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An Elastoplastic Finite
Element Study of
Displacement-Controlled
Fretting in a Plane-Strain
Cylindrical Contact
This work presents a finite element study of a two-dimensional (2D) plane strain fretting
model of a half cylinder in contact with a flat block under oscillatory tangential loading.
The two bodies are deformable and are set to the same material properties (specifically
steel), however, because the results are normalized, they can characterize a range of con-
tact scales (micro to macro), and are applicable for ductile material pairs that behave in
an elastic-perfectly plastic manner. Different coefficients of friction (COFs) are used in
the interface. This work finds that the edges of the contacting areas experience large von
Mises stresses along with significant residual plastic strains, while pileup could also
appear there when the COFs are sufficiently large. In addition, junction growth is investi-
gated, showing a magnitude that increases with the COF, while the rate of growth stabili-
zation decreases with the COF. The fretting loop (caused by the tangential force during
the fretting motion) for the initial few cycles of loading is generated, and it compares
well with reported experimental results. The effects of boundary conditions are also dis-
cussed where a prestressed compressed block is found to improve (i.e., reduce) the mag-
nitude of the plastic strain compared to an unstressed block. [DOI: 10.1115/1.4038984]

1 Introduction

Fretting occurs when two contacting surfaces experience small
amplitude of oscillatory relative motion under normal load.
Depending on whether a stick area exists or not, steady-state fret-
ting regimes can be divided into partial slip and gross slip. Partial
slip conditions are mainly responsible for the mechanical failure
of surface crack initiation and propagation, while gross slip condi-
tions introduce wear [1]. The objective here is to form an in-depth
understanding of the mechanisms of fretting wear, and the propen-
sity for crack initiation and propagation.

The theoretical analysis of fretting is addressed by Johnson [2].
He provides elastic solutions of contact pressure, tangential force,
and deformation on the contacting surface, addressing both
cylindrical and spherical contacts in situations of partial and gross
slip. Additionally, Cattaneo [3] and Mindlin [4] address the stress
distribution of the surface and subsurface for spherical partial slip.
The complete stress field of spherical sliding contacts is further
developed by Goodman and Hamilton [5]. The cylindrical plane-
strain contact is investigated by Adams [6], considering stick,
partial slip, and sliding.

The fretting phenomenon has been thoroughly investigated
experimentally. The first experimental work can be traced back to
Courtney-Pratt and Eisner [7]. They study a sphere-over-flat con-
tact between metallic materials under oscillatory tangential force.
They focus on the initial stage of oscillatory tangential load but do
not include the wear and fatigue caused by thousands of load
cycles. The horizontal displacement of the upper ball and the

tangential force are recorded and the contact area is found indi-
rectly by measuring the electrical conductance. Junction growth,
i.e., the increase in the contact area, and also the hysteresis loops
of tangential force are reported. The junction growth under the
fretting load condition is also reported by Tabor [8] and by Parker
and Hatch [9]. Tabor considers the effect of contamination, which
can reduce the strength of the material, and shows that the limit of
growth is decreased when the interface is five percent weaker than
the bulk material. Parker and Hatch [9] measure the contact area
via an optical method between soft spheres (lead or indium) and a
glass flat.

Following the study with initial fretting cycles, fretting wear
and fatigue are studied experimentally [10–12]. They study
crossed-cylinders and ball-on-flat contacts but not the cylindrical
line contact. The fretting studied by Leonard et al. [10] occurs on
the coating material of Tungsten carbide reinforced amorphous
hydrocarbon (WC/a-C: H) and chromium nitride (Cr2N). Both
coatings are found to be effective to reduce wear. Warhadpande
et al. [12] study the effect of fretting wear on the contact fatigue
life of M50 bearing steel. The results show that under a normal
load, an elastic-plastic fretting scar can reduce the fatigue life by
30 percent. Apart from the unlubricated conditions, Leonard et al.
[13] investigate the lubricated fretting contacts. Gaseous cavita-
tion is observed on the trailing edge of the contact, which is very
likely to close the passage for the lubricant to reach the contact
area.

