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Abstract

This work presents the results of a finite element analysis (FEA) used to simulate two-dimensional (2D) sliding between two interfering

elasto-plastic cylinders. The material for the cylinders is modeled as elastic-perfectly plastic and follows the von Mises yield criterion. The

FEA provides trends in the deformations, reaction forces, stresses, and net energy losses as a function of the interference and sliding distance

between the cylinders. Results are presented for both frictionless and frictional sliding and comparisons are drawn. The effects of plasticity and

friction on energy loss during sliding are isolated. This work also presents empirical equations thatt relate the net energy loss due to sliding

under an elasto-plastic deformation as a function of the sliding distance. Contour plots of the von Mises stresses are presented to show the

formation and distribution of stresses with increasing plastic deformation as sliding progresses. This work shows that for the plastic loading

cases the ratio of the horizontal force to the vertical reaction force is non-zero at the point where the cylinders are perfectly aligned about the

vertical axis. In addition, a “load ratio” of the horizontal tugging force to the vertical reaction force is defined. Although this is analogous to

the common definition of the coefficient of friction between sliding surfaces, it just contains the effect of energy loss in plasticity. The values

of the contact half-width are obtained for different vertical interferences as sliding progresses.

q 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Sliding contact between two elasto-plastic cylinders and

spheres has important engineering applications in both the

macro- and the microscale. The current results are normalized

to be valid in both scales as long as continuum mechanics

prevails. In microscale, it is well known that asperities deform

plastically during sliding contact between rough surfaces.

Thus, it is important to know the effect the contact has on the

surface material and the geometry through plastic deformations

and residual stresses. In macroscale, this information may be

useful in analyzing the friction, wear, and deformation of con-

tacts such as in gears, rolling element bearings, wheel on rail,

when sliding may occur (in addition to rolling). In an electro-

magnetic launcher (EML) [1] an armature slides in a prede-

fined spacing between two rails and, hence, this application
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lends itself specifically to the boundary conditions used in the

current work. The results presented here may also be valu-

able in analyzing human joints, such as that investigated by

Chen et al. [2], wherein 2D plane strain finite elements are

employed to model the temporomandibular joint using hyper-

elastic (Mooney–Rivlin) material. The approach is similar to

the one taken in the current study only that here metallic-like

material behavior is prevailing.

Both elastic and elastic–plastic spherical contacts have been

analyzed in great detail in the last four decades. Predominantly

considering normal loading only, a wide array of works have

analyzed the contact of rough surfaces as reviewed by Liu et al.

[3]. These works are based on the contact behavior of a single

asperity in a statistical model of multiple asperity contact. All

these works, share the common methodology of Thomas [4]

and Greenwood [5] that is as follows:

(1) Replacing the two rough surfaces by a smooth surface in

contact with an equivalent rough surface.
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Nomenclature

b contact half width

C critical yield stress coefficient

E elastic modulus

E′ equivalent modulus of elasticity, 1
E′ =

1−m2
1

E1
+

1−m2
2

E2

Fx horizontal reaction force at the base of the bot-

tom cylinder

Fy vertical reaction force at the base of the bottom

cylinder

i load step number

L length of contact

n number of load steps employed to simulate a

quasi-static sliding process

P contact force

P ∗ non-dimensional load, P/Pc

po maximum contact pressure

R radius of the cylinder

R equivalent radius, 1
R
= 1

R1
+ 1

R2

Sy yield strength

U potential (strain) energy

u maximum vertical displacement

x horizontal sliding distance covered by the top

cylinder up to the ith load step

Dx total horizontal distance covered by the top

cylinder to complete sliding

dx equal increments in which the total sliding hor-

izontal sliding is covered

m Poisson’s ratio

re maximum equivalent von Mises stress

x interference between cylinder surfaces

x∗ non-dimensional vertical interference between

cylinders, x/xc

Superscript

∗ dimensionless

Subscripts

c critical value at onset of plastic deformation
′ equivalent

1 bottom cylinder

2 top cylinder

net net value after sliding is completed

res residual value after sliding is completed

x corresponding to horizontal axis

y corresponding to vertical axis

(2) Replacing asperities with simple geometrical shapes.

(3) Assume a probability distribution for asperity parameters.

Some of these works are restricted mainly to pure elas-

tic regime, such as the landmark work by Greenwood and

Williamson [6]. Other works, such as Greenwood and Tripp [7],

Lo [8], Whitehouse and Archard [9], Tsukizoe and Hisakado

[10], and Bush et al. [11,12], extend the Greenwood and

Williamson model in the elastic regime to a variety of geome-

tries and different basic assumptions. Other works concentrate

on pure plastic deformation, and are based on the models of

Abbott and Firestone [13] and Tsukizoe and Hisakado [10].

Normal spherical contacts in the elastic–plastic regime by

Evseev et al. [14], Chang [15], and Zhao [16]. FEA has been

used by Vu-Quoc et al. [17] to analyze contact between two

spheres, which by symmetry is equivalent to that of one sphere

in contact with a frictionless rigid plane, but the analysis is

restricted to specific parameters and lack generality. Adams

and Nosonovsky [18] provide a review on contact modeling

with an emphasis on the forces of contact and their relationship

to the geometrical, material and mechanical properties of the

contacting bodies.

