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A Simultaneous Numerical
Solution for the Lubrication and
Dynamic Stability of
Noncontacting Gas Face Seals
A numerical solution is presented for the dynamic analysis of gas lubricated noncon
ing mechanical face seals having a single grounded flexibly mounted stator. Seal dy
ics is solved in axial and angular modes of motion. Both the Reynolds equation an
equations of motion are arranged into a single state space form, allowing the fluid
lubrication and the dynamics to be solved simultaneously. The resulting set of equa
is solved using a high-order multistep ordinary differential equation solver, yieldin
complete simulation for the seal dynamic behavior. Examples of seal motion are giv
detailed transient responses. The stability threshold is investigated to gauge the infl
of seal parameters such as inertia, speed, coning, and the direction of sealed pre
drops. The results show two modes of instability: (1) When the inertia effect is larger
a critical value, the natural response of the seal grows monotonically in a half-freque
whirl mode. (2) When the seal coning is less than some critical value in an ou
pressurized seal, the minimum film thickness diminishes because of hydrostatic insta
and face contact occurs. Conversely, an inside pressurized seal is shown to be hydr
cally stable and have a superior dynamic response at any coning.
@DOI: 10.1115/1.1308020#
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Introduction
Gas lubricated mechanical face seals can be found in m

applications of high speed turbomachinery, e.g., air compress
turbopumps, turbofan, and turbojet engines. Yet the body of w
on the dynamics of mechanical face seals concerns primarily
uid lubricated seals@1–3#. For example, Green and Etsion@4#
obtained expressions for the stiffness and damping of liquid lu
cated, coned face seals. Using some simplifying assumptions
lubrication equation could be solved analytically, yielding sti
ness and damping~rotordynamic! coefficients, which were com
pletely decoupled from the dynamic equations. This decoup
subsequently aided in the development of a general closed
solution for the dynamics of any coned face mechanical seal@5#.
The equations of motion were solved analytically, giving crite
for stability and expressions for steady-state responses to
runout and static stator misalignment.

While the geometry of motion~i.e., the seal kinematics! is in-
dependent of the type of lubrication, due to compressibility a
pressure nonlinearity gas seal dynamic analysis differs sig
cantly from a liquid seal analysis. Specifically, universal clos
form expressions for the stiffness and damping of pressur
coned face gas seals are not available. Forces and moments
gas film depend not only on the instantaneous kinematical s
but also upon the history of motion. The lubrication analysis th
must be coupled with the dynamics of the face seal. Theref
even to date, a full numerical simulation is the sole method av
able for the dynamic analysis of gas face seals.

Because of the low gas viscosity, some gas seal designs fe
lifting mechanisms in the sealing dam~e.g., Raleigh steps, waves
spiral grooves! that generate elevated hydrodynamic pressure
facilitate noncontacting operation. However, many gas seal
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signs retain the simplicity of flat faces. The understanding of h
such seals can operate satisfactorily would be beneficial.

It is the intent of this study to provide a solution such that t
mutual interaction between the gas film and the dynamics of
seal are solved simultaneously. The numerical solution prese
here is unique because numerical solutions in the past~Cha and
Bogy @6#; Leefe@7#; Shapiro and Colsher@8#; Castelli and Pirvics
@9#! have been split into two separate steps: within every ti
instant the lubrication equation was solved ‘‘quasistatically’’
give forces and moments. These were then placed in the equa
of motion and the time integration of the dynamic equation w
forwarded. The coupling accomplished through this method is
ally a piecewise procedure requiring a very time consuming
repeated solution of the lubrication problem at every instant
time @8#. From a strict mathematical point of view, such proc
dures bypass the real problem because the solution does
evolve simultaneously.

