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A Fractional Calculus Model
of Viscoelastic Stator Supports
Coupled With Elastic
Rotor–Stator Rub
Rotating machinery is inherently susceptible to costly and dangerous faults. One such
commonly encountered fault is undesirable dynamic contact between the rotor and stator
(i.e., rotor–stator rub). The forces generated during rotor–stator rub are fundamentally
tribological, as they are generated by contact and friction and result in wear. These
forces are typically found by assuming linear elastic contact and dry Coulomb friction at
the rotor–stator interface, where the normal force is a linear function of the interference.
For the first time, this work incorporates viscoelasticity into the stator support and inves-
tigates its influence on the global dynamics of rotor–stator rub. The viscoelastic stator
supports are modeled using fractional calculus, an approach which adeptly and robustly
characterizes the viscoelasticity. Specifically, a fractional derivative order of one-half is
employed to generate an analytic time-domain form of viscoelastic impedance. This
approach directly assimilates viscoelasticity into the system dynamics, since the rotor
equations of motion are integrated numerically in the time-domain. The coupled
rotor–stator dynamic model incorporating viscoelastic supports is solved numerically to
explore the influence of viscoelasticity. This model provides a framework for analysis of
dynamic systems where viscoelasticity is included. [DOI: 10.1115/1.4032787]

1 Introduction

Fluid film triboelements are an integral component of many
rotating machines; unfortunately, finite clearances within these
components are susceptible to rotor–stator contact (i.e., rub) [1].
Rotor–stator rub is an undesirable phenomenon that results in det-
rimental machine operation via increased wear, vibration, and
thermal stresses, which in turn contribute to reduced component
life. Although contact is an undesirable mode of operation, it is of-
ten unavoidable in rotating machines. When contact occurs, large
impulsive forces can quickly damage machine components prior
to detection via condition monitoring. Thus, methods should be
sought to minimize adverse contact effects, either by changing the
operating conditions, or by distributing contact forces to reduce
damage and wear. To explore these concepts, proper modeling of
system components and physics is required.

A brief treatise on rotor–stator rub is provided prior to survey-
ing works including rotor viscoelasticity. Rotor–stator rub systems
are piecewise-smooth hybrid dynamic systems [2], and conse-
quentially, result in incredibly rich nonlinear dynamics, including
periodic, quasiperiodic, and chaotic responses [3–6]. Furthermore,
a diverse array of bifurcations is observed as routes to chaos,
including period doubling, quasiperiodic routes, intermittency,
and grazing. These bifurcations are also observed for other control
parameters, including, for example, shaft speed, external viscous
damping, eccentricity, and clearance. Therefore, investigating
rotor–stator rub systems requires carefully controlling all parame-
ters of interest, as even small deviations can result in dramatic
changes in the rotor response. It is also important to note that this
introduction does not serve as a treatise on all rotor–stator rub
investigations; such information is available in other works
[4,7,8].

Rotor–stator rub is typically classified according to its extent:
partial rub or full rub. Partial rubs occur intermittently, and do not

usually threaten the machine. Even though partial rubs are not typ-
ically dangerous, they may be symptomatic of other component
failures. Partial rub is worthwhile to investigate in order to detect
and mitigate rub prior to more severe full rub conditions. Full rub
conditions occur when the rotor maintains constant contact with
the stator and processes in either a forward or backward motion
[9–11]. The backward whirl case represents the greater threat, and
is classified as either dry-friction backward whirl, where the rotor
rolls without slip along the stator, or dry-friction backward whip,
where the rotor slips along the stator in a direction opposite shaft
rotation. These phenomena occur under specific operating condi-
tions and parameter regimes, and do not constitute the majority of
rub occurrences. As such, this work does not seek to address these
phenomena.

Several other works have considered the use of viscoelastic
components in rotor systems experiencing rub. Cao et al. [12]
incorporated a fractional-order damping model (i.e., viscoelastic-
ity) into a rub-impact rotor system, where viscoelasticity is
included by replacing the external viscous damping force with a
fractional calculus damping element. Their work concludes that
such a modification results in chaotic, quasiperiodic, and periodic
motions; however, these same responses are also encountered
when only simple viscous damping models are used [4,5]. Though
their work is useful conceptually, much work remains toward
understanding rotordynamics coupled with viscoelasticity. Patel
et al. [13] investigated a viscoelastically supported stator experi-
encing rub, though they consider a stator support which consti-
tutes only a linear spring and viscous damper in parallel; this
representation does not truly represent viscoelasticity.

