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A numerical solution is presented for the dynamic analysis of gas lubricated noncontact-
ing mechanical face seals having a single grounded flexibly mounted stator. Seal dynam-
ics is solved in axial and angular modes of motion. Both the Reynolds equation and the
Roger M. Barnsbv equf'atio.ns of motion are a_rranged into a sin_gle state space form, allqwing the fluid fi_Im
Pratt and Whitney !ubrlcatlon a_nd the c_iynamlcs to be solved '_slmulta_neously. The re_sultlng set of_ equations
United Technologies Corporation’ is solved using a high-order multistep _ordlnary_dlfferentlal equation solv_er, yleldl_ng a
East Hartford. CT 06105 complete S|ml_JIat|on for the seal dynarr_l!c behavior. Example_s of seal motion are given in
' detailed transient responses. The stability threshold is investigated to gauge the influence
of seal parameters such as inertia, speed, coning, and the direction of sealed pressure
drops. The results show two modes of instability: (1) When the inertia effect is larger than
a critical value, the natural response of the seal grows monotonically in a half-frequency-
whirl mode. (2) When the seal coning is less than some critical value in an outside
pressurized seal, the minimum film thickness diminishes because of hydrostatic instability,
and face contact occurs. Conversely, an inside pressurized seal is shown to be hydrostati-
cally stable and have a superior dynamic response at any coning.
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Introduction signs retain the simplicity of flat faces. The understanding of how

. . . such seals can operate satisfactorily would be beneficial.
Gas lubricated mechanical face seals can be found in many P y

aoplications of hiah speed turbomachinery. e.d.. air com ressorsIt is the intent of this study to provide a solution such that the
pp gn sp Y, €9, p Utual interaction between the gas film and the dynamics of the

turbopumps, turbofan, and turbojet engines. Yet the body of Wo.gleal are solved simultaneously. The numerical solution presented

on the dynamics of mechanical face seals concerns primarily Ilﬁére is unique because numerical solutions in the (@isa and
uid I_ubrlcated se_alsﬁl—S]. For _example, Green _and E_tsu_ﬁn] Bogy [6]; Leefe[7]; Shapiro and ColshdB]; Castelli and Pirvics
abtained expressions for the_ stifiness a_nd d.amp'”g othw_d IUbFE have been split into two separate steps: within every time
cated, coned face seals. Using some simplifying assumptions, ant the lubrication equation was solved “quasistatically” to

Iubrlcatl?jndequqtlon tcoct;ld be. solveg. gnatlytlcalilly,hyleldlng Stlff'give forces and moments. These were then placed in the equations
ness and dampingotordynamis coetlicients, which Wereé Com- o motion and the time integration of the dynamic equation was
B8rwarded. The coupling accomplished through this method is re-

) . ) érlﬂl a piecewise procedure requiring a very time consuming and
solution for the dynamics of any coned face mechanical [§al epeated solution of the lubrication problem at every instant of

The equations of motion were solved analytically, giving criterig, o [8]. From a strict mathematical point of view, such proce-
for stability and expressions for steady-state responses to rofpfes bypass the real problem because the solution does not
runout and static stator misalignment. evolve simultaneously.

While the geometry of motioifi.e., the seal kinematigss in- The technique presented here systematically couples the lubri-
dependent of the type of lubrication, due to compressibility andytion and kinetic equations for face seals so that they are solved
pressure nonlinearity gas seal dynamic analysis differs S'§3r"§|“multaneously. This technique draws on the principles outlined in
cantly from a_Ilqwd seal ana_ly5|s. Speuflcally,_unlversal clos_eqhe following works:(1) Green and Etsiof,10] provided closed-
form expressions for the stiffness and damping of pressurizggy and nonlinear numerical solutions for the dynamics of coned
coned face gas seals are not available. Forces and moments {§@ seals with incompressible fluids. Because of fluid incom-
gas film depend not only on the instantaneous kinematical staf@ssipility, both works justifiably embraced a closed form solu-
but also upon the hl_story of motion. The lubrication analysis thygn of the Reynolds equation. This work cannot assume such a
must be coupled with the dynamics of the face seal. Therefotg|ytion because of fluid compressibility. However, the seal kine-
even to date, a full numerical simulation is the sole method avai'hatics outlined there can be fu”y adopted hd@The unique
able for the dynamic analysis of gas face seals. _ method of the solution for the coupled system of lubrication and

