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A Kinematic Model for Mechanical 
Seals With Annotation Locks or 
Positive Drive Devices 
A kinematic model of mechanical face seals is presented. Two basic seal ar­
rangements are considered: a flexibly mounted stator with antirotation locks, and a 
flexibly mounted rotor with positive drive devices. The equation of kinematic con­
straint is derived and presented in a simple form for all the possible types of an­
tirotation or positive drive mechanisms found in practical seals. This simple form is 
then used to derive the dynamic moments acting on the flexibly mounted element of 
the seal. 

Introduction 

Seal dynamics has become the subject of many investiga­
tions in the last decade [1]. Much effort is devoted to analyze 
the time dependent behavior of the flexibly mounted element 
of the seal. This element can be either the rotating one, as in 
many low speed applications, or the stationary one as shown 
in Fig. 1. Its motion is affected by factors such as axial runout, 
shaft vibration, dynamic properties of both the flexible sup­
port and the lubricating fluid film, etc. These factors were 
considered in previous works [2-4] and the existing theoretical 
models are quite close to realistic seals. There is, however, one 
aspect which has been overlooked so far, but nevertheless 
plays an important role in seal dynamics. This is the constraint 
imposed on the flexibly mounted element by positive drive 
devices in the case of a flexibly mounted rotor or by anti-
rotation locks (see Fig. 1) in the case of a flexibly mounted 
stator. Understanding of this constraint is essential for a cor­
rect formulation of the seal kinematics. Unfortunately, there 
are numerous different arrangements of positive drive or anti-
rotation devices [5, 6] e.g., dents, keys, pins, slots, and ears, 
and bellows to name just a few. In addition, the number of 
units in a particular arrangement may vary in different 
designs, ranging, for example, from one to four pins per seal. 
Manufacturing tolerances regarding these devices are fairly 
large and therefore even in cases where several drives or locks 
are present only one of them may actually be effective. 

The constraint situation described above complicates any 
attempt to deal accurately with the kinematic model of 
mechanical seals. Such a model is, however, necessary for the 
derivation of the equations of motion. The present paper 
describes a general treatment that offers a fairly accurate solu­
tion to this complex problem. Based on the fact that the 
angular displacements of the flexibly mounted element are 
very small it will be shown that a first order approximation 
serves as a good general model, with a truncation error of 
order y2 where y < < 1. Finally the dynamic moments that act 
upon the flexibly mounted element will be derived for the two 
basic arrangements where this element is either the rotor or the 
stator. 

The Kinematic Model 
Figure 2 presents schematically a model of a mechanical 

face seal which assists in understanding the kinematics of the 
flexibly mounted seal element. The figure shows a system of 

ANTI-ROTATION LOCK SEAL RING 
Y [(STATOR) SPRING 

SEAL SEAT 
(ROTOR) 

Fig. 1 Mechanical face seal-schematic and terminology 
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two rings. An outer ring to which a reference XYZ is attached, 
and an inner ring with two slots to accommodate two pins that 
are fixed to the outer ring along the Y axis. The inner ring 
represents the flexibly mounted element of the seal and is free 
to have two orthogonal tilts about two of its diameters. 

Two cases will be considered. 1) The flexibly mounted seal 
element is stationary, and 2) the flexibly mounted seal element 
is rotating. In the first case the outer ring represents the seal 
housing (see Fig. 1), the two pins represent the antirotation 
locks, and the reference XYZ is inertial. In the second case the 
outer ring represents the shaft, the two pins represent the 
positive drive mechanism and the reference XYZ, together 
with the outer ring, rotates at an angular velocity o> about the 
Z axis. 

The resultant of the two tilts of the inner ring can be 
described by the two Eulerian angles 7 and \jj (see Fig. 2). The 
angle 7 is the nutation of the inner ring about the axis x of a 
reference system xyz- This reference system is free to rotate 
with respect to the inner ring so that axis y is always directed to 
the point of maximum distance of the inner ring from the XY 
plane. The angle tp is t n e precession of the reference xyz with 
respect to the reference XYZ. The axis z of the rotating xyz 
reference coincides with the principal axis of the inner ring. It 
is this axis about which the inner ring has a spin </> with respect 
to the xyz reference. 