Though the study of viscoelasticity in rotor contact is limited in
scope, more authors have generally considered viscoelastic sup-
ports in noncontacting rotor-bearing systems. Dutt and Nakra [14]
demonstrated that including viscoelasticity in the rotor supports
results in an increased regime of stability. Lee et al. [15] devel-
oped a viscoelastic foil bearing, where the bearing’s increased vis-
cous damping results in a reduction in vibration magnitude near
the bending critical speed when compared to a more conventional
bump foil bearing. Shabaneh and Zu [16] studied the influence of
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viscoelastically suspended bearings on the critical speeds of a sim-
ple rotor, where the viscoelasticity is modeled using a
Kelvin–Voigt element. Their results indicate that viscoelastically
suspending the bearings results in significant changes in the rotor
critical speeds.

In most cases, rotor–stator contact is not a normal operating
condition, and usually is indicative of machine failure. A particu-
lar case where such a condition may occur is a rotor supported by
active magnetic bearings (AMBs), where catcher bearings are
employed to support the rotor in the event of AMB failure
[17,18]. These catcher bearings are essentially specialized stators;
therefore, their behavior can perhaps be better understood by
including viscoelastic supports in rotordynamic simulations. This
work will propose such a method for incorporating viscoelasticity
into rotordynamic simulation.

Many viscoelastic models are comprised of spring and dashpot
hierarchies; therefore, their inclusion in dynamic systems is natu-
ral. Any number of these spring and dashpot hierarchies exist with
each model having time and strain-rate dependency. This trans-
lates to stress (and analogously, restoring force) being time and
rate dependent. Many realistic support materials are viscoelastic
(polymers), or effectively viscoelastic (squeeze-film bearings), so
the inclusion of viscoelastic supports is appropriate in rotating
systems. Constitutive viscoelastic models will be discussed
herein.

A viscoelastically suspended stator will be included in a
rotor–stator contact model. A Jeffcott rotor is employed as a con-
ceptual test platform, using the common linear elastic contact
model (LECM) originally developed by Beatty [19] and imple-
mented by numerous other researchers. Because of its simplicity,
the Jeffcott rotor model allows complex interactions between the
contact phenomena and viscoelastic supports to be isolated and
investigated. The viscoelasticity is captured in the support using a
fractional-calculus representation. Rotor responses with and with-
out viscoelasticity are provided as a comparison point for the
model. Various responses will be shown for different property
sets, indicating rich dynamic behavior of the system.

2 Modeling

Here, a dynamic model (i.e., equations of motion) for the vis-
coelastically suspended rotor–stator system will be presented. A
Jeffcott rotor with cylindrical modes is used along with the
LECM, where contact forces couple the rotor motion to that of the
viscoelastically suspended stator. A method for incorporating a
fractional-calculus representation of viscoelasticity into the stator
support is also discussed herein.

2.1 Dynamics. The Jeffcott rotor and viscoelastically sus-
pended stator are shown in Figs. 1 and 2, respectively, where xryr

and xsys are translating inertial rotor and stator reference frames,
respectively. The coupled system is represented in Fig. 3, and the

relationship between rotor and stator frames is vectorially illus-
trated in Fig. 4, where the rotor and stator degrees-of-freedom are
their absolute inertial displacements from O (here, XY denotes an
inertial frame fixed to the undeflected rotor/stator position, O).
The system comprises four degrees-of-freedom: two orthogonal
displacements for each component of interest, such that the abso-
lute rotor and stator radial deflections are

�rs ¼ uxsî þ uysĵ (1)

�rr ¼ uxr î þ uyr ĵ (2)

The rotor’s deflection relative to the stator is given by

�rr=s ¼ �rr � �rs ¼ ðuxr � uxsÞî þ ðuyr � uysÞĵ (3)

For brevity, the magnitude of the relative radial deflection will be
denoted by jj�rr=sjj ¼ r0. Thus, contact occurs when the rotor’s rel-
ative deflection r0 exceeds the clearance d; once the clearance is
exceeded, a normal restoring force �Fc and tangential friction force
�Ff are generated at the contact interface (see Ref. [4] for details).
Here, the LECM is used to calculate the contact forces. The nor-
mal restoring force �Fc is proportional to the rotor–stator interfer-
ence r0 � d by the contact stiffness kc and occurs in a direction
colinear but opposite to �rr=s (i.e., �êr0 ). Furthermore, this work
considers only Coulomb friction, where the friction force is