The technique presented here systematically couples the lu
cation and kinetic equations for face seals so that they are so
simultaneously. This technique draws on the principles outline
the following works:~1! Green and Etsion@5,10# provided closed-
form and nonlinear numerical solutions for the dynamics of con
face seals with incompressible fluids. Because of fluid inco
pressibility, both works justifiably embraced a closed form so
tion of the Reynolds equation. This work cannot assume suc
solution because of fluid compressibility. However, the seal ki
matics outlined there can be fully adopted here.~2! The unique
method of the solution for the coupled system of lubrication a
dynamic follows the procedure outlined by Miller and Green@11#.
The present work, however, differs in two aspects:~i! Miller and
Green give the solution in an inertial coordinate system; here
solution is provided in a rotating~whirling! coordinate system;~ii !
Miller and Green outline the solution using finite element a
finite volume techniques that handle spiral groove discontinuit
here the solution is reached using a finite difference technique
efficiently handles flat faces. The coupled equations are frame
a state space form and solved numerically by efficient high ord

,
7,

soci-
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multistep ordinary differential equation solvers@12#. The tech-
nique is used to find the seal natural response to an initial co
tion disturbance for a reference case, and then to investigate
varying some parameters affects seal stability.

Formulation of a Simultaneous Solution
Figure 1 shows the schematic of a mechanical seal havin

flexibly mounted stator configuration. It consists of a seal s
~rotor! that is rigidly mounted to the rotating rigid shaft, and
flexibly supported seal ring~stator!. The rotor misalignment is
represented by a tiltg r measured between the out normal to
plane and the axis of shaft rotation~see Fig. 2!. Similarly, the
stator may have an initial misalignmentgsi with respect to the
axis of shaft rotation. At rest, and with zero-pressure different
the stator is pressed against the rotor by the supporting spring

Fig. 1 Schematic of noncontacting mechanical face seal

Fig. 2 Seal kinematical model
Journal of Tribology
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assume the same tilt,g r , as that of the rotor. During operation
however, the mating faces separate and the stator assumes its
tilt, gs .

Stability specifically deals with the natural response of the s
tem where all forcing functions have been removed, mathem
cally expressed asg r5gsi50, which leaves homogeneous equ
tions of motion. When a closed form solution is possible,
characteristic equation is formulated and investigated. Freque
conditions are imposed to guarantee that the eigenvalues cont
diminishing effect upon the natural response. In other words
stable system is such that when a disturbance excites the sys
its tendency is to diminish and eliminate the disturbance, con
quently returning the system to its normal operation. Convers
an unstable system will undergo large dynamic excursions fr
its designed point, resulting in large stator tilts that will cause fa
contact and excessive leakage, i.e., seal failure.

Without rotor misalignment the local film thickness~shown in
Fig. 2! is expressed in an inertial frame

h5Co1Z1b~r 2r i !2gsr sin~c2u! (1)

whereCo is the designed centerline clearance andb is the face
coning ~see Fig. 3!. The stator degrees of freedom are the ax
displacement,Z, the nutation,gs , and the precession,c ~see Fig.
2!. The equations of motion are expressed in a whirling frame~see
Green and Etsion@5#!:

I ~ g̈s2ċ2gs!5Mx (2)

I ~ c̈gs12ċġs!5M y (3)

mZ̈5FZ (4)

whereMx and M y are, respectively, the moments acting on t
stator about axesx andy, which belong to a coordinate systemxyz
that whirls at a rateċ within an inertial systemXYZ ~see Fig. 2!.
The tilt vectorgW s takes place about axisx of the rotating system,

Fig. 3 Schematic of coning in inward and outward flow
regimes
APRIL 2001, Vol. 123 Õ 389
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which is positioned by an anglec with respect to the inertial axis
X. The momentsMx and M y , and the axial forceFZ consist of
contributions from both the flexible support and the fluid film. T
support moments and force are

Msx52Ksgs2Dsġs (5)

Msy52Dsċgs (6)

FsZ52KsZZ2DsZŻ (7)

whereKsZ andDsZ are, respectively, the axial stiffness and dam
ing coefficients of the support. These coefficients include the
namic properties of the supporting springs and the secondary
which can be metal bellows, piston rings, elastomeric O-rings,
Typically the dynamic properties of the secondary seals need t
determined experimentally~e.g., Green and Etsion@13#, Lee and
Green@14#!. From the measured coefficientsKsZ and DsZ , the
angular stiffness and damping coefficientsKs andDs can be cal-
culated according to Green and Etsion@5#.