An observer located in the reference xyz sees the reference 
XYZ and, hence, the outer ring rotating through an angle - \p 
about axis Z while the inner ring rotates through an angle <j> 
about axis z. The kinematic constraint forces the two rings to 
complete one revolution simultaneously, while any pair of cor­
responding points on the circumference of the two rings return 
to their original relative position after the completion of each 
revolution. This kinematic quality is characteristic of any 
universal joint and, hence, the seal model of Fig. 2 can be 
represented by a universal joint as shown in Fig. 3. Here, the 
rotation $= -4> is the input to the joint related to the outer 
ring, and the rotation <f> is the output from the joint related to 
the inner ring. 

The kinematic constraint represented by the two pins in Fig. 
2 reduces the number of rotational degrees of freedom of the 
system into two, and dictates a certain relation between the 
Eulerian angles. This relation, known as the equation of 
kinematic constraint, has the general form 

4> = 4>{y,J>) (1) 
and is typical for universal joints (for a full description of 
universal joints see for example refs. [7] and [8]). 

As stated in the Introduction, numerous different ar­
rangements of antirotation locks and positive drive 
mechanisms can be found in mechanical seals. Each one of 
these arrangements may result in a different particular form of 
equation (1) making it impossible to derive a general kinematic 
formulation of the problem. This shortcoming can, however, 
be overcome by noting that the nutation angle 7 in any prac­
tical seal is very small. Hence, for small 7 the spin 0 in a 
general joint as shown in Fig. 3 can be expanded in the form 

(j> = 4>0 + <t>ly + (j)2y
2 + (2) 

'\ t: 
OUTPUT, $ 

UNIVERSAL 
JOINT 

INPUT, /3=-u7 

Fig. 3 Universal joint model 

Differentiating equation (2) with respect to time yields 

<l> = P + -~ 187 + 0 ,7 + - ^ (37 + 20277 + 
dp dp 

The transmission law of the joint is thus given by 

- + 

(3) 

- y +2<t>2y-j- (4) 
dp- ' -^' $ 

For 7 = 0 any universal joint results in T= 1. Hence, 

* i = 0 

and the transmission law can be written as 

T=\-\——y+24>2—^ + 
dp 2 (3 

For small perturbation, the order of 7 is the same as that of 7, 
and equation (5) takes the form 

(5) 

r = - ? - = i + o(72) (6) 

where #,- = #,-(/3) are general periodic functions of (3, and 
0= ~\j/. For 7 = 0 we have <t> = (3, hence 

Hence, for any practical mechanical seal where y2 < < 1 
equation (6) gives the transmission, T, accurately enough, by 
T=\. 

In a constant velocity joint [8] the result T= 1 is accurate in­
dependent of 7. This special case is characterized by the lack 
of preference to the order and direction of the two perpen­
dicular tilts of the inner ring, and is typical, therefore, to such 
cases with axial symmetry where the pins of Fig. 2 are either 
omitted or are not in effect. The first case corresponds to a 
flexible support that consists of a metal bellows for example. 
The second case occurs when the friction in the elastomeric 
secondary seal is by itself sufficient to prevent rotation of the 
flexibly supported element regardless of the pins mechanism. 

Nomenclature 

I = transverse moment of inertia 
Iz = polar moment of inertia 
L = relative angular momentum 
T = transmission law 
T = dynamic moment 
(3 = - ^ 

7 = nutation 
A = absolute angular velocity 
\j/ = relative precession 

\pr = absolute rotor precession 
\j/s = absolute stator precession 

<j> = relative spin 

co = shaft angular velocity 
fi = relative angular velocity 

OJC = reference angular velocity 

Subscripts 
r = rotor 
s — stator 
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As another example let us examine the case of a Hooke 
joint. The equation of kinematic constraint for this particular 
joint is (see p. 272 in reference [7]): 

tan<£ = tan/3cosY (7) 