Fig. 1 Jeffcott rotor with corresponding viscoelastically sus-
pended stator

Fig. 2 Viscoelastically suspended stator

Fig. 3 Rotor–stator parameters (for clarity here, the visco-
elastic stator supports are shown in Fig. 2)
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proportional to the normal force by l, and occurs in the negative
relative tangential direction êh0 . Thus, the contact forces are

�Fc ¼ �kcðr0 � dÞhðr0 � dÞêr0 (4)

�Ff ¼ �ljj �Fcjjêh0 (5)

where the unit vector directions are

êr0 ¼ cos h0 î þ sin h0 ĵ (6)

êh0 ¼ �sin h0 î þ cos h0 ĵ (7)

and hðr0 � dÞ is the Heaviside function, representing the switch
from noncontacting to contacting states of operation.

Observing Fig. 4, it is clear that cos h0 ¼ ðuxr � uxsÞ=r0 and
sin h0 ¼ ðuyr � uysÞ=r0. In this work, the range of considered shaft
speeds is sufficiently high such that the friction force never
reverses direction.

In reality, the viscoelastic suspension is an annular element;
here, this radial component is accurately captured by its constitu-
tive orthogonal components (as explained in Sec. 2.2). In essence,
the viscoelastic suspension consists of a free spring k0 in parallel
with a fractional element. The fractional element is a spring k1 in
series with a fractional order springpot (g, a).

To properly account for the dynamics, a half degrees-of-
freedom is imposed in the fractional element, between the spring
and springpot for both the X and Y directions. Half degrees-of-
freedom permit investigation of support elements (e.g., springs
and dampers) mounted in series, and are distinguished from typi-
cal degrees-of-freedom by the lack of mass. Here, a subscript h
will denote half degrees-of-freedom (e.g., uxh and uyh).

The mass of the rotor and stator are mr and ms, respectively.
The rotor is supported on elastic bearings and a flexible shaft with
stiffness coefficients kb and ks, respectively; the equivalent sup-
port stiffness of these flexible elements in series is k. Furthermore,
the external viscous damping coefficient is cb, which results in an
equivalent damping ratio f. Referencing Fig. 3, the rotor’s imbal-
ance � generates a force which occurs harmonically with the shaft
rotation at frequency n. Balancing forces on the rotor, stator, and
half degrees-of-freedom gives the system equations of motion,
where the stator equations are

ms €uxs � k1uxh þ k0 þ k1ð Þuxs ¼ kc
r0 � d

r0
uxr � uxsð Þ�l uyr � uysð Þ

� �
h r0 � dð Þ (8)

ms €uys � k1uyh þ k0 þ k1ð Þuys ¼ kc
r0 � d

r0

uyr � uysð Þþl uxr � uxsð Þ
� �
h r0 � dð Þ � msg (9)

A force balance on the half degrees-of-freedom yields

g
dauxh

dta
þ k1uxh � k1uxs ¼ 0 (10)

g
dauyh

dta
þ k1uyh � k1uys ¼ 0 (11)

The superscript a denotes a fractional-derivate of order a, and is
explained in greater detail in Sec. 2.2. Finally, the rotor equations
of motion are

mr €uxr þ c _uxr þ kuxr ¼ kc
r0 � d

r0
l uyr � uysð Þ� uxr � uxsð Þ
� �

h r0 � dð Þ þ mr�n
2 cos ntð Þ (12)

mr €uyr þ c _uyr þ kuyr ¼ �kc
r0 � d

r0
uyr � uysð Þþl uxr � uxsð Þ

� �
h r0 � dð Þ � mrgþ mr�n

2 sin ntð Þ (13)

2.2 Viscoelasticity. Viscoelasticity describes a material that
is time-dependent, or historic. This is in contrast to an elastic ma-
terial, which is time-invariant. The historic nature of a viscoelastic
material gives it unique properties in rotordynamic systems. A
viscoelastic support is time, and correspondingly, frequency
dependent. Therefore, the stiffness and damping properties vary
depending on the operating conditions. If effectively harnessed,
viscoelasticity can potentially reduce unwanted behavior in rotat-
ing systems, including wear from rotor–stator rub.