Because of the low gas viscosity, some gas seal designs feagiamic follows the procedure outlined by Miller and Gréa).
lifting mechanisms in the sealing daf@.g., Raleigh steps, waves,The present work, however, differs in two aspe¢tsMiller and
spiral groovesthat generate elevated hydrodynamic pressures ¢teen give the solution in an inertial coordinate system; here the
facilitate noncontacting operation. However, many gas seal dgslution is provided in a rotatingvhirling) coordinate systentii)
Miller and Green outline the solution using finite element and
Contributed by the Tribology Division of HE AMERICAN SOCIETY OF ME-  finite volume techniques that handle spiral groove discontinuities;
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multistep ordinary differential equation solvef$2]. The tech- assume the same tilt;, , as that of the rotor. During operation,

nigue is used to find the seal natural response to an initial contibwever, the mating faces separate and the stator assumes its own

tion disturbance for a reference case, and then to investigate hiity ;.

varying some parameters affects seal stability. Stability specifically deals with the natural response of the sys-
tem where all forcing functions have been removed, mathemati-

Formulation of a Simultaneous Solution cally expressed ag; = y;=0, which leaves homogeneous equa-

. . ) . tions of motion. When a closed form solution is possible, a
Figure 1 shows the schematic of a mechanical seal having:Rgracteristic equation is formulated and investigated. Frequently,
flexibly mounted stator configuration. It consists of a seal seggnditions are imposed to guarantee that the eigenvalues contain a
(rotor) that is rigidly mounted to the rotating rigid shaft, and &jiminishing effect upon the natural response. In other words, a
flexibly supported seal ringstatoy. The rotor misalignment is staple system is such that when a disturbance excites the system,
represented by a tily, measured between the out normal to it§s tendency is to diminish and eliminate the disturbance, conse-
plane and the axis of shaft rotatidsee Fig. 2 Similarly, the quently returning the system to its normal operation. Conversely,
stator may have an initial misalignment; with respect to the an ynstable system will undergo large dynamic excursions from
axis of shaft rotation. At rest, and with zero-pressure differentigis gesigned point, resulting in large stator tilts that will cause face

the stator is pressed against the rotor by the supporting spring$:étact and excessive leakage, i.e., seal failure.
Without rotor misalignment the local film thickneéshown in
Fig. 2 is expressed in an inertial frame

seconciry e h=Co+Z:+ B(r —r) = y4f Sin(y—6) o
spring stator whereC, is the designed centerline clearance ghd the face
\l coning (see Fig. 3 The stator degrees of freedom are the axial
O displacementZ, the nutation,ys, and the precession; (see Fig.
— N 2). The equations of motion are expressed in a whirling frésee
8 \\\ N rotor Green and Etsiof5]):
[(ys— ¢275):Mx )
£ shaft L(yst2079) =M, (3)

0 e ;
mZ=F, 4
whereM, and M, are, respectively, the moments acting on the
Fig. 1 Schematic of noncontacting mechanical face seal stator about axesandy, which belong to a coordinate systedyz

that whirls at a ratey within an inertial systenXYZ(see Fig. 2
The tilt vector y, takes place about axisof the rotating system,
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Fig. 3 Schematic of coning in inward and outward flow
Fig. 2 Seal kinematical model regimes
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which is positioned by an angk with respect to the inertial axis 2m (1o 5
X. The momentM, andM,, and the axial forcé=, consist of M¢y= *J’ f precog 6—y)drdo (13)
contributions from both the flexible support and the fluid film. The 0 Jr
support moments and force are 27 (1,
. F :f f prdrde (24)
Mex=—Ksys—Dsvs (5) z 0 ri
M.y=—Dy (6) SinceZ, ys, andy are time dependent thdn p, My, , My, and
4 sTrs F, are all time dependent as well. The equations of mot®r
Foy=—K,Z-D Z-Z @) (4) are recast now in a state space form including the support and
S S S