Recently, Jackson and Green [19], Wang and Keer [20], and

Nelias et al. [21], have explored hemispherical elastic–plastic

contact in normal loading. However, the characteristics of nor-

mal contact as opposed to sliding contact are quite different,

and thus the latter is explored in this work. Hamilton and

Goodman [22] presented implicit equations and graphs of yield

parameter and tensile stress distribution for circular sliding con-

tact using the von Mises criterion for the prediction of yield-

ing. Hamilton [23] further developed the implicit results in

[22] to obtain explicit formulae for the stresses beneath a slid-

ing, normally loaded Hertzian contact. However, these studies

[22,23] concentrated on the effect of increasing friction in a

sliding contact against a rigid flat, and on the resulting develop-

ment of impending failure regions, but a coefficient of friction

had a priori been imposed. In contrast, this works isolates the

effects of purely frictionless sliding of interfering cylinders, and

hence the development of stresses, energy loss, and other phe-

nomena occur solely due to mechanical deformation. In [24]

a dynamic analysis gives an estimation of the contact forces

between wheels and rails in sliding. The analysis herein, is nat-

urally related to such a line (or cylindrical) contact. Perhaps

one of the earliest attempts in tackling interference sliding be-

tween two bodies (spheres) is that by Faulkner and Arnell [25],

who quote extremely long execution times even for very coarse

FEA meshes (∼960 h for each simulation), leaving out gener-

alization of the results. Steady-state dry frictional sliding be-

tween two elastic bodies by using Fourier series and integral

transform techniques has been examined by Nosonovsky and

Adams [26].

It is clear from the literature survey that a thorough investi-

gation of the actual forces, deformations, stress formations, and

most importantly energy losses due to plasticity for sliding in
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the elastic–plastic regime is missing. The equivalent model of

“elliptical contact against a rigid flat” is the consequence of the

elastic Hertzian theory. Even though it had been used in normal

elasto-plastic contact, such an “equivalent model” has no phys-

ical grounds or mathematical proof once plasticity takes place,

certainly not when the two sliding bodies have distinct material

properties. These parameters are particularly critical in under-

standing the sliding phenomenon under extreme conditions in

an EML, and play a pivotal role in the design and construction

of such systems. This work helps in understanding the afore-

mentioned factors, thereafter the thermal and electromagnetic

aspects of the problem can be amalgamated with these find-

ings to form a comprehensive understanding of such sliding.

In this work, elastic-perfectly plastic cylinders in sliding over

each other are treated as whole bodies, and not as a part of a

statistically generated surface. By means of FEA actual sliding

is simulated, wherein the two interfering bodies are both fully

modeled, without resorting to the common model of an equiv-

alent body against a flat. This is particularly important when

sliding takes place between dissimilar materials.

In the elastic domain and up to the onset of plasticity, the

Hertzian solution [27] provides critical values of load, contact

half-width, and strain energy. As explained by Green [28] and

Jackson et al. [29], hardness is not implemented as an unique

material property as it varies with the deformation itself as well

as with other material properties such as yield strength, Pois-

son’s ratio, and the elastic modulus. Instead, the critical verti-

cal interference, xc, as derived by Green [28] for cylindrical

contact, is employed. This quantity is derived by using the dis-

tortion energy yield criterion at the site of maximum von Mises

stress by comparing the stress value with the yield strength, Sy .

The critical values of force per unit length, half contact width,

and interference are given as

Pc

L
=

pR(CSy)
2

E′
, bc =

2R(CSy)

E′
,

xc = R

(

CSy

E

)2 [

2 ln

(

2E′

CSy

)

− 1

]

, (1)

where

C =
1

√
1+ 4(m− 1)m

, m 0.1938,

C = 1.164+ 2.975m− 2.906m2, m > 0.1938. (2)

The value of C is obtained from elasticity considerations, and

the critical parameters are obtained at the point of yielding

onset. To account for two different material properties note that

CSy=min(C(m1)Sy1, C(m2)Sy2). The maximum elastic energy

that can possibly be stored (up to the point of yielding onset) is

used to normalize the net energy loss due to plastic deformation

after sliding, and is likewise given by Green [28] as

Uc

L
=

p(CSy)
4R2

4E′3

{

4 ln

[

2E′

CSy

]

− 3

}

. (3)

In this work, the critical values are calculated for a steel ma-

terial with properties as follows: E1 = E2 = 200 GPa, and

m1 = m2 = 0.32. Since all the quantities are subsequently be-

ing normalized by the aforementioned Eqs. (1)–(3), the ensuing

results apply for any geometry scale (as long as homogeneous

and isotropic continuum mechanics prevails); therefore, the

radii for the cylinders in the FE model are subjectively (and

conveniently) chosen to be R1=R2=1m. The above equations

are expanded upon in the Appendix, and are likewise used to

establish convergence of the finite element model.

1.1. Assumptions

Following are the assumptions that are used to simplify the

problem:

(1) The two cylinders are considered to be infinitely long in

the direction perpendicular to sliding. This enables the FE

model to be in 2D under the assumption of plane strain

behavior.

(2) The sliding bodies are idealized to have elastic-perfectly

plastic behavior.

(3) At first sliding is assumed to be a frictionless process, and

hence no coefficient of friction is input in the FE model.

This is done in order to isolate the effect of plasticity during

sliding. Subsequently, this is relaxed and frictional sliding

is investigated.