A large number of models exist for viscoelastic materials. For
dynamic modeling, the most natural viscoelastic representations
are those of spring and dashpot hierarchies. An infinite number of
these systems can be created, but a common model is shown in
Fig. 5(a). This model is known as the standard linear solid (SLS),
and consists of a free spring in parallel with a Maxwell element.
The Maxwell element consists of a spring and dashpot in series.
The time dependency of the SLS is apparent with instantaneous
displacements, the SLS acts elasticity, and with slowly progress-
ing displacements, the SLS acts viscously. The spring and dashpot
hierarchies can be directly incorporated in the dynamic models
with inclusion of additional degrees-of-freedom. The translation
from material properties (Ei, gi) to dynamic properties (ki, ci) is
straightforward and amounts to a bookkeeping operation. In
theory, an infinite number of Maxwell elements can be placed in
parallel to provide a wide spectrum of viscoelastic behavior [20].
The resulting Prony series is a simple, unambiguous model of vis-
coelasticity. The advantage of the Prony series is that the model
constants (corresponding to the springs and dashpots) can be fit
with a simple material test. By employing a relaxation test (i.e.,
fixing strain and tracking stress), the material constants can be fit
via least squares

E tð Þ ¼ r tð Þ
�0

¼ E0 þ
X1
n¼1

Ene�knt (14)Fig. 4 Vector diagram showing the relationship between rotor
and stator deflections
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where

kn ¼
En

gn

(15)

However, the additional terms E2;::;n; g2;::;n add modeling com-
plexity to dynamic simulations by expanding the eigenvalue prob-
lem. To reduce modeling complexity, fractional calculus models
are often used [21–29]. Shown in Fig. 5(b), fractional calculus
replaces the damper in the SLS with a “spring-pot.” Mathemati-
cally, the spring-pot describes a hybrid spring and dashpot
behavior

rP ¼ g
da�p

dta
(16)

where g takes on the nonconventional units MPa � sa The spring-
pot is regulated by the parameter a, which interpolates between
spring and dashpot behavior, giving the fractional model more
robustness than the Prony model. The fractional model is

E tð Þ ¼ E0 þ
X1
n¼1

EnEa �
En

gn

tan

� �
(17)

where Ea is the Mittag–Leffler function [30]

Ea zð Þ ¼
X1
k¼0

zk

C ak þ 1ð Þ (18)

In Eq. (18), C in the gamma function: C(x)¼ (x� 1)!. The frac-
tional model typically requires fewer elements to characterize vis-
coelasticity. However, due to the Mittag–Leffler function, the
fractional model is challenging to implement in the time-domain
without modification (although numerical routines are available
from Ref. [31] that allow for evaluation of the Mittag–Leffler
function). A unique case of the fractional calculus model, when
a¼ 1/2, yields an unambiguous time-domain representation. This
is known as the complementary error function fractional calculus
model (CERF) [32]

EðtÞ ¼ E0 þ
X1
n¼1

Eneðln
2tÞerfc ðln

ffiffi
t
p
Þ (19)

where En and ln are material properties and ln¼En/gn. In Eq.
(19), the complementary error function (erfc) decays at a faster
rate than the exponential increases, giving an overall relaxation
behavior. The CERF model is thermodynamically permissible in
general [32,33], and incorporates the flexibility of fractional cal-
culus and the simplicity of integer-order derivative models. The
CERF has proven robust in describing a number of materials from
polymers to cartilage [34,35].

The CERF model incorporates the advantages of fractional cal-
culus (modeling flexibility) and integer-order viscoelasticity
(unambiguous time-domain representation). In real materials, the
coefficients E0;::;n and l1;::;n are determined from a simple stress-
relaxation experiment. These stress/strain parameters are then
translated to the desired dynamic quantities k0;::;n and c1;::;n in a
manner similar to Refs. [36] and [37]. In the current study, the
stress/strain parameters are directly translated to force/displace-
ment parameters for simplicity in accessing the viscoelastic con-
tribution to the rotor–stator dynamics. The remaining step is to
integrate the CERF model into the dynamic simulation [33].