fluid film effects,
whereK;; andDg; are, respectively, the axial stiffness and damp-

ing coefficients of the support. These coefficients include the dy- z (FSZ+_FfZ)/m

namic properties of the supporting springs and the secondary seal, Z z

which can be metal bellows, piston rings, elastomeric O-rings, etc. a | s (Mg, M)/l + 2y,

Typically the dynamic properties of the secondary seals need to be )y = ¥ (15)
determined experimentallie.g., Green and Etsidri3], Lee and S N .

Green[14]). From the measured coefficierits, and Dy, the i [(Mgy+M) /1 =24ys]l vs

angular stiffness and damping coefficiedtsandDg can be cal- ] ¢

culated according to Green and Etsi@. ) o B ) )

The fluid film contribution toM,, M, , andF is obtained by subject to the initial condition£(0), Z(0), ¥s(0), ¥s(0), ¢(0),
numerically integrating the pressure distribution in the sealing(0).
dam over the face area. The gas flow is assumed to be isothermaljow suppose that the finite difference discretization of the Rey-
isoviscous, and ideal; therefore, it is governed by the compressibfelds equation containgr by nth nodes in the radial and circum-

form of the Reynolds equatiofe.g., Gros$15]), ferential directions, respectively. Hence, excluding the pressure
R boundary conditions, a large state vec{g} is formed with a
ap . |ph®Vp 1 - ah dimension of or—2)*nth+6. The first oir—2)*nth elements
a2, 2 wrphiy|—— (8) are allocated for the time derivatives of interior nodal pressures as

R stated by Eq(8), and the last six elements are allocated for the
where the operatoV is implied here in inertial cylindrical coor- degrees of freedom in the state vector of Ecp). This forms an
dinatesr and ¢, andp=p(r, 6,t). This equation is subject to the explicit general system of equations
boundary condition$B.C.):

J
p(ri,0,t)=p; E{(‘D}:{RHS} (16)
P(re,0,1)=p, ) where{RHS} is a column vector containing the right-hand-side of
the relevant equation, i.e., either E&) or Eq. (15). This form
p(r,0t)=p(r,2m,t) contains the time dependent parameters of all variables coupled in

) a single system suitable for integration by multistep ordinary dif-
wherep; andp, are the inner and outer pressures. The last eqUgrential equation solvers employing the Adams-Moulton and
tion represents a cyclic B.C.; it is necessary here because a st@ghr's backward differentiation formufa2]. It is worthy of note
angular response will require a nonaxisymmetric pressure solutigfat the kinematical variable@e., degrees of freedonthat need
over the entire sealing dam as the simulation progresses in tifi¢pe solved for in Eq(15) are implicitly included in Eq(8) by
Equation(8) is already written in a form suitable for the stateneans of Eq(1). Conversely, the pressures obtained from 4.
space formulation outlined subsequently. Specifically, the Ret every instant of time are needed in the calculation of force and
nolds equation is discretized in a finite difference scheme whegigyments that appear in EL5). In other words, Eq(1) is the
the pressures in the sealing dam are referenced in a state SRagfice of coupling. The solution of E€L6) gives a simultaneous

vector form. o o - dynamic simulation for the transient pressure as well as for all the
In addition to the B.C. specified in EY) the initial condition kinematical variables, i.e., the seal motion.