(4) It is assumed that the mesh validated up to the onset of

plasticity is also robust for analysis of the elastic–plastic

regime, since no closed form solution is available beyond

that point for this purpose.

(5) Deformations in the bulk area are assumed not to have a

significant bearing on the effects of sliding in the contact

region. It is recognized that in contradiction to a point

(hemispherical) contact problem, bulk deformation cannot

entirely be neglected. However, this work concentrates on

the area close to the contact surfaces and far field bulk

deformation effects are assumed not to have a significant

effect on the region close to the contact surfaces.

(6) Sliding is simulated as a quasi-static process, i.e., time-

dependent phenomena are not analyzed. Hence, dynamic

effects are ignored and material properties used do not

depend on the strain rate. Likewise, adhesion and stick-slip

phenomena are not accounted for.

(7) Temperature effects that occur due to sliding are not con-

sidered, and the material properties used are assumed to be

at room temperature.

2. The finite element model

Two plane semi-circles representing the sliding cylinders are

modeled and one is made to traverse over the other with a preset

vertical interference x between the two (see Fig. 1). Sliding

is simulated first as a frictionless process, i.e., no coefficient

of friction is input in the FE model. Also, repeated sliding is

not considered, and hence the top cylinder is made to pass

over the bottom cylinder just once (i.e., ‘one-pass’ sliding).
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Fig. 1. Schematics of the sliding process.

Fig. 2. Schematic of the FEA model for sliding between cylinders.

Sliding is attained piecewise as the top cylinder traverses a

total displacement, Dx (see Fig. 1). This Dx is calculated from

geometry and it is a function of the vertical interference, x,

where naturally Dx increases with the preset interference x.

That total distance is divided into n equal load steps, dx=Dx/n.

Hence, at load step i the location of the center of the traversing

cylinder relative to the center of the stationary cylinder is

x = i · dx −
Dx

2
, i = 0, n+m.

Because of material tugging m load steps are added to ensure

exit from sliding contact.

Normalizing x by R, the loading phase is defined by the re-

gion x/R < 0, where the top cylinder is pressed horizontally

against the bottom one before passing the vertical axis of align-

ment (x/R = 0). The unloading phase is defined in the region

x/R > 0, where the top cylinder has passed the vertical axis of

alignment, and where the cylinders are expected to repel each

other. The nodes at the base of the bottom cylinder (Fig. 2)

are constrained from displacement in the X and Y directions.

The nodes at the base of the top cylinder are also constrained

from displacement in the Y direction, but are allowed to dis-

place freely in the X direction upon sliding. The fixed hori-

zontal sliding displacement is equally imposed on these nodes.
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Table 1

Validation of the meshing scheme employed

x∗ ANSYS b(m) Theoretical b(m) % diff ANSYS re (GPa) Theoretical re (GPa) % diff ANSYS po (GPa) Theoretical po (GPa) % diff

0.2 0.00663 0.00579 −14.3 0.338 0.355 4.8 0.615 0.646 4.7

0.3 0.00784 0.00726 −8.0 0.433 0.445 2.7 0.786 0.809 2.9

0.5 0.01010 0.00964 −4.8 0.585 0.591 1.0 1.058 1.074 1.5

0.7 0.01202 0.01162 −3.4 0.709 0.712 0.5 1.279 1.294 1.2

1.0 0.01445 0.01397 −3.4 0.858 0.856 −0.2 1.545 1.556 0.7

A reasonably large range of vertical interferences, x, coupled

with horizontal sliding distance (from one side where the cylin-

ders are just in contact to the other side where they just come

out of contact), is used to simulate sliding.

To establish confidence in the mesh for different loading

schemes (ranging from elastic to highly plastic), a 2D plane

strain FEA simulation of the cylindrical line contact is per-

formed. The modeling and meshing for this simulation is sim-

ilar in approach to that employed by Jackson et al. [19,29].

However, instead of a quarter-circle and a rigid flat, contact in

this case is between two elasto-plastic semi-circles represent-

ing the two cylinders. In addition, a new meshing scheme is

introduced wherein a semi-circular dense region of elements is

used to capture the high stresses in the small region of contact

(see Fig. 2). In [19,29] a rectangular region is employed for the

same purpose.

The commercial FEA software ANSYSw is used to per-

form the analyses. The mesh is constructed using eight

node quadrilateral elements (Plane 82) and surface-to-surface

contact elements (Contact 172 and Target 169). Once the

predetermined regions are established, ANSYS is used to auto-

matically mesh the said regions. Various mesh schemes are tried

to achieve convergence. The optimized model has 83 372 nodes,

25 570 elements, and 200 contact elements in the region of

interest.