The fluid film contribution toMx , M y , andFZ is obtained by
numerically integrating the pressure distribution in the seal
dam over the face area. The gas flow is assumed to be isothe
isoviscous, and ideal; therefore, it is governed by the compress
form of the Reynolds equation~e.g., Gross@15#!,

]p

]t
5¹W •Fph3¹W p

12m
2

1

2
vrph iWuG2

]h

]t
(8)

where the operator¹W is implied here in inertial cylindrical coor-
dinatesr andu, andp5p(r ,u,t). This equation is subject to th
boundary conditions~B.C.!:

p~r i ,u,t !5pi

p~r o ,u,t !5po (9)

p~r ,0,t !5p~r ,2p,t !

wherepi andpo are the inner and outer pressures. The last eq
tion represents a cyclic B.C.; it is necessary here because a s
angular response will require a nonaxisymmetric pressure solu
over the entire sealing dam as the simulation progresses in t
Equation ~8! is already written in a form suitable for the sta
space formulation outlined subsequently. Specifically, the R
nolds equation is discretized in a finite difference scheme wh
the pressures in the sealing dam are referenced in a state
vector form.

In addition to the B.C. specified in Eq.~9! the initial condition
~I.C.! for the pressure must also be specified. To obtain the in
pressure conditions, the Reynolds equation is solved with the t
sient terms in Eq.~8! set to zero. Also, without forcing misalign
ments the stator initially is perfectly aligned, resulting in axisy
metric conditions at t50. Hence, the Reynolds equatio
degenerates to

]

]r S rph3
]p

]r D50 (10)

subject to the same B.C. as in Eq.~9!. The appendix details the
solution for Eq.~10!, which symbolically can be written as

p~r ,u,0!5pIC~r ,u! (11)

wherepIC is the initial condition of the pressure as given by E
~A8!. At every instant of time the fluid film moments and forc
M f x , M f y , andF f Z are obtained by numerically integrating th
pressure over the dam area, having the moments calculated a
the whirling x andy axes:

M f x5E
0

2pE
r i

r o

pr2 sin~u2c!dr du (12)
390 Õ Vol. 123, APRIL 2001
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M f y52E
0

2pE
r i

r o

pr2 cos~u2c!dr du (13)

FZ5E
0

2pE
r i

r o

pr dr du (14)

SinceZ, gs , andc are time dependent thenh, p, M f x , M f y , and
FZ are all time dependent as well. The equations of motion~2!–
~4! are recast now in a state space form including the support
fluid film effects,

]

]t 5
Ż
Z
ġs

gs

ċ
c

6 55
~FsZ1F f Z!/m

Ż

~Msx1M f x!/I 1ċ2gs

ġs

@~Msy1M f y!/I 22ċġs#/gs

ċ

6 (15)

subject to the initial conditionsZ(0), Ż(0), gs(0), ġs(0), c(0),
ċ(0).

Now suppose that the finite difference discretization of the R
nolds equation containsnr by nth nodes in the radial and circum
ferential directions, respectively. Hence, excluding the press
boundary conditions, a large state vector$w% is formed with a
dimension of (nr22)* nth16. The first (nr22)* nth elements
are allocated for the time derivatives of interior nodal pressure
stated by Eq.~8!, and the last six elements are allocated for t
degrees of freedom in the state vector of Eq.~15!. This forms an
explicit general system of equations

]

]t
$w%5$RHS% (16)

where$RHS% is a column vector containing the right-hand-side
the relevant equation, i.e., either Eq.~8! or Eq. ~15!. This form
contains the time dependent parameters of all variables couple
a single system suitable for integration by multistep ordinary d
ferential equation solvers employing the Adams-Moulton a
Gear’s backward differentiation formula@12#. It is worthy of note
that the kinematical variables~i.e., degrees of freedom! that need
to be solved for in Eq.~15! are implicitly included in Eq.~8! by
means of Eq.~1!. Conversely, the pressures obtained from Eq.~8!
at every instant of time are needed in the calculation of force
moments that appear in Eq.~15!. In other words, Eq.~1! is the
source of coupling. The solution of Eq.~16! gives a simultaneous
dynamic simulation for the transient pressure as well as for all
kinematical variables, i.e., the seal motion.