While the fractional calculus model provides advantages over
other viscoelastic models, there are complications when incorpo-
rating fractional calculus in dynamic systems. In particular, the
equations of motion and solution routine (i.e., MATLAB

VR

ode45)
rely on integer-order differential equations. Therefore, it is desired
to make the fractional model compatible with such simulations.
This is done by approximating the fractional derivative only in
terms of integer-order derivatives. A numerical scheme is pro-
vided by Pooseh et al. [38] for the left Riemann–Liouville defini-
tion of a fractional derivative. By expanding the fractional
derivative about the point a, and calculating the moments of the
function, the approximation of a fractional derivative is made [38]

aDa
t xðtÞ � Aða;NÞðt� aÞ�axðtÞ

þBða;NÞðt� aÞ1�a _xðtÞ

�
XN

p¼2

Cða; pÞðt� aÞ1�p�aVpðtÞ (20)

where

A a;Nð Þ ¼ 1

C 1� að Þ 1þ
XN

p¼2

C p� 1þ að Þ
C að Þ p� 1ð Þ!

2
4

3
5 (21)

B a;Nð Þ ¼ 1

C 2� að Þ 1þ
XN

p¼1

C p� 1þ að Þ
C a� 1ð Þp!

2
4

3
5 (22)

C a; pð Þ ¼
1

C 2� að ÞC a� 1ð Þ
C p� 1þ að Þ

p� 1ð Þ! (23)

and the moments, Vp(t) for p¼ 2,3,…, are found from the solution
to the system of first-order differential equations

_VpðtÞ ¼ ð1� pÞðt� aÞp�2xðtÞ
VpðaÞ ¼ 0; p ¼ 2; 3;…:

(24)

In practice, N must be a computationally manageable number.
The error in the approximation is not known a priori, therefore
some calibration is needed to correctly access N based on the sys-
tem dynamics. The advantage of the preceding routine is that a
single initial condition, x(t0), is all that is needed to solve the frac-
tional differential equation. This is paramount for numerical simu-
lations of systems of differential equations.

The integer-order approximation is easily incorporated in a
numerical solver like MATLAB’S ODE45 without significant compu-
tational burden (depending on the value of N). Each of the first
order differential equations from Eq. (24) for p¼ 2,…, N is incor-
porated in the state-space model alongside the equations of
motion for the coupled system. The system is solved simultane-
ously at each increment in time.

The fractional calculus viscoelastic model represents a tradeoff
in modeling complexity and simulation time. Using the fractional
derivative a¼ 1/2 allows for simple time-domain fitting of mate-
rial properties, while retaining the flexibility of fractional calcu-
lus. The CERF is incorporated naturally into integer-order

Fig. 5 Mechanical representation of viscoelastic models (a)
SLS (prony series, n 5 1) and (b) fractional model (n 5 1)
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differential equation solvers with the aforementioned approxima-
tion. The rotordynamic simulations including the viscoelastic sta-
tor support are given in Sec. 3.

3 Results

The equations of motion (Eqs. (8)–(13)) are integrated numeri-
cally using MATLAB’s explicit hybrid fourth- and fifth-order
variable-step Runge–Kutta solver, ode45. The integration toleran-
ces are carefully selected due to small rotor–stator interferences;
here, the relative and absolute tolerances are set to 10�9 and
10�13, respectively. Appropriate tolerances are selected by pro-
gressively tightening the tolerance until convergence is obtained
and the frequency spectrum shows no numeric noise. The rotor’s
static deflection is used as the initial condition in each case, with
zero initial velocity; the system is then set into motion via the
nonautonomous imbalance terms in the equations of motion. Only
the rotor’s steady-state response is considered. The parameters
used in the example simulations are given in Table 1.

Example responses comparing the rigidly and flexibly mounted
stators are shown in Figs. 6(a) and 6(b), respectively. In both
cases, the response has been normalized by the clearance d; Fig.
6(a) plots the fixed clearance for reference (a similar representa-
tion could be used in Fig. 6(b) by plotting the relative rotor deflec-
tion r0 instead of the absolute deflections of both the rotor and
stator, but such a display is further abstraction). It is clear upon
comparing Figs. 6(a) and 6(b) that flexibly mounting the stator
changes the rotor motion significantly. Effectively harnessing this
motion could prevent damage in rotor–stator systems.