The mesh is validated first for a purely aligned normal elastic

contact (non-sliding), with Sy=0.856 GPa, and results are com-

pared against the analytical solution obtained by Green [28],

as summarized in the Appendix. In this FEA model values of

vertical interference, x, are imposed and numerical results are

extracted for the contact half-width, the maximum von Mises

stresses, and the maximum pressure (i.e., pe = |Uz| at the axis

of symmetry on the surface f = |z/b| = 0; see Eq. (11) in the

Appendix). Corresponding to the imposed interferences, x, the

theoretical values of P/L are solved from Eq. (13), the contact

widths, b, are calculated from Eq. (9), the maximum von Mises

stresses are calculated from Eqs. (10) and (12) at fm, and the po

values are calculated from Eq. (8). The results of this validation

are summarized in Table 1, where the last row represents the

critical values at x=xc (or x∗ =x/xc = 1). For the interfer-

ences examined, the maximum disagreement between the FEA

values and the theoretical values occurs at the lowest applied

vertical interference of x∗= 0.2. The accord between the FEA

and the theoretical values gets progressively better as higher

vertical interferences approaching criticality are applied. The

contact half width, bc, differs by only 3.4%, where the maxi-

mum equivalent von Mises stress, re, and the maximum con-

tact pressure, pe, differ by less than 1%. The larger error in the

contact half-width is attributed to the finite FEA grid, i.e, the

resolution or spacing between the contact elements. The smaller

the interference, the smaller number of contact elements are in

effect, leading to a larger error, and vice versa. Noteworthy,for

as long as x < xc extremely good agreement is found also be-

tween the parameters calculated for sliding contact when the

two cylinders are at vertical alignment compared to those for

non-sliding normal contact (as it should).

For this non-linear problem, small load steps are used toward

incremental (quasi-static) sliding from one end to the other.

Values of the contact force, stress tensor, von Mises stress, and

displacement are recorded at each load step. The contact forces

are determined by summing the reaction forces at the base of

the bottom cylinder.

In this analysis, sliding takes place under interference val-

ues sufficiently larger than the critical interference, and thus

additional mesh convergence tests are now undertaken. As no

closed-form solutions are available for the elastic–plastic do-

main with which the FE model can be validated, additional

combinations of reasonable boundary conditions and meshing

schemes are checked to attest the sliding results. These are all

done at an intermediate interference value of x∗=9, and results

are compared against each other. The cases are as follows:

• To verify the meshing scheme employed, both the top and

bottom cylinders are meshed such that the nodes and ele-

ments generated mirror each other across their respective axes

of symmetry. This is different from the automated (default)

meshing technique employed by ANSYS (described earlier),

which generates a mesh that is not mirrored, and hence is not

exactly symmetric. However, the results obtained via both

approaches are practically identical.

• The employed boundary condition, wherein the bottom cylin-

der base is affixed and the top cylinder slid across, is checked

against other equivalent boundary conditions. This is done

by placing the nodes at the bases of both cylinders on rollers.

Opposing horizontal displacements are then applied to the

bases of both cylinders to simulate sliding. This procedure

yields results that are identical to those presented in this

paper.

• Instead of an 8-node quad element, a 6-node triangular ele-

ment in a perfectly symmetric meshing is used on the case
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where the two cylinders are slid against each other. Again,

this resulted in no change in the intermediate load steps and

the final results.

• Likewise, affixing the upper cylinder and sliding the bottom

cylinder, with either meshing scheme, also produces iden-

tical results. That is, the upper cylinder and lower cylinder

maintained their own stress and deformation patterns.

Noteworthy, the computational cost is considerably smaller

when using the boundary conditions where displacement

is applied to only one of the cylinders. Since all feasible

combinations of boundary conditions and various meshing

schemes produce indistinguishable results, the meshing scheme

discussed first is upheld and used for the entire study. It is

postulated that the FEA mesh used is trustworthy.

3. Results and discussion

The following results pertain to steel with Sy = 0.9115 GPa,

and they are presented for a range of preset normalized vertical

interferences, x∗, from 1 (elastic limit) to 20 (elastic–plastic).

The material properties used for the cylinders are chosen

to be steel, which is commonly employed in many engi-

neering applications. The computation time is about an hour

for sliding with small vertical interferences to about 4 h for

sliding with larger interferences on a dual processor Xeon

3 GHz PC with hyperthreading turned on to utilize four virtual

processors.

3.1. Deformation

Since both cylinders are modeled with the same material

properties, the deformation pattern followed by the two is iden-

tical. The maximum vertical displacements, uy , of the nodes

on the cylinder surfaces are monitored in order to understand

the deformation of the cylinders. The position of this maximum

vertical displacement on the surface of the cylinders moves

along as sliding progresses because of the curvature of the two

cylinders. The value uy is effectively normalized by the crit-

ical interference xc given in Eq. (1). Plots of the normalized

maximum vertical displacement, uy/xc, with respect to the

normalized sliding distance of the top cylinder, x/R, are pre-

sented for a range of x∗ varying from 1 (elastic limit) to 20

(elastic–plastic) in Fig. 3.

As expected, for x∗= 1, the vertical displacements are sym-

metric about the axis of alignment. Also, displacements increase

with the increase in vertical interference x∗, i.e., with increase

in load. It can be seen that for x∗> 1, there is plastic defor-

mation in that the curves do not come back down to the zero

displacement line, i.e., to the X axis. Instead, it flattens out and

preserves the plastic deformation that has occurred as can be

seen from the last few data points on each curve. This normal-

ized vertical residual deformation, ures/xc, increases with the

increase in vertical interference between the cylinders as shown

in Fig. 3. Also, for x∗ = 20, it is observed that the maximum

vertical deformation actually occurs after the cylinders have
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Fig. 3. Normalized maximum vertical displacement vs. normalized sliding

distance.
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Fig. 4. Development of residual deformation with increase in vertical inter-

ference.

passed the vertical axis of alignment. This phenomenon can be

attributed to material tugging and pile-up caused by large plas-

tic deformation.