Stability Analysis
A base case is investigated for two possibilities of support

fects:~1! with support stiffness and damping coefficients given
Table 1, and~2! with the same parameters but with no supp
effects. The investigation is performed first by changing the sp
between runs. The initial conditions are such that the stator
rotor are perfectly aligned, i.e., for axisymmetric conditions at
50, we specifically setZ(0)5gs(0)50. The other I.C. are cho-
sen asŻ(0)5c(0)50, ċ(0)/v51. The seal is set into motion
~i.e., being perturbed! by a tilt ~nutation! velocity,
ġs(0)(r o /Co)/v50.5. A finite difference mesh ofnr59 and
nth5253 is used initially. Then a finer mesh withnr511 and
nth5313 is found to produce practically indistinguishable resu
thus confirming mesh convergence. All the data presented he
taken from simulations that used the finer mesh.

Response plots of the base case at five different speeds
shown in Fig. 4. The plots are shown in a nondimensional fo
the stator tilt,gs is normalized byCo /r o , and the minimum film
thickness,hmin @i.e., the minimum value of Eq.~1!# is normalized
by Co . The axial displacementZ behaves similarly togs and,
Transactions of the ASME
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therefore, is not plotted. Time is normalized byvt, yielding the
shaft revolution sincet50. Since this is an exhaustive search,
very large number of runs would be required to pinpoint exac
the stability threshold. First, however, the area of instability
found by trial and error. Then five cases are allowed to vary by
rad/s to approximate closely the neighborhood of instabi
within 6 5 rad/s, or within an uncertainty of the order of60.1
percent. First, all five cases exhibit initial oscillatory transien
that decay rapidly within the first two revolutions~see insets in
Fig. 4!. Then monotonic behavior prevails thereafter and throu
out 100 revolutions of simulation. Speeds at or above 3020 ra
exhibit diverging responses, wheregs increases monotonically
causinghmin to decrease monotonically. In other words, the sea

Table 1 Seal base cases

Fig. 4 Transient dynamic response at various shaft speeds
Journal of Tribology
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dynamically unstable, because if a sufficiently large time is
lowed, the faces would eventually come into contact~wear would
occur and the leakage would likely be intolerable!. Conversely,
speeds at or below 3000 rad/s exhibit stable operation, where
faces get realigned andhmin approaches its designed value ofCo .
At the speed of 3010 rad/s it is clear that after the initial transie
the response does not grow nor does it diminish in time. It
concluded that a speed of 3010 rad/s is the critical speed of in
bility in this case. The data also reveals that at the stability thre
old the stator whirls in a subsynchronous mode havingċ/vcr
50.4924, i.e., slightly lower than a half-frequency whirl. A sim
lar exhaustive search is performed but withKs5Ds50. Without
showing the plots, the critical speed is found to be nearly 26
rad/s ~having the same uncertainty as above!. Here, however,
ċ/vcr50.5000, indicating precisely a half-frequency whirl mod
The results are summarized in Table 2, along with the CPU t
for executing 100 revolutions on a 550 MHz PC. The immedi
conclusion is that support stiffness and damping are beneficia
increasing the value of the critical speed.

Comparing this study ‘‘half-frequency whirl mode’’ at the sta
bility threshold for a compressible film, to the case where the fi
is incompressible~see the closed-form solution by Green and E
sion @5#! reveals indeed that in both studies:~1! stiffness and
damping of the support increase the critical speed, and~2! the
whirl at the stability threshold is at or about ‘‘half-frequency
where support damping decreases the value of the whirl
quency. These findings add credibility to the simultaneous
merical solution outlined above.

Another exhaustive search is conducted. The speed is now
constant at 2094.4 rad/s~20,000 rpm!, but the inertia properties
are varied. With support effects it is discovered that the stabi
threshold occurs at aboutm52.0654 kg, and I 53.7178
31023 kg m2. Calculating now at the inertia product ofI •v2 at
stability threshold givesI •v2516,309J. Likewise, for the sec-
ond case whereKs5Ds50 the seal stability threshold occurs
about m51.5411 kg, and I 52.77431023 kg m2, or I •v2

512,175J. These critical inertia products are very close to t
values calculated for the cases when the speed is varied and
is held constant~16,308J and 12,168J, respectively, see Table 2!.
Apparently what really matters for the stability threshold is t
critical inertia product (I •v2)cr . While this term has units of en
ergy, the product is of the stator transverse moment of ine
~about axesx and y! with the shaft speed that takes place abo
axisZ; hence, this should not be confused with the kinetic ene
of the stator. Again, this phenomenon is entirely consistent w
the closed-form solution for incompressible seals~Green and Et-
sion @5#!. Only here, because a closed form solution for stiffne
and damping cannot be obtained for a compressible film, the
bility threshold must be found in this arduous empirical way.

