!. In addition, if the pen-
etration is greater than a defined value~tolerance!, the Lagrangian
multiplier method is used. This ensures that the penetration of
converged solution is less than the assigned tolerance. The t
ance of the current work is set to 1% of the element width. T
contact elements thus apply forces to the nodes of the elem
that are in contact.

The model refines the element mesh near the region of con
to allow the hemisphere’s curvature to be captured and accura
simulated during deformation. The model uses quadrilateral,
node elements to mesh the hemisphere, but the results have
been confirmed to yield identical results using a mesh of e
node elements. The resulting ANSYS™ mesh is presented in
2, where ABAQUS™ produces a similar mesh. The quarter-cir
mesh represents the axisymmetric hemispherical body, and
straight line represents the rigid plane.

The contact force acting on the hemisphere is found from
reaction forces on the hemisphere base nodes that retain th
sired interference. The radius of the contact area is determine
finding the edge of the contact, or the location of the last activa
contact element.

In order to validate the model, mesh convergence must be
isfied. The mesh density was iteratively increased by a factor
until the contact force and contact area differed by less than
between iterations. The resulting mesh consists of at least 11
elements, since the number of meshed elements will vary with
expected region of contact. The stiffness of the contact elem
was also increased by an order of magnitude in successive i
tions until the contact force solution differed by no more than 1
between successive iterations.

In addition to mesh convergence, the model also compares
with the Hertz elastic solution at interferences below the criti
interference. The contact force of the model differs from the H
zian solution by no more than 2%. The contact radius differs b
maximum of 8.1%, but the average error is only 4.4%. When

Fig. 2 Finite element mesh of a sphere generated by ANSYS™
Journal of Tribology
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contact areas are calculated from the radii, the maximum e
increases to 17%. The smaller error in the contact force is att
uted to overall force balance~static equilibrium! enforced by the
FEM packages. However, the contact radius is obtained from
discrete mesh~which has a finite resolution!. Moreover, the mag-
nitude of the contact element stiffness also has some effect u
such radii, although not on the overall force balance. Genera
though, the differences are small enough that the FEM solu
practically conforms to the Hertzian solution at interferences
low critical ~and even slightly above!.

There are two ways to simulate the contact problem. The fi
applies a force to the rigid body and then computes the resul
displacement. The second applies a displacement and then
putes the resulting contact force. In both methods, the displa
ment, stress, and strain in the elastic body can be determine
well as the contact pressure. In this model the latter approac
used, where the base nodes of the hemisphere are displac
distance or interference,v, approaching the rigid flat surface. Th
radial displacements of the base nodes are restricted. This me
is used because the resulting solution converges more rapidly
the former.

The contact problem and the elasto-plastic material prop
make the analysis highly nonlinear and difficult to converge.
iterative scheme is used to solve for the solution, and many l
steps are used to enhance solution convergence. Initially, a s
interference is set of the total interference and then it is inc
mented after the load step converges. ANSYS™ internally c
trols the load stepping to obtain a converged solution by using
bisection method. This continues until a converged solution
found for the desired interference.

Numerical Results and Discussion
The results of the described finite element hemisphere mo

are presented for a variety of interferences. While the ela
modulus and Poisson’s ratio are held constant at 200 GPa
0.32, respectively, five different material yield strengths are m
eled. These are designated Mat.1 through Mat.5 correspondin
their yield strengths which are 0.210, 0.5608, 0.9115, 1.2653,
1.619 GPa. The yield strengths cover a typical range of steel
terials used in engineering@27#. The generated numerical data fo
five steel materials is given in Table 1. The results have also b
confirmed for a larger range of material properties~other than
steel! in Quicksall et al.@28#. Once the mesh is generated, com
putation takes from 10 min for small interferences to several ho
for large interferences on a 2.5 GHz PC.