To capture the residual deformations the last point in

Fig. 3 are extracted for different ranges of the applied vertical

interference, and equations are fitted to the numerical data, as

shown in Fig. 4:

ures

xc
= 0, x∗ 1,

ures

xc
= 0.03045(x∗ − 1)+ 0.05556(x∗ − 1)2, 1 x∗ 4,

ures

xc
= 0.59139+ 0.47795(x∗ − 4)

+ 0.01391(x∗ − 4)2, 4 x∗ 20. (4)

These equations are continuous at x∗ = 1 and 4.
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3.2. Forces

Reaction forces at the base nodes of the bottom cylinder are

summed for each load step and plotted against the normalized

horizontal sliding distance x/R. Both the tangential reaction

force, Fx , and the normal reaction force, Fy , are normalized

by the critical load, Pc given in Eq. (1). Figs. 5 and 6 show the

trends followed by Fx/Pc and Fy/Pc, respectively, as the top

cylinder slides across the bottom one.

As expected, it is apparent that for the vertical interference

x∗ = 1, the curve is anti-symmetric in Fig. 5, and symmetric

in Fig. 6, signifying no plasticity or loss of energy once sliding

is completed. However, for the elastic–plastic loading cases,

where x∗> 1, permanent plastic deformation occurs and some

energy is lost in the process. This is evident from Fig. 5 as

the area under (energy invested in sliding) is larger than that
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Fig. 7. “Load Ratio” vs. normalized sliding distance.

above (energy restored in rebound) for all the curves in the

elastic–plastic regime. This shows that more work is done in

pushing the top cylinder across the bottom one in the loading

phase, than what is earned once it has passed the vertical axis

of alignment in the unloading phase where both cylinders are

repelling each other. Also, it is apparent from Fig. 6 that the

normalized vertical reaction force, Fy , is symmetric for x∗=1,

but becomes higher and increasingly skewed during loading

than unloading as the applied vertical interference is increased.

This may be attributed to predominantly elastic resistance

during loading which diminishes once plasticity spreads in

the contact.

Now, a “load ratio” is defined as Fx/Fy , being the ratio of

the horizontal reaction force with respect to the vertical reaction

force. This ratio is generated and plotted versus the normalized

sliding distance as shown in Fig. 7. While each of the data points

on these curves can be thought of as a quantity similar to the

instantaneous local coefficient of friction, it is emphasized that

this is not a “coefficient of friction” in the traditional sense since

other effects (e.g., adhesion, contamination) are not accounted

for. This load ratio applies only to this isolated mechanical

sliding process. Moreover, in the region where the cylinders

repel each other, the positive “load ratio” does not truly indicate

a “negative coefficient of friction.”

For the elastic loading case of x∗ = 1, the curve in Fig. 7

is (as expected) anti-symmetric. For the elastic–plastic loading

cases with x∗ranging from 2 to 20, it can be seen that the

maximum magnitude of the “load ratio” increases steadily as

x∗ increases. However, once the top cylinder has passed the

vertical alignment axis and is repelling the bottom cylinder, the

maximum “load ratio” magnitude does not vary much for the

different x∗ applications. This is evident from plot in Fig. 7.

It is thus reasonable to postulate that for x∗!4, the maximum

“load ratio” in unloading becomes constant with a value of

approximately 0.05. In addition, the plot clearly shows that

for all vertical interferences, the magnitude of the “load ratio”
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Fig. 8. von Mises stress contours for sliding cylindrical contact at vertical interferences of (i) x∗ = 4 and (ii) x∗ = 20 at the vertical axis of alignment.

Fig. 9. Residual von Mises stress contours for sliding cylindrical asperities for (a) x∗ = 12, (b) x∗ = 20.

during elasto-plastic loading is always greater than that during

unloading.

It is also clear from the plot that for the plastic loading

cases, the ratio of the horizontal to the vertical reaction force is

not zero at the point where the cylinders are perfectly aligned

about the vertical axis. It is noteworthy from Figs. 5 and 7 that

for sliding between cylinders, additional tangential load can be

supported with increasing x∗, even if the contact interface has

become plastic, where in fact the tangential load increases with

the interference.

3.3. Stress formation

The stress regions formed in both cylinders are by and large

anti-symmetric about the axis of alignment throughout the

course of the sliding process, since identical material prop-

erties and geometries are used to model both cylinders. This

holds for the elastic, as well as all of the elastic–plastic ranges.

At low interferences, the high stress region develops below the

contact interface. As sliding progresses and load on the cylin-

ders increases for the elastic–plastic loading ranges, yielding

occurs and a sub-surface plastic core develops (see Fig. 8).

Elastic material surrounds this plastic core, and provides the

greater part of resistance to sliding. As the load increases with

the progression of sliding (i.e., rendering an increase in the

effective interference), the elastic region diminishes, making

way for the growth and propagation of a plastic core, which

diminishes the resistance to sliding.

At the vertical axis of alignment, as seen from Fig. 8, the von

Mises stress distribution in both cylinders is mostly identical

(in an anti-symmetric pattern), with regions of slightly higher

concentrations in the direction of sliding signifying resistance

to sliding. For lower elastic–plastic vertical interferences, such

as x∗ = 4, high stresses remain near the area of contact, i.e.,

there is no significant stress formation at the base of the cylin-

ders (where they may be connected to a bulk material). As the

vertical interference increases, however, stresses can be seen

developing in the body of the cylinder as well as at the base (see

Fig. 8). This signifies shear tugging at the cylinder base, and

for vertical interference causing extreme plastic deformations,

this might very well be the region with the highest stresses.