An important parameter for seal stability is face coning.
order not to mask stability characteristics by support effects,
second case in Table 1 is run with coning angles varying fr
zero to 0.25 mrad~or taper heightsdh from zero to 3mm!. Figure
5 shows the transient response for six cases of coning, plotting
normalized misalignment and the minimum film thickness ver
shaft revolution. Figure 5 demonstrates that the seal respon
stable when the taper height is at or above 2.5mm, having re-
sponses that diminish in time and that restore the stator tilt t
perfectly aligned condition,gs50. Also, the minimum film thick-
ness restores its value at the design clearance. On the other
the seal exhibits an unstable response when the taper height
or below 2.0mm, where the stator tilt diverges quite rapidl
eventually causing face contact, i.e.,hmin50. An arduous trial and
error procedure would be needed again to pinpoint exactly
critical coning at the stability threshold. However, the critic
value would clearly be somewhere between taper heights of
and 2.5mm. These correspond to coning angles of 0.167 a
0.208 mrad, respectively, which when normalized byCo /r o result
in 1.67 and 2.08. Green and Etsion@5# determined analytically a
APRIL 2001, Vol. 123 Õ 391
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Table 2 Critical parameters determined at stability threshold
dius
but

ain-
l

hts
nondimensional critical coning angle ofr o /r i ~herer o /r i51.25!,
but this value is only valid for incompressible seals. The lat
would be an underestimation and, therefore, an unsafe value
compressible seals. This sort of instability is caused rather
hydrostatic effects and not by inertia effects. Nevertheless,
phenomenon that a critical coning angle exists, prevails in co
pressible and incompressible seals alike. All the above pertain
seals pressurized on the outside radius causing inward flow
shown in Fig. 3~a!.

Fig. 5 Transient response for an outside pressurized seal „in-
ward flow … at various positive coning angles
ol. 123, APRIL 2001
ter
for
by
the
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s to
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To gauge the effects of seals pressurized on the inside ra
and causing outward flow, similar cases have been simulated
with the pressures in Table 1 reversed, i.e.,pi523105 Pa, and
po5105 Pa. The designed seal clearance is unchanged and m
tained at 6mm, but now the gap is converging with the radia
direction to impose flow in a converging gap@see Fig. 3~b!#. The
simulation results are shown in Fig. 6 with negative taper heig

Fig. 6 Transient response for an inside pressurized seal „out-
ward flow … at various negative coning angles
Transactions of the ASME
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having the same absolute magnitudes as previously. Obviou
the transient responses shown in Fig. 6 are very different in na
from those shown in Fig. 5. First, all negative coning angles p
duce stable dynamic behaviors when the high pressure is a
inside radius. Even the zero coning situation is stable in the
gular mode, but it should be avoided~see discussion by Gree
@16#!. The simulations continued for 100 revolutions, but the tra
sient response diminished rather quickly, so only 10 revoluti
are shown. It can be seen that following initial high-frequen
oscillations the responses settle in a monotonic decay to stable
perfectly aligned conditions. The higher the face coning the fa
the decaying response. This behavior must be the result of hi
angular film stiffness, a characteristic consistent with the findi
by Green@16#. The minimum film thickness is reduced becau
the faces converge in the radial direction; hence, sincehmin occurs
at the outer radius the normalized steady-state value is also
duced. In summary, this type of seal~outward flow! is proven to
be dynamically superior compared with the previous type~inward
flow!, because~i! it does not suffer from hydrostatic instabilities
~ii ! while an inside pressurized seal is still prone to dynamic
stability, it possesses a higher angular film stiffness which wo
result in a higher critical inertia value of (I •v2)cr . Thermal ef-
fects, however, tend to open up the film in the radial directi
Such effects must be minimized in order to capture the dyna
superiority of this type of mechanical face seal. The stability
vestigation is only the first and necessary step in a complete
namic analysis. Once a seal is determined to be stable, the ste
state analysis must follow. That is, we must determine how
stator tracks a misaligned rotor in the presence of an initia
misaligned stator.