The dimensionless contact area is normalized by the Hertz
lution @Eq. ~8!# and plotted as functions ofv* in Fig. 3. The data
is presented on a log scale to capture the entire range of inte
ences. Whilev* ,1.9 the finite element model agrees well wi
the Hertz solution (A* /v* 51). This is likely because the plasti
deformations are still relatively small such that the Hertz solut
is not dramatically affected. As the sphere begins to plastic
deform below the surface, the sphere weakens and thus doe
retain its shape as well as if it were perfectly elastic througho
Thus the area of contact eventually becomes larger in the ela
plastic case than in the perfectly elastic case. The FEM mo
values for the dimensionless contact area continue to incre
with interference even past Abbot and Firestone’s fully plas
~AF! model@9# at A* /v* 52. Since the AF model is based on th
truncation of the contacting geometries, it does not model
actual deformation of the hemisphere. It seems reasonable,
that the FEM solution for contact area could continue past the
model.

Overall though, the FEM predicted contact area generally
lows the Hertz elastic solution near the critical interference a
then increases past the AF model as the interference incre
Later in this work, this trend will be followed by empirical for
mulations fitted to the data. The FEM results also indicate a m
terial dependence of the normalized contact area. Since the
APRIL 2005, Vol. 127 Õ 345
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tact area is calculated by counting the number of element
contact, and there are only a finite number of such elements, t
is an inherent error in the data. The scatter in the data can
attributed mostly to this, and to the fact that the FEM is ye
discrete formulation.

For the contact area, all the models follow the same gen
trend, but they differ in magnitude. The ZMC model follows th
Hertz elastic solution at low and moderate interferences,
abruptly migrates to the AF model before the current model
the KE model. The KE model and the current empirical mo

Table 1 Tabulated finite element results „radius Ä1 mm, E
Ä200 GPa, nÄ0.32…
346 Õ Vol. 127, APRIL 2005
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also agree fairly well on average, except at large interferen
The KE model clearly shows a slight discontinuity atv* 56 and
then terminates atv* 5110. The KE model does not connect wit
the Hertz elastic solution at the critical interference depth. Al
the nondimensional KE model is material independent such
its contact area falls between the data of materials 1 and 5 of
work.

The dimensionless contact force is normalized by the He
solution @Eq. ~9!# and plotted as a function ofv* in Fig. 4. This
plot uses a log scale to capture the entire range of interferen
The normalized contact force@P* /(v* )3/2# calculated from the
current model follows precisely the Hertz elastic soluti
@P* /(v* )3/251# at small interferences. With increasing interfe
ence the current model eventually increases toward the AF m
@9#. It is interesting to note that the AF model predicts high
loads at small interferences than the Hertzian solution, but ev
tually crosses over to become the lesser of the two. This is
cause the AF model assumes a constant pressure distribu
which is equal to the hardness, while the average pressure o
Hertzian solution is initially lower than the hardness. At high
interferences, the FEM data displays a material dependent be
ior.

The nondimensional contact force trends of all the models
similar; however, the ZMC again crosses to the AF model prem
turely. At low interferences, the KE and ZMC models predict
contact force that is greater than the elastic model. This canno
the case, as the yield strength of the material limits the stiffnes
the hemisphere. Again the KE model shows a discontinuity
v* 56 and then terminates atv* 5110. Generally the KE mode
and the current FEM results are very similar. At aboutv* 550 the
KE model crosses over the current model and continues to o
estimate the contact force untilv* 5110. The KE and ZMC mod-
els also fail to capture the material dependence effects at l
interferences.

The average contact pressure to yield strength ratio,P/(ASy),
is calculated from the data and plotted in Fig. 5, alongside
Hertz contact solution. The Firestone and Abbott@9# fully plastic
~AF! model is represented by the horizontal line atP/(ASy)53.
The average contact pressure should approach the hardness
material as the contact becomes fully plastic. It is widely accep
that the hardness is approximated by 3•Sy @11#. It becomes evi-
dent in this plot that this is not always the case. From the dat
Fig. 3 FEM predicted contact area
Transactions of the ASME



Journal of Tribol
Fig. 4 FEM predicted contact force
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seems that hardness is not a constant material property. The c
of this trend will be discussed later in greater detail. The work
Mesarovic and Fleck@15# also confirms this trend, but does n
address the trend theoretically.