Contemporaneous points have been labeled in Fig. 6(b) to assist
in understanding the relationship between the rotor and stator
orbits. Prior to point 1 on the rotor orbit, the rotor is traveling
upward; when the relative deflection r0 exceeds the clearance d,
the rotor impacts the stator (shown as point 1 on the stator orbit).
This impact perturbs the stator in the direction of the rotor motion,
causing the stator to arc upward; it reaches its maximum, and begins
to travel downward. At point 2, the rotor generates a second contact.
At this second contact point, the stator velocity is sufficient to impart
a significant downward velocity to the rotor. Qualitatively similar
results are provided by Popprath and Ecker [39] for a stator sus-
pended on a conventional spring-damper support, where chasing-
type contemporaneous motions are shown for the rotor and stator.

The viscoelastically suspended rotor–stator system is capable
of a rich variety of nonlinear responses, including periodic, quasi-
periodic, and chaotic orbits (see Ref. [4] for a detailed description
of these response types). An example periodic orbit is shown in
Fig. 7(a) with its corresponding Poincar�e section, where the rotor
and stator contact four times per revolution (the Poincar�e section
is a stroboscopic sampling of the response, and is used to ascertain
the qualitative nature of a particular response [4]). As expected,
the frequency spectrum in Fig. 7(b) shows frequencies occurring

at integer multiples of the shaft speed. At a different shaft speed
(n¼ 1.5xn, where xn ¼

ffiffiffiffiffiffiffiffiffiffi
k=mr

p
, the rotor’s natural frequency),

the contact becomes quasiperiodic, as shown in Fig. 8(a) and iden-
tified by: (a) a closed-loop Poincar�e section and (b) incommensu-
rate frequencies in the frequency spectrum. A representative
aperiodic (i.e., chaotic) response is shown in Fig. 9 for
n¼ 1.25xn, where no discernible pattern is visible in either the
rotor or stator motion and the frequency content is generally
broadband, but modulated by shaft speed harmonics.

These types of motions are typical of piecewise-smooth dynam-
ical systems, and are observed in many rotor rub studies, both ex-
perimental and analytical (for example, see Refs. [4,5,7,40–42],
among numerous others available in the literature). In addition to
showing periodic, quasiperiodic, and chaotic responses, many
other works have performed parametric studies using bifurcation
analysis [5,6,43–46], focusing on parameters such as imbalance,
rotor mass, friction coefficient, and clearance, among others. The
parameters chosen in the current study are conducive to rich non-
linear behavior. A litany of configurations and properties exist in

Table 1 Simulation parameters used to generate orbits

Parameter Symbol Value (units)

Rotor mass mr 2 (kg)

Rotor external damping ratio f 0.35

Equivalent support stiffness k 1 � 106 (N/m)

Contact stiffness kc 104 � k
Eccentricity � 0.4 � 10�4 (m)

Clearance d 0.8 � 10�4 (m)

Friction coefficient u 0.2

Stator mass ms 3mr (kg)

Free spring constant k0 1 � 106 (N/m)

Viscoelastic spring constant k1 1 � 106 (N/m)

Spring-pot constant c1 1 � 105 (N � s1=2)

Fig. 6 Comparing the rigidly and flexibly mounted stators
using parameters provided in Table 1 (responses calculated at
n/xn 5 1.1). (a) Rigidly mounted stator, where the dashed circle
represents the clearance and (b) flexibly mounted stator (for
validation purposes, compare the response shown here to
those provided by Popprath and Ecker [39]).
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real-world applications. Such specificity extends outside the scope
of this work, where the purpose is to introduce tools and concepts
useful for analyzing viscoelasticity in rotor–stator rub events. A
similar parametric bifurcation study is left for future investiga-
tions based on specific application.

An adept tool for concisely summarizing the qualitative behav-
ior of nonlinear systems is the bifurcation diagram, where one
control parameter is varied and the resulting nature of the
response is observed using the Poincar�e section. A shaft speed
bifurcation is performed on the rotor–stator system and shown in
Fig. 10, where the qualitative nature of the response is ascertained
using the magnitude of the rotor displacement. Prior to approxi-
mately n/xn¼ 0.85, the rotor and stator are not in contact; once
the rotor exceeds the allowable clearance, contact occurs and the
rotor and stator motions persist in period-1 motion until approxi-
mately n/xn¼ 1.23. At this point, the rotor motion experiences a
grazing bifurcation [45] and transitions immediately into chaotic
motion. This chaotic window exists for shaft speeds up to
n/xn¼ 1.4, where the response once again bifurcates, but this time
into quasiperiodic motion. These results indicate that the rotor’s
response to contact is incredibly complex, and demonstrates rich
variation in character as the system parameters are varied.