Conclusions
A twofold objective is attained:~I! First, a new numerical for-

mulation is given where the Reynolds equation and the equat
of motion are arranged into a single state space form; this for
lation allows the fluid film lubrication and the dynamics to b
solved concurrently. The resulting set of equations is integra
simultaneously using efficient multistep ordinary different
equation solvers yielding a complete simulation for the seal
namic behavior in all of its kinematical variables.~II ! Then using
the new formulation a numerical solution is presented for the
bility analysis of noncontacting gas face seals. Base cases
investigated by inspection, where the complete transient respo
are searched for instabilities. A critical inertia term, (I •v2)cr ,
empirically emerges above whose value seals become dyn
cally unstable, with the natural response growing monotonic
in a subsynchronous half-frequency whirl mode. For a flexi
mounted stator seal, support effects help in raising this crit
inertia value. It is also empirically found that in order to avo
hydrostatic instability an outside pressurized seal must posse
coning angle greater than critical; otherwise the seal lubrica
gas film diminishes and face contact occurs. However, ins
pressurized seals do not suffer from hydrostatic instabilities at
convergent coning. Moreover, added convergent coning impro
the dynamic behavior even further.

Nomenclature

C 5 centerline clearance
Co 5 design clearance
DZ 5 axial damping coefficient
D 5 angular damping coefficient
F 5 force
h 5 local film thickness
I 5 transverse moment of inertia

KZ 5 axial stiffness coefficient
K 5 angular stiffness coefficient
M 5 moment

MXi 5 moment due to stator initial misalignment
m 5 stator mass
Journal of Tribology
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p 5 pressure
r 5 radial coordinate
t 5 time

Z 5 axial degree of freedom
b 5 face coning angle,dh /(r o2r i)

g r 5 rotor runout
gs 5 stator nutation
gsi 5 stator initial misalignment
dh 5 coning ~taper! height
u 5 angular coordinate
m 5 viscosity
c 5 precession
v 5 shaft angular velocity

Subscripts

cr 5 critical
f 5 fluid film
i 5 inner radius
o 5 outer radius
r 5 rotor
s 5 stator, or flexible support

Appendix-Solution of the Compressible Reynolds Equa-
tion for Axisymmetric Coned Seals

Equation~10! is recast here in an alternate~but mathematically
equivalent! form

]

]r S rh3
]p2

]r D50 (A1)

subject to the B.C.

p2~r i !5pi
2

p2~r o!5po
2 (A2)

It can be seen that the solution is carried out onp2 rather than on
p itself, because a solution to Eq.~A1! can be obtained in closed
form. Imposing the axisymmetric condition on the film thickne
expressed in Eq.~1!, with the initial conditionsZ(0)5gs(0)50,
gives

h5Co1b~r 2r i ![a1br ; a5Co2br i (A3)

Also define conveniently

h~r 5r i !5Co[hi

h~r 5r o!5Co1b~r o2r i ![ho (A4)

Substituting~A3! in ~A1! and integrating~A1! twice results in

p25c1

a12h

~ah!2 12c1

ln r 2 ln h

a3 1c2 (A5)

wherec1 andc2 are constants of integration determined by usi
the B.C. in Eq.~A2! along with the definitions of~A4!. Hence,

c15
pi

22po
2

1

ahi
22

1

aho
2

1

2S 1

hi
2

1

ho
D

a2 1

2F lnS r i

r o
D2 lnS hi

ho
D G

a3 (A6)

c25pi
22c1

a12hi

a2hi
2 12

ln r i2 ln hi

a3 (A7)

From Eq.~A5! we have

pIC5Ac1

a12h

~ah!2 12c1

ln r 2 ln h

a
1c2 (A8)

which upon substitution of~A6! in ~A7!, and then substituting both
in ~A8! gives finally the solution for the pressure. Although~A8!
does not provide an explicit expression for the pressure, it is n
APRIL 2001, Vol. 123 Õ 393



T
t

b

i

n

R

p

of a

as

ct-

ic
ME

amic
n,’’

the
J.

ical
ertheless a closed-form solution that can easily be computed.
solution is taken as the initial condition for the pressure in
sealing dam, thus carrying the subscript IC.
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