Empirical Formulation
General empirical approximations of the FEM data are des

for use at any deflection and for any set of material propert
This will help designers in a variety of single contact problem
and it will be readily incorporated into statistical models to mod
rough surfaces.

As mentioned previously, the FEM solution for the area of co
tact continues past the AF model with increasing interferen
Hence, the leading coefficient in Eq.~10! is allowed to vary when
equations are fitted to the FEM data. This is reasonable, since
AF model is not an exact solution~it is based on a truncation
assumption!. Here a power function is used in place of this lea
ogy
ause
by
t

red
es.
s,
el

n-
ce.

the

d-

ing coefficient and is fit to the numerical data. Figures 3–5 sh
that there are two distinct regions in the FEM data; thus a pie
wise formulation is used to fit the data. At small interferences
Hertz solution is assumed and at large interferences the po
function is fit to the FEM data, resulting in the following:
For 0<v* <v t*

AF* 5v* (12)

and forv t* <v*

AF* 5v* S v*

v t*
D B

(13)

where

B50.14exp~23ey! (14)
Fig. 5 Average contact pressure to yield strength ratio
APRIL 2005, Vol. 127 Õ 347



348 Õ Vol. 127,
Fig. 6 Average contact pressure to yield strength ratio
l
f

t

d

r

st-

.83

n
ept-
ns
ac-

a

l
r

ted
be

o

a
es,
n fit
ey5
Sy

E8
(15)

v t* 51.9 (16)

The value v t* represents the transition point from elastica
dominant behavior to elasto-plastic behavior. The formulation
lows the Hertzian solution@Eq. ~12!# for v* ,1.9. Then it transi-
tions to the elasto-plastic case and eventually continues pas
AF model for high values ofv* . Equation~13! is also somewhat
dependent on the material properties, according to the definitio
Eqs. ~14! and ~15!. Statistically, Eq.~13! differs from the FEM
data for all five materials by an average of 1.3% and a maxim
of 4.3%. An equation of the same form as the ZMC model fitted
the FEM data results in an average error of 43.2%. Notably, E
~12! and ~13! are continuous atv t* .

In order to formulate a fit for the FEM contact force, th
material-dependent trend at high interferences shown in Fig.
modeled. To assist in this model, a plot ofP/(ASy) as a function
of a/R in Fig. 6 reveals the cause of the material dependency
this plot a limit appears to emerge for the fully plastic avera
pressure, commonly referred to as the hardness. Here the har
appears to change as a function ofa/R, or with the evolving
geometry of contact. The trend may be explained by the prog
sion schematically shown in Fig. 7. As the interference increa
and the contact geometry changes, the limiting average pressu
yield strength ratio,HG /Sy , must change from Tabor’s predicte
value of 3 to a theoretical value of 1 whena5R. The contact
region whena5R is essentially the case of a deformable blu
rod in contact with a rigid flat whoseHG /Sy value is theoretically
one. A Weibull function fitted to the limiting values ofHG results
in

Fig. 7 Progression of change in hardness with deformed
geometry
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HG

Sy
52.84F12expS 20.82S a

RD 20.7D G (17)

This formulation is plotted alongside the data in Fig. 6. Intere
ingly, as a/R approaches zero, the limiting value ofHG /Sy
52.84 agrees almost precisely with the theoretical value of 2
~Williams @@29#, p. 109#!. Equation~17! is only valid for the range
of fitted data~or 0,a/R<0.412). Caution should thus be take
when using this function outside this range. This range is acc
able for many applications, particularly tribological applicatio
where deformations above this range are either unlikely or un
ceptable. From the relationA5p•a2, a is solved for and normal-
ized byR. ThenAc•AF* is substituted forA. Equation~13! is then
substituted forAF* , andEq.~4! for Ac , thus yielding

a

R
5

AAc•AF*

ApR
5Ap3~CSyR!2v* ~v* /v t* !B

4p~RE8!2

5
pCey

2 Fv* S v*

v t*
D BG1/2

(18)