This work concentrates on the elastic–plastic regime at the

vicinity of contact, and hence only those results are expounded

upon.

Fig. 9 shows the distribution of the residual stresses after

sliding is completed for vertical interference values x∗=12 and

20. As expected, the residual stresses for the case with x∗=20

are more widely spread than those for x∗ = 12. Some of these

stresses remain at the yield value (i.e., residual plastic strain).

Also, it can be seen that there are remnants of the stress in the
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bulk of the cylinders away from the area of contact as well as

at their bases. As discussed earlier, for highly plastic vertical

interferences, this occurrence would become significant as the

mode of failure might be the initiation of cracks or the shearing-

off of the cylinders. This phenomenon is beyond the scope of

this work and it is not explored herein.

3.4. Energy loss

Energy loss in sliding for individual preset vertical interfer-

ence cases is separately calculated by evaluating the areas un-

der each of their respective horizontal reaction curves in Fig. 5.

This represents the net work done when sliding the top cylinder

over the bottom. It is emphasized that because of the bound-

ary conditions used herein, where the nodes at the bases of the

two half cylinders do not translate in the Y direction, the reac-

tion force Fy does not do work. The work done is solely due

to Fx . The values obtained, Unet, are normalized by Uc from

Equation (3). Fig. 10 shows the plot of Unet/Uc for each of

the preset vertical interferences, x∗, as calculated from the FE

simulations.

Second order polynomial curves are then fitted to the nu-

merical data. They represent the trend followed by energy loss

for different ranges of the applied vertical interference, x∗, and

are found to closely capture the increasing energy loss with in-

creasingly elastic–plastic loading. The fitted equations are as

follows:

Unet

Uc
= 0, x∗ 1

Unet

Uc
=−9.487(x∗ − 1)+ 13.409(x∗ − 1)2, 1 x∗ 4

Unet

Uc
= 92.221+ 85.238(x∗ − 4)

+ 12.133(x∗ − 4)2, 4 x∗ 20. (5)

These equations are continuous at x∗ = 1 and 4.
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3.5. Contact half-width

Fig. 11 shows the trend followed by the contact half-width,

b, as it changes with each load step as sliding with different

vertical interferences progresses. It is normalized by the critical

contact half-width, bc, and is hence plotted as the ratio b∗. It

is observed that the contact half width curve for sliding with

vertical interference x∗=1 is symmetric about the vertical axis

of alignment where the cylinders are exactly on top of each

other. As x∗ increases, the curves get more and more skewed

at the loading phase of the sliding process. Also in Fig. 11,

the value of the contact half-width is given by the symbol ‘x’

for perfectly symmetric, normal contact simulation between the

same cylinders, designated by xn. For x∗= 1, as expected the

contact half-widths for the sliding and normal loading cases

is found to be the same. However, for interferences x∗!1,

the contact half-widths, b∗, for normal loading of cylinders are

consistently higher than those for sliding interference at the

vertical axis of alignment. This is because in normal loading

material is flattened and flows equally sideways, while in sliding

material is being tugged, flowing plastically away from the

contact interface.

3.6. Frictional vs. frictionless sliding

In reality, sliding between any two surfaces is likely to con-

tain friction. Friction plays an important, and in most cases

pivotal, role in the behavior of surfaces as they slide over each

other. Now that the part played by pure plastic deformation in

elastic–plastic sliding has been analyzed, the next step is to see

how friction combines with the aforementioned to affect the

sliding process. This analysis is thus closer to the actual setting

found in most applications, and hence a relatively common co-

efficient of friction of 0.3 is used for the purpose of the FEA.
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sliding with and without friction.

This helps in highlighting the part played by each of the two

aforementioned factors. The methodology employed for this

analysis is the same as the approach used in the frictionless

analysis, except that in this case a coefficient of friction is in-

troduced between the two sliding cylinders to study the effect

of friction in such sliding.

3.6.1. Deformations

Fig. 12 shows the plot of uy/xc vs. x/R for both the fric-

tionless and frictional steel–steel sliding cases for the vertical

interferences of x∗=12, 15, and 20. The peak deformations for

x∗ = 12 are about the same, but while for the frictionless slid-

ing case the deformation decreases after reaching the peak, for

frictional sliding it increases marginally. For x∗ = 15 and 20,

the magnitudes of uy/xc are noticeably higher than those for

the frictionless case. The resultant residual deformation mag-

nitudes for frictional sliding cases are found to be significantly

higher than those found in corresponding frictionless sliding

cases. This is evident from the fact that in Fig. 12 curves for

frictional sliding consistently finish higher than the correspond-

ing frictionless curves.

3.6.2. Forces

Figs. 13 and 14 show a comparison of the plots of the nor-

malized horizontal force and normalized vertical force for the

frictionless and frictional sliding cases. Expectedly, none of the

curves that are plotted for the frictional sliding cases show pos-

itive values. The peak values for both the frictionless as well

as the frictional sliding cases lie before x/R = 0. Because of

material pile-up in the cases of frictional sliding, the area un-

der the horizontal reaction curve is much larger than that in the

frictional sliding cases. This signifies greater energy loss due

to the presence of friction.