Differentiating with respect to time and substituting tan0 
from equation (7), gives after some algebra 

. /JCOST —-ysin7sin/3coS|3 

1 — sin2/3sin7 

For small nutation angles, y2 < < 1, we may use 

sinY = 7 

(8) 

COS7 = 1 -
T 

so that 

(1 - sin2/3sin27) ~* = 1 + 72sin2(3 

Substituting these relations in equation (8) and neglecting 
terms of order higher than 72 , will finally give 

|8 
= 1 + (sin^-4-) 2 / Y 2 - ^ s i n / 3 c o s 0 (9) 

Comparing corresponding terms in equations (9) and (4), we 
have 

and 

giving 

1 
02 = — r - sin/3cos/3 

The particular form of equation (2) for a Hooke joint is 
therefore 

d<t>2 • 2o 

—— = s n r | 3 -d/3 

1 

2 

7 4> - / 3 sin/3cosj3 (10) 

Recalling that /3 = - \j/ and hence $ = - i/ we see that for 
72 < < 1, the Hooke joint gives the spin </>, accurately enough, 
by 

* = - * (11) 
The constant velocity joint together with the Hooke joint 

cover a wide variety of antirotation locks and positive drive 
mechanisms. It may be concluded, therefore, that the approx­
imation T= 1 and, hence, equation (11) hold for any practical 
mechanical seal where 72 < < 1. This is very important from a 
practical point of view since it enables a unified treatment and 
representation of the various practical arrangements by a com­
mon kinematic model. 

It also enables the use of this common kinematic model in 
order to derive the general dynamic moments for any type of 
mechanical seal. 

Another important result of the preceding analysis is that, 
contrary to the common belief, the kinematic constraints do 
not, in general, prevent momentary spin, <j>, as is clearly 
shown in equation (3). Relative spin is completely eliminated 
only when 7 = 0, or in the case of a constant velocity joint. The 
effect of the kinematic constraints is therefore not to prevent 
relative spin but rather to force the flexibly mounted element 
of the seal to return after each revolution to its original 
relative position with respect to its holding member (housing 
or shaft). 

The Dynamic Moments 

The term "dynamic moments" is used to describe the con­

tribution of the inertia of a body to its behavior in the angular 
degrees of freedom. The rotational equations of motion of a 
body are formed by equating the dynamic moments with the 
"applied moments" that are contributed by external forces 
acting on the body. The correct formulation of the dynamic 
moments that act upon the flexibly mounted element of the 
seal is, therefore, essential for any dynamic analysis. This for­
mulation will now be presented for the two basic ar­
rangements, the kinematics of which was analyzed in the 
previous section. 

The general form of the dynamic moment vector of a rigid 
body expressed in a moving reference can be found in several 
texts e.g., [7[, and is given by 

dL 
T = —r—+ wcxL + r„0 x/wa0 (12) 

dt 

where L is the relative angular momentum vector of the rigid 
body defined as 

{Z .J= [ / ] [X } (13) 

and X is the absolute angular velocity vector of the body. The 
vector coc is the rotational velocity of the reference system ac­
celerating at a0, and rg0 is the location of the center of mass of 
the body (in our model rg0 = 0). The absolute angular velocity 
X of the body is given by 

x = t o , + n (14) 

where fl is the angular velocity vector of the body relative to 
the rotating reference. 

In the seal model shown in Fig. 2 the body is the inner ring 
and the rotating reference is the xyz reference. Hence, due to 
the kinematic constraint 0 is always along the z axis and by 
definition is 

tl = j>z (15) 

The spin </> is related to the precession i/- by the equation of the 
kinematic constraint, which for small nutation 7 is given in 
equation (11). 

Flexibly Mounted Stator. The angular velocity of the 
rotating reference for this case is (see Fig. 2) 

^c = ysX+^ssinyJ+^scosysz (16) 

Where the subscript 5 is used to indicate the stator as the 
flexibly mounted element. Substituting equations (16), (15), 
and (11) in equation (14) we have for the angular absolute 
velocity of the stator 

K = 7sX+ TpsSinysy + is(c°sys - i)z (17) 
Hence, by equation (13) the relative angular momentum vec­
tor L is 

= Iysx+I^ssmyJ + Iz^s(cosys-l)z (18) 

where Iz is the polar moment of inertia, and I=IX = I„ is the 
transverse moment of inertia of the flexibly mounted element. 