This substitution is valid only whenv* >v t* . Equation~18! can
then be substituted into Eq.~17! so it may then be rewritten as
function of v* as follows:

HG

Sy
52.84F12expS 20.82S pCey

2
Av* S v*

v t*
D B/2D 20.7D G

(19)

This results in a formulation forHG as a function of the materia
properties,E, Sy , andn ~not just uponSy as suggested by Tabo
@11#!.

To formulate an approximation of the contact force as predic
by the FEM results, the AF model for contact force must first
corrected by way of substituting Eq.~17! or ~19! into Eq. ~11!,
letting HG replaceH, and by allowing the AF contact area t
deviate from Eq.~10! @see reasoning for Eq.~17!#. This results in
an equation for a corrected fully plastic model. Once again
piecewise solution is fit to the FEM data. At small interferenc
the Hertz solution is assumed. The resulting piecewise equatio
to the FEM data is given as follows:
For 0<v* <v t*
Transactions of the ASME
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Fig. 8 Predicted average pressure to yield strength ratio for various models
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PF* 5~v* !3/2 (20)

and forv t* <v*

PF* 5FexpS 2
1

4
~v* !5/12D G~v* !3/2

1
4HG

CSy
F12expS 2

1

25
~v* !5/9D Gv* (21)

wherev t* 51.9. This formulation approaches asymptotically t
Hertz elastic model at small interferences, and approaches
continues past the AF model at large interferences. Statistic
this formulation differs from the FEM data for all five materia
by an average error of 0.94% and a maximum of 3.5% when
~19! is used forHG .

The average pressure to yield strength ratio,P/(ASy), can now
be modeled by combining Eqs.~12!–~16! and Eqs.~20! and~21!.
Since these equations are normalized by their critical values,
resulting formulation for the average pressure is

P

ASy
5

2

3
C

PF*

AF*
(22)

This ratio is shown in Fig. 8~only the weakest and stronge
materials are plotted for clarity!. The largest differences betwee
the ZMC and KE models and the current FEM model then app
It is apparent that the KE and ZMC models do not account
material dependence in the limiting average pressure to y
strength ratio,HG /Sy. Both the ZMC and KE models are mono
tonically increasing and truncated at some point that tradition
Table 2 Comparison of experimen
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is considered to be the ‘‘hardness.’’ The ZMC and KE mod
both estimate the average pressure in the transition from the
tic to the elasto-plastic regime fairly well. It is also apparent th
these models do not intersect with the Hertzian solution
P/(ASy)52•C/3. The discontinuity in the slope in the KE mode
at a value of 6 and in the current model at a value of 1.9 is a
clearly evident@see Eqs.~A8! and ~A9! and Eqs.~12!–~21!#.

Comparison with Experimental Results
Johnson@25# performed experiments on the elasto-plastic co

tact of copper cylinders and spheres. During one experiment
tested the contact of a copper sphere and a comparatively
steel surface. These test conditions are comparable to the sp
against a rigid flat case modeled in this work. For the highest l
tested, the contact has a nearly uniform pressure distribution,
suggesting it is in the fully plastic regime. At this load, thea/R
ratio is given as 0.204 and the average pressure as 2.59•Sy . In-
terestingly, the predicted geometric hardness limit or average p
sure for the samea/R using Eq.~17! is 2.61•Sy . In comparison,
the KE model, which assumes the AF model at this interferen
predicts an average pressure of 2.8•Sy .