3.6.3. Stress formations

Fig. 15 captures the von Mises stress contours found in fric-

tionless and frictional sliding analyses. The most significant

difference in the stress contours of these two cases is the axis of

symmetry for the stress pattern. For both frictionless as well as
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frictional sliding, the stress field in the two sliding steel cylin-

ders is mirrored about the horizontal contact interface. How-

ever, for frictional sliding the higher stress fields that develop

during the course of sliding are tilted towards the normal to the

actual plane of contact between the two cylinders. This plays

an important role in the progression of yield and diminishment

of the elastic core in frictional sliding. Moreover, friction also

leads to the accumulation of stresses at the corners of the two

cylinders as seen in Fig. 15. For high vertical interferences pro-

gressively large magnitudes of stresses are found at the base

of the cylinders for both frictionless as well as frictional slid-

ing. It is thus reasonable to postulate that for extremely high

vertical interference values, these regions with such accumula-

tion of stresses will be the cause of shearing or failure. While

in the frictionless sliding case such stresses are found to de-

velop equally at both the corners of the base of the cylinders,

this is not the case when sliding is simulated in the presence

of friction. For example, at x/R = 0 for sliding with a vertical

interference of x∗ = 15 the maximum von Mises stress, re, at
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Fig. 15. von Mises stress contours for (a) frictional and (b) frictionless steel–steel sliding cylindrical contact for vertical interferences of (i) x∗ = 4 and (ii)

x∗ = 15 at the vertical axis of alignment for steel–steel sliding.

Fig. 16. Residual von Mises stress contours for (a) frictionless and (b) frictional steel–steel sliding contact for x∗ = 9.

the base of the bottom cylinder for the frictionless sliding case

is found to be 0.453 GPa. On the other hand, for sliding with

friction the magnitude of re is 0.715 GPa. This difference holds

true for all the vertical interference cases, and the magnitudes

of the stresses at the base of the cylinders are always higher

for frictional sliding as compared to those for the frictionless

sliding cases. It is notable that these stress magnitudes found at

the base for both frictionless and frictional sliding are still be-

low the yield strength; hence no yielding has occurred at these

locations.

As far as the residual stresses are concerned, it is discovered

that the spread is wider on the case of frictionless sliding. This

can be observed by comparing residual von Mises stress contour

plots shown in Fig. 16, which show the distributions for the

frictionless and frictional sliding cases for a vertical interference

of x∗ = 9. While some of the stresses are found to remain

at yield value (i.e., residual plastic strain) for the frictionless

sliding case, no such stress magnitudes remain after sliding is

completed with friction.

3.6.4. Energy loss

In the absence of displacement in the vertical direction in

the overall sliding process, the net energy loss purely due

to plastic deformation in frictional sliding can be extracted

by

Unet = Utotal − Ufriction,

Unet =
∫ x2

x1

Fx dx − l

∫ x2

x1

Fy dx, (6)
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where x1 and x2, respectively, represent the starting and ending

sliding positions of the top cylinder. Thus, energy loss due to

plasticity in frictional sliding for individual preset vertical in-

terference cases is essentially the difference between the area

under the true horizontal reaction curve and the true vertical

reaction plotted against the true sliding distance scaled by the

coefficient of friction, l. The value thus obtained is called the

net energy lost due to plastic deformation, Unet, and is nor-

malized by Uc from Eq. (3). A second order polynomial curve

is then fitted to the numerical data. It represents the trend fol-

lowed by energy loss in frictional sliding for the range of the

applied vertical interference, x∗, and is found to closely cap-

ture the increasing energy loss with increasingly elastic–plastic

loading. The fitted equations are as follows:

Unet

Uc
= 0.690− 2.980(x∗ − 1)

+ 16.991(x∗ − 1)2, 1 x∗ 6,

Unet

Uc
= 410.557+ 240.080(x∗ − 6)

+ 9.809(x∗ − 6)2, 6 x∗ 20. (7)

These equations are continuous at x∗ = 6.

Fig. 17 shows curves representing energy loss due to plas-

ticity in frictionless as well as frictional sliding. It is seen that

the magnitudes of energy lost due to plasticity, Unet/Uc, are

found to be consistently higher in the case of frictional slid-

ing for the various vertical interferences in the elastic–plastic

regime. Moreover, these magnitudes are seen to progressively

get larger as the vertical interference increases. This observa-

tion can be attributed to the occurrence of greater plastic de-

formation in sliding in the presence of friction as compared to

sliding without friction.

3.6.5. Contact half-widths

Fig. 18 shows a comparison of the contact half widths, b∗,
for x∗ = 12 and 20 between frictionless and frictional sliding
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Fig. 18. Comparison of normalized contact half-width plots for steel–steel

sliding with and without friction.

between two steel cylinders. It is interesting to note that the

curves for frictional sliding are more or less symmetric about

x/R = 0, whereas for frictionless sliding they are skewed to-

wards the left of the vertical axis of alignment. The magnitudes

of b∗ for frictional sliding are found to be much larger than

those for frictionless sliding.

4. Conclusions

This work presents the results of a FEA of sliding between

two elastic–plastic bodies in cylindrical contact. The material

for both the cylinders is modeled as elastic—perfectly plastic

and yielding occurs according to the von Mises yield criterion.