(I.C.) for the pressure must also be specified. To obtain the initial

pressure conditions, the Reynolds equation is solved with the tran-

sient terms in Eq(8) set to zero. Also, without forcing misalign- Stability Analysis

ments the stator initially is perfectly aligned, resulting in axisym- A pase case is investigated for two possibilities of support ef-
metric conditions att=0. Hence, the Reynolds equationfects:(1) with support stiffness and damping coefficients given in
degenerates to Table 1, and(2) with the same parameters but with no support

effects. The investigation is performed first by changing the speed
9 ap 9 p y ging p
—(rph3—) =0 (10) between runs. The initial conditions are such that the stator and
ar ar rotor are perfectly aligned, i.e., for axisymmetric conditiong at
subject to the same B.C. as in E). The appendix details the ~ 0+ W& specifically seZ(0)=y(0)=0. The other I.C. are cho-
solution for Eq.(10), which symbolically can be written as sen asZ(0)=(0)=0, ¢(0)/w=1. The seal is set into motion
(i.e., being perturbed by a tilt (nutation velocity,
p(r,0,0)=p(r,6) (11)  ¥s(0)(ro/Co)/@=0.5. A finite difference mesh ohr=9 and

. o . . nth=253 is used initially. Then a finer mesh witir=11 and
wherepc is the initial condition of the pressure as given by Ednth=313 is found to produce practically indistinguishable results,
(A8). At every instant of time the fluid film moments and forcenys confirming mesh convergence. All the data presented here is
Mix, Myy, andFy; are obtained by numerically integrating theyaken from simulations that used the finer mesh.
the whirling x andy axes: shown in Fig. 4. The plots are shown in a nondimensional form:

27 (g the stator tilt,ys is normalized byC,/r,, and the minimum film
fozj f pr?sin(6—y)dr de (12) thicknesshy, [i.e., the minimum value of Eq1)] is normalized
o Jr by C,. The axial displacement behaves similarly toys and,
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Table 1 Seal base cases dynamically unstable, because if a sufficiently large time is al-

lowed, the faces would eventually come into contaetar would
®=2094 4 rad/s ((,):20,000 rpm) occur and the leakage would likely be intolergbl€onversely,
speeds at or below 3000 rad/s exhibit stable operation, where the
p=1.8 (10)'5 Pas, C.=6 pm faces get realigned arid,,, approaches its designed value@y.
At the speed of 3010 rad/s it is clear that after the initial transient,
p;i=1 (10)5 Pa Po=2 (10)5 Pa the response does not grow nor does it diminish in time. It is
concluded that a speed of 3010 rad/s is the critical speed of insta-
r;=0.048 m r,=0.06 m bility in this case. The data also reveals that at the stability thresh-
old the stator whirls in a subsynchronous mode havifig,,
B =0.25 mrad (6, =3 pum) =0.4924, i.e., slightly lower than a half-frequency whirl. A simi-
lar exhaustive search is performed but wikh=D¢=0. Without
m=1 kg 1=0.0018 kg-m2 showing the plots, the critical speed is found to be nearly 2600
rad/s (having the same uncertainty as abpvelere, however,
case 1: K= 5 (10)’ N/m D,=300 N s/m ¥l we=0.5000, indicating precisely a half-frequency whirl mode.
The results are summarized in Table 2, along with the CPU time
case 2: K=0N/m D=0N s/m for executing 100 revolutions on a 550 MHz PC. The immediate

conclusion is that support stiffness and damping are beneficial for
increasing the value of the critical speed.
Comparing this study “half-frequency whirl mode” at the sta-
bility threshold for a compressible film, to the case where the film
incompressiblésee the closed-form solution by Green and Et-
lon [5]) reveals indeed that in both studieq) stiffness and
mping of the support increase the critical speed, @dhe
irl at the stability threshold is at or about “half-frequency”
ere support damping decreases the value of the whirl fre-
uency. These findings add credibility to the simultaneous nu-

therefore, is not plotted. Time is normalized by, yielding the
shaft revolution sincé=0. Since this is an exhaustive search,
very large number of runs would be required to pinpoint exact
the stability threshold. First, however, the area of instability ia
found by trial and error. Then five cases are allowed to vary by
rad/s to approximate closely the neighborhood of instability,
within = 5 rad/s, or within an uncertainty of the order 0.1
percent. First, all five cases exhibit initial oscillatory transien erical solution outlined above.