Using equations (18) and (16) in equation (12), recalling that 
rg0 = 0, and that we are dealing with small angles 7 so that 
COSYJ = 1 and sin ys = ys are valid approximations, we have the 
dynamic moments in the form 

Tx = / ( 7 s - ^ 2 7 s ) 

Tz = - / z ( ^ 7 , 7 , + ^ 2 / 2 ) + 0(62) 

(19a) 

(196) 

(19c) 

As can be seen from equation (19c) the dynamic moment Tz is 
of order 72 and hence, can be neglected in any practical seal. 

Flexibly Mounted Rotor. In this case the outer ring in Fig. 
2 which represents the shaft has an angular velocity CJ. This 
velocity when added to the relative precession 4> of the rotating 
reference xyz gives the absolute precession of the rotor, 1/7, in 
the form 
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i/v = \p + w (20) 

where the subscript r is used to indicate the rotor as the flex­
ibly mounted element. 

From equations (11) and (20) we have 

0 = « - ^ , (21) 

The angular velocity coc of the reference XYZ is given by equa­
tion (16) where the subscript s is replaced everywhere by the 
subscript r. Similarly, the absolute angular velocity of the in­
ner ring is given by equation (14) where fi is given in (15) and 4> 

in (21). 
Hence, 

Xr = yrx + >prsinyry + [\j/r(cosyr - 1) + o>]z (22) 

The relative angular momentum vector L is 

Lr = Iyrx+I^rsiayry + Iz[^r(cosyr-l) + oi]z (23) 

and the dynamic moments have, by (12), the form 

Tx = I(yr-^r
2yr) + Iz^ryr (24a) 

Ty = I(4<ryr + 2iryr)-Izcoyr (24b) 

Tz = -Iz(^ryryr + ^ryr
2/2) + 0(52) (24c) 

Here again Tz is of order y2 and can be neglected in practical 
seals. 

Summary and Conclusion 

The kinematic model of mechanical face seals was 
presented. Two basic seal arrangements were considered. 
These are the flexibly mounted stator and the flexibly 
mounted rotor. The kinematic constraint provided by the an-
tirotation locks in the first arrangement or by the positive 
drive devices in the second was shown to be similar to that of a 
universal joint. It was shown that in spite of the numerous 
variations of antirotation locks and positive drive mechanisms 
found in mechanical seals, it is possible to present the equation 
of kinematic constraint in the simple form 

This unified relation is the result of the very small nutation, 
7, in practical seals, and is accurate to an order y2 where 
7 < < 1 . 

The simple general form of the equation of kinematic con­
straint enables one to derive the dynamic moments that act on 

the flexibly mounted seal element. These moments are 
presented in equations (19) for the case of a flexibly mounted 
stator, and in equations (24) for the case of a flexibly mounted 
rotor. In both cases the dynamic moment Tz which is the axial 
component of the moment vector was found negligible. The 
two other components, namely, Tx and Ty depend on the 
transverse moment of inertia, I, in the case of a flexibly 
mounted stator, and on both the transverse and polar 
moments of inertia, I and Iz, in the case of the flexibly 
mounted rotor. The contribution of the polar moment of iner­
tia in seals with flexibly mounted rotor alters the dynamic 
moments Tx and Ty as compared to the flexibly mounted 
stator case. This is equivalent to altering the inertia of the flex­
ibly mounted element and may affect the dynamic behavior. 

The analysis presented in this paper assumed no more than 
two pins as a representation of the constraint provided by the 
antirotation locks or positive drive devices. If three or more 
units are effective, then the inner ring is actually "locked" and 
is unable to track angular misalignment of the rigidly mounted 
element. Such a condition can be avoided by limiting the 
number of antirotation locks and positive drive devices in a 
seal to two units at most. 
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