Although ample experimental work has been done on fretting,
the theoretical analysis lacks any modeling of fretting at the
regimes of elastic-plastic and fully plastic contacts, especially for
cylindrical contacts. The elastic-plastic and fully plastic spherical
contacts in strictly normal loading have been studied in great
details, using the finite element analysis (FEA) method [14–16].
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The elastic-plastic cylindrical contact in plane stress is recently
examined by Sharma and Jackson [17]. However, when tangential
force is introduced under normal load, few attempts to analyze the
contact have been made. Brizmer et al. [18] use the finite element
method to investigate the spherical contact under the fully stick
condition with tangential load. Junction growth is reported in all
regimes of contact, elastic, elastic-plastic, and plastic. Chang and
Zhang [19] model their contact without fully stick conditions and
apply static frictional coefficient. Similar results of junction
growth are found in the elastic-plastic regime. However, cylindri-
cal contact, which is the prototype of contacts in gears, rolling ele-
ment bearings, wheel on rail, and human joints, is not considered
in the above work.

The work by Vijaywargiya and Green [20] presents the results
of a finite element analysis used to simulate two-dimensional (2D)
sliding between two interfering elastic-plastic cylinders. The
material for the cylinders is modeled as elastic-perfectly plastic
and follows the von Mises yield criterion. The FEA provides
trends in the deformations, reaction forces, stresses, and net
energy losses as a function of the interference and sliding distance
between the cylinders. Results are presented for both frictionless
and frictional sliding, and comparisons are drawn. The effects of
plasticity and friction on energy loss during sliding are also given.
The work by Boucly et al. [21] presents a semi-analytical method
for the tridimensional elastic-plastic sliding contact between
two hemispherical asperities using either a load-driven or a
displacement-driven algorithm. They found the contact pressure
distribution, the hydrostatic pressure, and the equivalent plastic
strain state below the contacting surfaces. Pile-up induced by the
permanent deformation of the bodies due to their relative motion
is evident. A similar pile-up phenomenon is also present in the
work reported here. However, while Refs. [20] and [21] do ana-
lyze the elastic-plastic damage done in the tugging of interfering
bodies one across the other, sliding is applied in one direction
only; that is, the repetitive (back-and-forth) fretting motion is not
analyzed. The only work of parallel cylindrical fretting contact
found so far is [22,23]. Gupta et al. [22] develop a model that con-
sists of a meager 285 elements and is limited by the computational
memory typically available in 1993. Ghosh et al. [23] simulate the
fretting wear of Hertzian line contact in partial slip. The von
Mises stress profiles and tangential force loops of fretting are
found in that work. But the results are not presented in a nondi-
mensional form. Also, the effects of the coefficients of friction
(COF), normal load, and plastic deformation are not considered.
With current computing capabilities, the accuracy of these results
can be improved considerably and that is one of the aims of this
work. First, modeling is performed with sufficiently fine and
adaptive meshes that capture the behavior in the contact region
with great accuracy. Then, the results are reported in a nondimen-
sional form to allow their broader utility. Finally, this work

examines the effects of boundary conditions upon the results,
underlining potential strategies to lessen the damaging effects of
fretting.

Fretting can happen under specified loads, specified displace-
ments, or a combination of both. The outcomes of displacement-
and load-controlled fretting are different in wear tests according
to Mohrbacher et al. [24]. Displacement-controlled fretting is
applicable to conditions when the contacting elements are con-
fined within prescribed spaces, such as prosthetic knee joints
[25–27], bolted joints and interference (press) fits [28,29], as well
as cutting tools in machining [30]. Therefore, the understanding
of displacement-controlled fretting is useful for these and similar
applications, and it is, hence, the impetus of this work.

In this work, the finite element approach, using ANSYS 17.1, is
applied to analyze the fretting damage for a 2D plane-strain con-
tact between a half cylinder and a flat block of identical isotropic
and homogeneous steels. The model is a half-cylinder in contact
with a flat block. As shown in Fig. 1, the loading inputs are a ver-
tical interference, x, and the following oscillatory horizontal dis-
placement, d, forced upon the cylinder while the block is held
fixed. The said normal interference and horizontal displacement
generates corresponding reactions P and Q, respectively, which
are outputs obtained from the FEA results. The normal loading is
done in regimes ranging from purely elastic to elastic-plastic con-
tacts. Five aspects of the fretting model are investigated: the
development of the von Mises stresses and plastic strains near the
contacting surfaces, the junction growths, the evolution of the tan-
gential forces in the initial few cycles of oscillatory tangential
loads, and the scars on the surface of the block. The effects of the
COFs, normal interferences, and the boundary conditions on the
block are also investigated. The results of this work are found to
agree well with former related experimental data.