Johnson provides the contact radius and load in his res
which can also be compared with the predictions of the curr
formulations@Eqs. ~12!–~21!# and those of the KE model@Eqs.
~A8! and ~A9!#. Table 2 presents this comparison. The mate
properties provided by Johnson were used when available; ot
wise values from@27# were used. All material properties are give
in Table 2. Since Johnson does not provide the interferenc
each load, the predicted pressure is calculated from the exp
tal †25‡ and numerical results
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Fig. 9 Displacement at edge of contact area plotted as a function of penetration depth
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mental contact area using the current formulations and the
model. Both numerical models compare well with the experim
tal results and differ by a maximum of just over 10%. Howev
overall the current model proves to be a more accurate mode
fact, at the largest load the difference is merely 1.7%. These
sults also indicate that there is a definite need for formulati
which can accurately capture elasto-plastic hemispherical con
at large interferences. The experimental results also show a
that the hardness or the fully plastic average pressure varies
deformation and is not constant at 2.8•Sy or 3•Sy @4,9#.

Evolution of Deformation
As long as the deformations are purely elastic, i.e., below

critical interferences, the entire hemisphere will abide to
Hooke’s law. Conforming to Poisson’s effect, the material volu
should compress with a compressive contact pressure@as shown
schematically in Fig. 1~b!#. To investigate this phenomenon Fig.
shows the radial deformation of the last contact point between
deformed hemisphere and the rigid flat as extracted from the F
postprocessing data. Indeed at relatively small values ofv* there
seems to be a shrinkage in volume~even though that some plast
deformation has already taken place, but overall the elastic de
mation of the entire hemisphere dominates!. At values below an
approximate value ofv* 522, the radial displacements are a
negative, very small, and are generally strength independent~see
inset!. In plasticity, however, volume is conserved. As the def
mation increases, the yielded material flows plastically and is
compressible, making Poisson’s ratio effectively equal to 0.5@30#.
The FEM results find that beyondv* 522 ~approximately!, the
radial deformation of the last contact point displaces positiv
i.e., the schematics of the deformation follows the geometry
picted in Fig. 1~c!. The positive displacement becomes mater
dependent, which increases with material strength.

Stress Distribution and Evolution
Initially, at small interferences, the sphere will deform on

elastically. While in the elastic regime, the maximum von Mis
stress will always occur beneath the contact surface and within
bulk material. Eventually, as the interference increases and
stresses increase, yielding will initiate at the point of maximu
von Mises stress.

At interferences just above the critical, the plastically deform
region is small and confined below the surface by a sizeable
APRIL 2005
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gion of elastic material@see Fig. 10~a!#. It should be noted that
because of plotting resolution the region of plastic deformation
smaller then the highest stress region shown in each plot.
instance, the highest stress region in Fig. 10~b! has a von Mises
stress range between 1.444 and 1.624 GPa, and thus not the
region in this stress range is at the yield stress of 1.619 GPa. W
increasing interference, the plastic region expands until it reac
the surface of the sphere@Figs. 10~b! and 10~c!#. From close in-
spection of postprocessing data, according to the current mo
the interference at which the plastically deformed region fi
reaches the surface is approximately whenvs* 59.6, for material 5
~this differs from the valuevs* 56 as reported by Kogut and Et
sion @4#!. The value ofvs* also varies slightly with the materia
yield strength and the deformed contact geometry for the sa
reason that the average pressure or hardness varies with stre

Repeated FEM analyses were performed to search for the in
ferences of two important cases:~1! when plastic deformation firs
reaches the contacting surface at the far right end point, and~2!
when the contact surface first becomes entirely~fully ! plastic.
Table 3 gives these results. To pinpoint precisely these val
much more arduous searches are needed. The search perfo
here, albeit intensive, was not exhaustive and, therefore, the
ues given here contain some uncertainty~given as the resolution
in Table 3!. Searches were done on the stronger materials exc
ing materials 1 and 2, which have the slowest convergence ra

After plastic deformation has reached the surface, an ela
volume on the loaded tip of the sphere is still maintained@Fig.
10~c!# by the presence of hydrostatic stresses, which supp
yielding according to the von Mises criterion. Eventually this ela
tic region will turn plastic as the interference is increased. Fig
10~d! shows a state of stress just before the fully plastic stat
reached on the contact surface. Although an exhaustive analys
v f p* is not performed here, this initial fully plastic interferenc
seems to range betweenv* 570 andv* 580, depending on the
material yield strength. This range of values is also close to
value of 68 as predicted by the KE model.