that decay rapidly within the first two revolutiorisee insets in Another exhaustive search is conducted. The speed is now held

Fig. 4). Then monotonic behavior prevails thereafter and through- P :
out 100 revolutions of simulation. Speeds at or above 3020 ra nstant at 2094.4 rad(g0,000 rpm, but the inertia properties

S - ; X varied. With support effects it is discovered that the stability
exhibit diverging responses, wheng increases monotonically, threshold occurs at aboum=2.0654kg, and |=3.7178

causingh,, to decrease monotonically. In other words, the seal 103 kg ?. Calculating now at the inertia product bfe? at

stability threshold gives - w?=16,309J. Likewise, for the sec-
Stotor Nutation ve. Revortion ond case wher& =D¢=0 the seal stability threshold occurs at
v. %[ = o e about m=1.5411kg, and |=2.774x10 3kgn?, or |- w?
o1s | o® i =12,175J. These critical inertia products are very close to the
o values calculated for the cases when the speed is varied and mass
1 is held constant16,308J and 12,168, respectively, see Tablg.2
o M 1 Apparently what really matters for the stability threshold is the
mI030 radss critical inertia product (- ?),. While this term has units of en-
ergy, the product is of the stator transverse moment of inertia
(about axes< andy) with the shaft speed that takes place about
axis Z; hence, this should not be confused with the kinetic energy
of the stator. Again, this phenomenon is entirely consistent with
the closed-form solution for incompressible se@seen and Et-
©=3000 rad/s  @=3010 rad/s 1 sion[5]). Only here, because a closed form solution for stiffness
002 | 1 and damping cannot be obtained for a compressible film, the sta-
, bility threshold must be found in this arduous empirical way.
0 20 O outon &0 100 An important parameter for seal stability is face coning. In
order not to mask stability characteristics by support effects, the
1 Minirmum Film Thickness vs. Revolution second case in Table 1 is run with coning angles varying from
hin zero to 0.25 mrador taper heights,, from zero to 3um). Figure
0.98 ©=2990 rad/s  =3000 rad/s ©=3010 rad/s 1 5 shows the transient response for six cases of coning, plotting the
N\ normalized misalignment and the minimum film thickness versus
\ shaft revolution. Figure 5 demonstrates that the seal response is
stable when the taper height is at or above @rB, having re-
sponses that diminish in time and that restore the stator tilt to a

0.16

oaz | ©=3020 rad/s
a0

0.02

o0
0 02 04 06 08 1 1z 14 15 18
Revolution

@=2990 rad/s

Minimum Film Thickness vs. Revolution

O 1 perfectly aligned conditiony,=0. Also, the minimum film thick-
/ ness restores its value at the design clearance. On the other hand,
os| o 03020 wlsoso 1 the seal exhibits an unstable response when the taper height is at
rad/s or below 2.0 um, where the stator tilt diverges quite rapidly,
088 | 1 eventually causing face contact, i.B,,=0. An arduous trial and
ves error procedure would be needed again to pinpoint exactly the
rowlt 1 critical coning at the stability threshold. However, the critical
o4 | Revwen ‘ ) value would clearly be somewhere between taper heights of 2.0
o » O oton & w and 2.5um. These correspond to coning angles of 0.167 and
0.208 mrad, respectively, which when normalizeddy/r, result
Fig. 4 Transient dynamic response at various shaft speeds in 1.67 and 2.08. Green and Etsif] determined analytically a
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Table 2 Critical parameters determined at stability threshold