A 2D plane strain finite element model is utilized to explore the

deformations, forces, stress formations, and energy losses for

such frictionless sliding contact. Then a coefficient of friction

of magnitude 0.3 is introduced between the two surfaces to

simulate frictional sliding.

The maximum deformation at the contact interface increases

with the increase in vertical interference. As sliding progresses

into the unloading phase, the deformation curves flatten out

at the end to signify permanent plastic deformation at the end

of sliding. Significant pile-up is found in the cylinders for

frictional sliding for high vertical interferences, whereas the

pile-ups found after frictionless sliding for the same vertical

interferences are not as pronounced.

The trends followed by the reaction forces show that more

energy is invested in pushing one cylinder across the other

than that restored when the cylinders are repelling each other.

Also, it is established that at the point of normal contact during

sliding, i.e., when the cylinders are exactly vertically aligned,

the ratio of the horizontal to the vertical reaction force is not

zero. Upon comparison, it is found that the horizontal reactions

are much lower for sliding with friction as compared to those

found in frictionless sliding. Interestingly, there is not much

difference between the patterns of the vertical reactions of the

two cases. By calculating the areas under the horizontal reaction
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force curves for a range of vertical interferences, equations are

derived to capture the energy loss due to plastic deformation

in such sliding. It is discovered that there is greater energy loss

due to plasticity in frictional sliding than in frictionless sliding.

It is found that for lower ranges of elasto-plastic loading, the

maximum von Mises stresses arise in the region surrounding

the contact interface for all cases of sliding. However, as higher

vertical interferences are applied, the plastic region propagates

towards the contact region and higher stresses are found to de-

velop at the base of the cylinders. It is thus postulated that

failure would occur in this region for extremely high vertical

interferences even though the contact region may still yield

first. This phenomenon is observed in both 2D frictional and

frictionless sliding. The occurrence of such failure would be ac-

celerated due to the presence of friction. Stress formations are

symmetric about the vertical axis of alignment for steel–steel

sliding for both the frictionless as well as frictional sliding.

A significant observation is that while some of the residual

stresses are found to be at the yield value for frictionless slid-

ing with high vertical interferences, for frictional sliding these

stresses do not quite reach the same magnitudes.
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Appendix

This is only a concise summary of the analysis by Green [28],

and the nomenclature herein is consistent with that work. Let x

be the axis along the line of contact, the y axis is tangent to the

two cylinders, and the z axis is the coordinate into the cylinders.

Subject to normal loading the maximum (and principal) stresses

occur at x = y = 0. Under a total load per unit length, P/L,

maximum Hertzian pressure is generated at the origin

po =
2P

pbL
, (8)

where the Hertzian half-width is given by

b =
(

4(k1 + k2)PR1R2

L(R1 + R2)

)1/2

=
(

4PR

pLE′

)1/2

,

ki =
1− m2

i

pEi

, i = 1, 2,
1

E′
=

1− m2
1

E1
+

1− m2
2

E2
. (9)

Now definingf= |z/b|, then the stresses for cylindrical contact

are

ry =
(

2f−
√

1+ f2

(

2−
1

1+ f2

))

po, (10)

rz =−
po

√

1+ f2
. (11)

These two stresses are calculated in either material 1 or 2,

where only f!0 is allowed in both materials, noting that both

stresses are independent of Poisson’s ratio. Assuming the state

of plain strain then the transverse stress is rx = m(rz + ry)

which reduces to

rx = 2

(

f−
√

1+ f2

)

mpo (10)

The discussion is limited to the range 0  m 1/2. Conveniently,

letting m approach zero leads to a bi-axial stress state (i.e., plane

stress). The maximum von Mises stress, re, normalized by the

contact pressure, po, is calculated by

re

po
=

√

[1− 2f(
√

1+ f2 − f)][1+ 4f2 + 4(1+ f2)(m− 1)m]
1+ f2

(12)

The above varies with f, where m is a parameter. The maximum

von Mises stress is obtained from d(re/po)/df= 0. Defining,

C=po/re−max, results in C=C(m), and the analysis of which

gives the following:

C =



















1
√

1+ 4(m− 1)m
fm = 0 @ m 0.1938,

1.164+ 2.975m− 2.906m2 fm = 0.223+ 2.321m

−2.397m2 @ m>0.1938.

(13)

This value of C is valid for as long as the material is elastic,

i.e., up to yielding onset. This value is used to calculate critical

parameters. The maximum deformation in a cylindrical line

contact is given by

x=
1

pE′
P

L

[

ln

(

4pE′R

P/L

)

− 1

]

. (14)

Using the distortion energy (von Mises) theory to predict yield-

ing onset, then with the aid of the definition of C, the critical

values for force per unit length, interference, and half-width

are derived,

Pc

L
=

pR(CSy)
2

E′
, bc =

2R(CSy)

E′
,

xc = R

(

CSy

E

)2 [

2 ln

(

2E′

CSy

)

− 1

]

, (15)

where CSy = min(C(m1)Sy1, C(m2)Sy2) accounts for the pos-

sibility of two different material properties. The maximum po-

tential (strain) energy per unit length that can possibly be stored
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(up to the point of yielding onset) is

Uc

L
=

p(CSy)
4R2

4E′3

{

4 ln

[

2E′

CSy

]

− 3

}

. (16)
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