Importantly, this character of rich nonlinear behavior has been
documented in the literature for similar systems (e.g., see Ref. [5]
or [4]). Other analytic studies considering a flexibly suspended
stator have also shown similar chasing motions, such as analytic
simulations performed by Chang-Jian and Chen [42,47], who
studied a stator suspended by a simple cubic spring support.

4 Discussion

Provided herein is a method for including viscoelasticity in a
flexibly mounted stator that experiences rotor–stator rub. Two
viscoelastic models are discussed, and the framework for

Fig. 7 Example periodic response for the viscoelastically sus-
pended stator system (n/xn 5 1.6): (a) rotor and stator orbits
and (b) rotor frequency spectrum

Fig. 8 Example quasiperiodic response for the viscoelastically
suspended stator system (n/xn 5 1.5): (a) rotor and stator orbits
and (b) rotor frequency spectrum

Fig. 9 Example chaotic response for the viscoelastically sus-
pended stator system (n/xn 5 1.25): (a) rotor and stator orbits
and (b) rotor frequency spectrum
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including viscoelasticity is provided. The SLS model is unambig-
uous and incorporates naturally in a dynamic system because it
can be represented as a collection of springs and dashpots. How-
ever, if the SLS cannot be accurately fit to a real material, the
CERF model may be employed. The CERF model is proposed as
a hybrid model for viscoelastic behavior because it retains advan-
tages of fractional and integer-order viscoelastic models. The
CERF model is likewise easily fit in the time-domain, and incor-
porated in a dynamic system with the algorithm provided by Poo-
seh et al. [38]. It is proposed that if a flexibly mounted stator is
used, realistically the support is viscoelastic in nature. Therefore,
the SLS or CERF model can be used, depending on the material
behavior.

The responses provided herein demonstrate the richness of the
strongly nonlinear viscoelastically suspended rotor–stator system.
Further analysis is needed to quantify such effects and the result-
ing contact forces and contact durations. The objective of the pres-
ent work is to present a method for incorporating viscoelasticity
into rotor–stator impact systems. Such a model is proposed as an
important tool for understanding the nonlinear dynamics of com-
plex systems. A comprehensive parametric analysis of shaft speed
and viscoelasticity could perhaps be used to better understand the
system behavior or design an optimum viscoelastic support, but
such a study extends beyond the purview of this work.

5 Conclusion

The objective of modeling rotor–stator rub is to understand and
ultimately reduce triboelement damage via real-time condition
monitoring and improved component design. A necessary prereq-
uisite for either of these tasks is robust and accurate system mod-
eling. The coupled rotordynamic–viscoelastic model developed
herein provides a method for analyzing rotordynamics when vis-
coelasticity is desired (specifically, this work investigated viscoe-
lasticity in the support of a rotor–stator system). This framework
and analysis tool could possibly be used for further analysis of
rotor–stator rub systems, where it is hypothesized that contact
alone is not the detriment of triboelements, but rather impulsive
forces from contact. Once a specific system and viscoelastic mate-
rial is selected for analysis, the contact duration and impulsive
loading could be quickly determined to ascertain the advantages
and disadvantages of such a support arrangement.

Nomenclature

c ¼ rotor damping coefficient
cb ¼ external bearing damping coefficient
Ea ¼ Mittag–Leffler function

E(t) ¼ viscoelastic relaxation modulus
�FC ¼ normal contact force
�Ff ¼ frictional force
g ¼ acceleration due to gravity

k ¼ equivalent rotor support stiffness
kb ¼ external bearing stiffness
kc ¼ rotor–stator contact stiffness
ks ¼ rotor shaft stiffness
k0 ¼ free spring stiffness
k1 ¼ fractional element stiffness
mr ¼ rotor mass
ms ¼ stator mass

n ¼ shaft speed
r0 ¼ relative rotor–stator clearance

uxh, uyh ¼ half degrees-of-freedom deflections
uxr, uyr ¼ rotor deflection in x and y directions
uxs, uys ¼ stator deflection in x and y directions

a ¼ fractional derivative parameter
C ¼ gamma function
d ¼ set-point rotor–stator clearance
� ¼ rotor eccentricity
f ¼ viscous damping ratio
g ¼ viscous/viscoelastic term constant
l ¼ dry friction coefficient
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