Reference value

Base case with support effects

Base case without support effects

held constantin | K= 5 (10)° N/m K,=0N/m
simulation D=300 N s/m D;=0N s/m
m=1kg o, =3010 rad/s lo,=16308J | o, =2600 rad/s o, =12168]
I1=1810%kgm? | y/w,=0.4924 /o, =05
(CPU= 56 min) (CPU=33 min)
©=2094.4rad/s | m,=2.065kg L0*=163097 | m~1.542 kg I0*=12175]
1, =3.71810° L, =277610°
kg'm’ kg'm?
(CPU= 45 min) (CPU= 43 min)

nondimensional critical coning angle of/r; (herer,/r;=1.25), To gauge the effects of seals pressurized on the inside radius
but this value is only valid for incompressible seals. The lattemd causing outward flow, similar cases have been simulated but
would be an underestimation and, therefore, an unsafe value fdth the pressures in Table 1 reversed, igg=2X 10° Pa, and
compressible seals. This sort of instability is caused rather by=10° Pa. The designed seal clearance is unchanged and main-
hydrostatic effects and not by inertia effects. Nevertheless, tined at 6um, but now the gap is converging with the radial
phenomenon that a critical coning angle exists, prevails in comirection to impose flow in a converging ghsee Fig. 8)]. The
pressible and incompressible seals alike. All the above pertainssithulation results are shown in Fig. 6 with negative taper heights
seals pressurized on the outside radius causing inward flow, as

shown in Fig. 3a).

Stator Nutation vs. Revolution

Stator Nutation vs. Revolution Y
T T s

0.12

Ys
8,=1 pm
25

0.1

15 |

0.5 -

8,=2.5 pm
[ / Revolution
0 20 40 60 80 100 N
Revolution " Film T vs.
Minimum Film Thickness vs. Revolution
1.1 T T
[T 8,=3.0 pm
1E —
3,=2.5 pm

0.9 8,= -1 um

0.8 [

0.7 |
[ X33 8,= -2 um
0.5
04 -
0.3
02| 8,=-3 um
0.1 |

0 " .

L] 20 40 60 80 100 o 2 8 10

Revolution Revolution

Fig. 5 Transient response for an outside pressurized seal
ward flow ) at various positive coning angles

(in-  Fig. 6 Transient response for an inside pressurized seal

ward flow ) at various negative coning angles

(out-
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having the same absolute magnitudes as previously. Obviously, p = pressure

the transient responses shown in Fig. 6 are very different in nature r = radial coordinate

from those shown in Fig. 5. First, all negative coning angles pro- t = time

duce stable dynamic behaviors when the high pressure is at the Z = axial degree of freedom
inside radius. Even the zero coning situation is stable in the an- B = face coning anglegy, /(r,—r;)
gular mode, but it should be avoidédee discussion by Green v, = rotor runout

[16]). The simulations continued for 100 revolutions, but the tran- vy, = stator nutation

sient response diminished rather quickly, so only 10 revolutions vy, = stator initial misalignment
are shown. It can be seen that following initial high-frequency &, = coning(tape) height
oscillations the responses settle in a monotonic decay to stable and 6 = angular coordinate

perfectly aligned conditions. The higher the face coning the faster u = viscosity

the decaying response. This behavior must be the result of higher = precession

angular film stiffness, a characteristic consistent with the findings « = shaft angular velocity

by Green[16]. The minimum film thickness is reduced becausgubscripts

the faces converge in the radial direction; hence, sipggoccurs N
at the outer radius the normalized steady-state value is also re- I = critical
duced. In summary, this type of se@lutward flow is proven to = fluid film

be dynamically superior compared with the previous tfipe/ard = inner radius
flow), becausdi) it does not suffer from hydrostatic instabilities, = outer radius
rotor

(it) while an inside pressurized seal is still prone to dynamic in-
stability, it possesses a higher angular film stiffness which would
result in a higher critical inertia value of {(w?),. Thermal ef-
fects, however, tend to open up the film in the radial directioppendix-Solution of the Compressible Reynolds Equa-
Such effects must be minimized in order to capture the dynantion for Axisymmetric Coned Seals

superiority of this type of mechanical face seal. The stability in- . . . .
vestigation is only the first and necessary step in a complete d _E_quatlon(10) is recast here in an alternafieut mathematically
namic analysis. Once a seal is determined to be stable, the steé%l”'valen) form

w =0 — =
Il

stator, or flexible support

state analysis must follow. That is, we must determine how the apz
stator tracks a misaligned rotor in the presence of an initially a_r(rh37> =0 (A1)
misaligned stator.

subject to the B.C.