Conclusions
This work presents a 2D axisymmetric finite element model

an elastic-perfectly plastic hemisphere in contact with a rigid
surface. A comparison is also made with other existing mod
The material is modeled as elastic-perfectly plastic, and yield
occurs according to the von Mises criterion. A concise form
Transactions of the ASME



Fig. 10 Stress plots from ANSYS™, showing the evolution of the stress distribution from „a… elasto-plastic „not yet plastic on
surface … to „d… just before fully plastic
t
a
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the
presented for the critical interference at which plastic deforma
initiates within the hemisphere. It is derived from the Hertzi
solution and the von Mises yield criterion. An a priori definition
the hardness is not needed.

The resulting plots indicate that the FEM results for the cont
area agree closely at small interferences with the trends of
Hertzian solution. While at large interferences the FEM pred
contact areas that surpass Abbot and Firestone’s fully pla
model @9# ~that is based upon truncation!. The ZMC model is
found to differ significantly from the FEM results, where the K
model~which is also based on FEM results! follows more closely,
Table 3 FEM generated interferences for initial yield of the surface a
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although still does not capture the varying hardness trend.
empirical formulation for the contact area is also fitted to the FE
data as a function of the material properties and interference.

The FEM results of the contact force predict a lower load c
rying capacity than the AF model for most materials and values
v* . This is because the AF model assumes that the average
sure distribution is simply the hardness, which is approximated
3•Sy . It is found, however, that the fully plastic average conta
pressure or hardness is not constant as is widely accepted. R
the limiting value of the fully plastic average pressure varies w
the deformed contact geometry, which in turn is coupled to
nd the fully plastic regime
APRIL 2005, Vol. 127 Õ 351
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material yield strength. This is accounted for in an empirical f
mulation for the limiting average pressure to yield strength ra
HG /Sy . A formulation usingHG /Sy is then fit to the FEM contac
force data.

A comparison is also made with the experimental results p
vided by Johnson@25#. The current model compares very we
and predicts the sparse experimental results significantly b
than the KE model, particularly in the fully plastic regime. Th
experimental results also show that the hardness trend at
deformation is a very real phenomenon that can affect prac
engineering applications.

This work reveals large differences between approximate a
lytical models and other numerical solutions. More importan
the contact area, force, and pressure are found to be particu
dependent upon the deformed geometry in all regimes and e
tively dependent upon the material properties~e.g., strength! in
the elasto-plastic and plastic regimes. The fit-them-all equat
that solely depend upon deformation, which are found in previ
works, are imprecise when compared to current FEM results.
example, the average contact pressure to yield strength ratio i
previous work is shown to increase monotonically with deform
tion, and is assumed to terminate~or truncate! at the hardness. In
this work it is shown that such a truncation is not warrant
Particularly, it is shown that the truncation model of Abbott a
Firestone@9# cannot be justified. This work discovered significa
geometrical and material nonlinearities, and that the hardness
pends not just upon strength but also upon the modulus of e
ticity, Poisson’s ratio, and most importantly upon the deformat
itself ~i.e., hardness is not a unique or fixed material property
indicated by Tabor@11#, and assumed by others after him!. The
results are based on the finest and adaptive mesh yet~over 11,000
four- and eight-node elements for a single hemispherical asp
in contact with a rigid flat, and 100 contact elements! that is
necessary for finite element convergence. The results were
tained by using ANSYS™ and then independently confirmed
using ABAQUS™. In the future it would be useful to investiga
the effect of material strain hardening and tangential loading~slid-
ing!.
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Nomenclature

A 5 area of contact
C 5 critical yield stress coefficient
E 5 elastic modulus
H 5 hardness

HG 5 hardness geometric limit
K 5 hardness factor
P 5 contact force
R 5 radius of hemispherical asperity
Sy 5 yield strength
a 5 radius of the area of contact

ey 5 uniaxial yield strain,Sy /E
k 5 mean contact pressure factor

po 5 maximum contact pressure
z 5 axis of symmetry for hemisphere
v 5 interference between hemisphere and surface
n 5 Poisson’s ratio

Subscripts

E 5 elastic regime
F 5 fit to current FEM data
c 5 critical value at onset of plastic deformation
o 5 maximum
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t 5 transitional value from elastic to elasto-plastic beha
ior

Superscripts

8 5 equivalent
* 5 dimensionless.

Appendix A: Existing Hemispherical Contact Models
The Hertzian solution@2# provides closed-form expressions

the deformations and stresses of two spheres in a purely el
contact. The two spheres may have different radii and differ
elastic properties. However, the closed-form solutions rende
equivalent case where a single elastic sphere, having an equiv
elastic modulus,E8, and an equivalent radius,R, is in contact
with a rigid flat @see Fig. 1, and Eqs.~A1!–~A4! that follow#. The
interference,v, can be described as the distance the sphere is
placed normally into the rigid flat. The Hertz solution assum
that the interference is small enough such that the geometry
not change significantly. The solution also approximates
sphere surface as a parabolic curve with an equivalent radiu
curvature at its tip. The resulting equations for contact radius
load from the Hertz solution are

AE5pRv (A1)

PE5
4

3
E8AR~v!3/2 (A2)

where

1

E8
5

12n1
2

E1
1

12n2
2

E2
(A3)

1

R
5

1

R1
1

1

R2
(A4)

andE1 , n1 , R1 andE2 , n2 , R2 are the elastic properties and rad
of sphere 1 and 2, respectively.

Abbott and Firestone@9# stated that under fully plastic condi
tions the area of contact of an asperity pressed against a rigid
can be approximately calculated by truncating the asperity tip
the rigid flat translates an interference,v. For a hemisphere, this
approximated fully plastic area is given by

AAF52pRv (A5)

Using Eq.~A5! the contact load of the hemispherical asperity
simply the contact area multiplied by the average contact press
which in this case is the hardness, since the contact is assum
be fully plastic. The approximated fully plastic contact force
thus

PAF52pRvH (A6)

From this point forward, Eqs.~A5! and~A6! will be referred to as
the AF model. Greenwood and Tripp@10# also independently
model fully plastic contact between hemispheres using a sim
truncation method.

Chang et al.@5# ~CEB model! approximated elasto-plastic con
tact by modeling a plastically deformed portion of a hemisph
using volume conservation. This CEB model assumes that~1! the
hemisphere deformation is localized to near its tip,~2! the hemi-
sphere behaves elastically below the critical interference,vc , and
fully plastically above that value, and~3! the volume of the plas-
tically deformed hemisphere is conserved. Also, the critical int
ference used in the CEB model is given by

vc5S pKH

2E8 D 2

R (A7)

whereK is the hardness factor given byK50.45410.41n and the
hardness is assumedH52.8•Sy . While from an engineering per
spective the corresponding values given by Eqs.~1! and ~A7! are
Transactions of the ASME
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very close, the CEB model is limited to this fixed relationsh
between the hardness and the yield strength. It should be n
that Eq.~1! is not limited by any such assumption. Likewise th
CEB model contains a discontinuity atvc .

Zhao et al.@6# devised an elasto-plastic~ZMC! model, which
interpolates between the elastic and fully plastic~AF! models. The
ZMC model divides the interference into three segments:~1! elas-
tic ~Hertz!, ~2! elasto-plastic~using a template!, and~3! fully plas-
tic ~AF!. A template function satisfies continuity of the functio
and its slope at the two transitions. The works@7,8# take semi-
analytical approaches to the problem.