Conclusions 21y = p?
A twofold objective is attained(l) First, a new numerical for- PRrO=h
mulation is given where the Reynolds equation and the equations p3(ry)= pf) (A2)

of motion are arranged into a single state space form; this fOmll'fl-can be seen that the solution is carried outpdrrather than on

lation allows the fluid film lubrication and the dynamics to be . b uti E(AL be obtained in closed
solved concurrently. The resulting set of equations is integratBdiSelf, Pecause a solution to EGAL) can be obtained in close
orm. Imposing the axisymmetric condition on the film thickness

simultaneously using efficient multistep ordinary differentia X . S ” 2 -
equation solvers yielding a complete simulation for the seal d _;ilp()er:ssed in Eq), with the initial conditionsZ(0)=5(0)=0,

namic behavior in all of its kinematical variabld$.) Then using
the new formulation a numerical solution is presented for the sta- h=C,+B(r—r)=a+pr; a=C,—pfr; (A3)
bility analysis of noncontacting gas face seals. Base cases are i ,

investigated by inspection, where the complete transient responéex® define conveniently

are searched for instabilities. A critical inertia term, ¢2),, h(r=r,)=C,=h,
empirically emerges above whose value seals become dynami-
cally unstable, with the natural response growing monotonically h(r=ry)=Co+ B(ro—ri)=hg (Ad)

in a subsynchronous half-frequency whirl mode. For a flexiblg, hjir ting(A3) in (A1) and integratingAL) twice results in
mounted stator seal, support effects help in raising this critical

inertia value. It is also empirically found that in order to avoid ) a+2h Inr—Inh
hydrostatic instability an outside pressurized seal must possess a pT=Cy (ah)? +2¢ a3
coning angle greater than critical; otherwise the seal lubricatin ) ) ) )
gas film diminishes and face contact occurs. However, insidéerec; andc, are constants of integration determined by using
pressurized seals do not suffer from hydrostatic instabilities at ai B-C. in Eq.(A2) along with the definitions ofA4). Hence,

+c, (A5)

convergent coning. Moreover, added convergent coning improves 1 1 r. h.
the dynamic behavior even further. 2 2 2(—— —) Z{In(—' —In(—'”
_ Pi —Po hi ho Io h, 6
Nomenclature 11 a® a’ (A6)
C = centerline clearance aTliZ Eﬁ
C, = design clearance
D, = axial damping coefficient ¢,=pP—c at2h; _Inri—inh (A7)
D = angular damping coefficient 2ok azhi2 ad
F = force
h = local film thickness From Eq.(A5) we have
| = transverse moment of inertia a+2h Inr=Inh
K, = axial stiffness coefficient Pic \/cl (@h)? +2¢y a +c, (A8)
K = angular stiffness coefficient
M = moment which upon substitution afA6) in (A7), and then substituting both
My; = moment due to stator initial misalignment in (A8) gives finally the solution for the pressure. Althou@k8)
m = stator mass does not provide an explicit expression for the pressure, it is nev-
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ertheless a closed-form solution that can easily be computed. Thi§] Shapiro, W., and Colsher, R., 1974, “Steady State and Dynamic Analysis of a
solution is taken as the initial condition for the pressure in the ;EI'E“Q'“E" Gas Lubricated Shatft Seal,” ASLE Traii,, No. 3, pp. 190

seallng dam, thus carrying the SUbSC”pt IC. [9] Castelli, V., and Pirvics, J., 1968, “Review of Numerical Methods in Gas

Bearing Film Analysis,” ASME J. Lubr. Technol90, pp. 777-792.
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