Kogut and Etsion@4# also performed a FEM analysis of th
same case of an elastic-perfectly plastic sphere in contact w
rigid flat. Again in their analysis, the value ofH is set to be fixed
at 2.8•Sy . Notably, the slope ofP/(ASy) is not zero~it still in-
creases monotonically! at the point where full plasticity is as
sumed. Their work gives a very detailed analysis of the str
distribution in the contact region, and empirical expressions
provided for the contact area, the contact force, and the ave
contact pressure. The resulting equations have a discontin
slope atv* 56, and they describe the deformation only up
v* 5110, at which point full plasticity is assumed. These a
given in a piecewise form:
For 1<v* <6

PKE* 51.03~v* !1.425

AKE* 50.93~v* !1.136 (A8)

S P

ASy
D

KE

51.19~v* !0.289

For 6<v* <110

PKE* 51.40~v* !1.263

AKE* 50.94~v* !1.146 (A9)

S P

ASy
D

KE

51.61~v* !0.117

These equations have a discontinuous slope atv* 56, and they
describe the deformation only up tov* 5110, at which point full
plasticity and the AF model is assumed. At valuesv* ,1 the
Hertz contact solution is assumed.

Appendix B: Critical Interference
The Hertz solution results in the following equations for stre

within the deformed sphere along the axis of revolution,z
~Johnson,@20#!:

s152poS 11S z

aD 2D 21

(B1)

s2,35poH F2S 11S z

aD 2D G21

2~11n!F12
z

a
tan21S a

zD G J
(B2)

where the origin of thez-axis lies at the point of initial contac
between the hemisphere and the rigid flat, andpo is the maximum
contact pressure.

The von Mises yield criterion is given as

Sy5A1

2
@~s12s2!21~s22s3!21~s32s1!2# (B3)

By substituting the principal stresses given in Eqs.~B1! and ~B2!
into Eq. ~B3! and then simplifying, the following equation for th
von Mises yield criterion is obtained:

Sy

po
5

3

2 S 11S z

aD 2D 21

2~11n!F12
z

a
tan21S a

zD G (B4)
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The resulting Eq.~B4!, which must be positive, dictates wher
within the hemisphere initial yielding occurs. This is obtained
setting the derivative with respect toz to zero. Hence,

d

dzS Sy

po
D52az@a2~41n!1~11n!z2#

1~11n!~a21z2!2F tan21S a

zD G
50 (B5)

This equation is solved numerically for Poisson’s ratios betwe
0.01 and 0.50 to find the locations,z, at initial yielding. These
locations are then substituted in Eq.~B4! to find the applied maxi-
mum contact pressure to yield strength ratio,poc /Sy . This ratio,
poc /Sy, is referred to as the yield strength coefficient and des
nated by the symbolC. An empirical function is fitted to the fina
numerical data, which is given by

poc

Sy
5C51.295 exp~0.736n! (B6)

Equation~B6! differs from the numerical solution by an averag
of 1.2% and by no more than 3.1%.

The interference,v, is given as a function ofpo by the Hertz
elastic solution in Johnson@20# as

v5S p•po

2E8 D 2

R (B7)

Thus, to find the critical interference, or the interference at
initial point of yielding, the maximum pressure when yielding fir
occurs,poc , is substituted into Eq.~B7! for po . This maximum
pressure is the pressure given by the maximum contact to y
strength ratio given in Eq.~B6!. The equationpoc5CSy is substi-
tuted into Eq.~B7!, resulting in Eq.~1!.

A similar derivation is also given in Chang@31#. However, that
derivation assumed a fixed value between strength and hard
Sy50.35H, which resulted in an equation for the hardness co
ficient, K50.45410.41n. Such an assumption is not made in th
work ~see discussion onHG within!.
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