2 The Model

Figure 1(a) presents a half cylinder of a radius R¼ 0.5 m in
contact with a 4R�R block. In the figure, the axes of X and Y are
shown where the origin is located at the contact point. The four
sides of the block are represented by letters a1, a2, s1, and s2. The
cylinder and the block are set to the same material properties, i.e.,
elastic modulus E¼ 200 GPa, Poisson’s ratio v¼ 0.32, and yield
strength Sy¼ 0.9115 GPa. The material is modeled to behave as
elastic-perfectly plastic. Adhesion is not considered in this work.

The fretting model is now introduced. As shown in Fig. 1(b),
the cylinder radius is R; block dimensions are given in terms of
that radius, and this is maintained throughout this work. First, a
vertical displacement, x, on the top of the half cylinder is applied.
That is referred to as the interference. While keeping the interfer-
ence constant, horizontal oscillations, d, are then applied to simu-
late the fretting motion. That is, the top of the half cylinder is

Fig. 1 Schematic of a half-cylinder in contact with a flat block, along with the loading defini-
tions: (a) displacement-controlled inputs and reaction outputs and (b) cylinder-block dimen-
sions and displacement directions
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forced to displace a certain distance to the right first, and then
forced back to the left passing the origin position, continuing the
same distance to the left, before returning back to the origin—that
constitutes one cycle of loading. The procedure is performed
quasi-statically, taking 40 load steps to complete one cycle. It is
henceforth implicitly understood that “right” or “left” ascribe
motion direction or location in the positive or negative X axis,
respectively.

In an elastic contact regime, the solution of the 2D plane-strain
cylindrical contact is given by the Hertzian contact model [2].
Under a total load per unit length, P/L, the maximum pressure, p0,
is located at the center of the contact

p0 ¼
2P

pbL
(1)

where the half-width of contact, b, is given as

b ¼ 4PR

pLE0

� �1
2

(2)

where E0 is the equivalent elastic modulus given by [31]

1

E0
¼ 1� �2

1
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2
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The interference of a half cylinder in contact with a block, whose
depth is R, is given in the Appendix

x ¼ P=L

2pE0
2ln

2pRE0

P=L
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� �
(4)

The critical half contact width, bc, and the load per unit length, Pc/L,
at which the maximum von Mises stress reaches the yield strength,
Sy, are derived by Green [32], where C(v)¼ 1.164þ 2.975v
�2.906v2, for v> 0.1938. These are

bc ¼
2RCSy

E0
(5)

Pc

L
¼ pR CSyð Þ2

E0
(6)

By substituting Eq. (6) into Eq. (4), the critical interference is

xc ¼
R
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(7)

For the material properties herein, C¼ 1.818, xc¼ 0.000927 m,
bc¼ 0.0149 m, and Pc/L¼ 3.873 �107 N/m. These values are
used to normalize the forthcoming results.

In this work, the values of the vertical interference are integer
multiples of the critical one, namely, 1*xc, 2*xc, 3*xc, etc. The
amplitude of the horizontal displacement is always kept equal to
the critical interference, 1*xc. In this way, the results are readily
nondimensionalized and they can be applied to both macroscopic

and microscopic contacts. With the inputs of x and d, the normal
and tangential forces at the contact, P and Q, are obtained, respec-
tively, from the simulation. Hence, this is a displacement con-
trolled simulation.

3 The Mesh

A 2D plane-strain element (PLANE183) is used in ANSYS 17.1
to model the contact (see Fig. 2). The total mesh consists of
59,806 elements, where the mesh in the contact area is refined
with the element length size of 0.0004 m. One hundred contact
elements are defined on each side of the contact. Stiff springs are
attached to these elements and activated once penetration is incip-
ient. This is intrinsically handled by ANSYS contact and target ele-
ments named CONTA172 and TARGE169.

To validate the model, mesh convergence is first performed for
the elastic contact (interference ranges from 0.2*xc to 1*xc) and
the results are compared with those from Hertz contact solution.
For the comparison, x/xc is the input, xc is calculated by Eq. (7),
and thus x is imposed in the FEA. The theoretical load per length,
P/L, is solved from Eq. (4), while in the FEA simulation P/L is the
reaction output. From the entire interference range examined in
Table 1, for d/R¼ 1, the load per unit length differs by a maxi-
mum of 0.47%, the contact width by 2.17%, the maximum contact
pressure by 1.57%, and the maximum von Mises stress by 1.09%
(The prediction remax¼ p0/C is according to Green [32]. Herein,
R¼ 0.5 m, �1¼ �2¼ 0.32, and E1¼E2¼ 200 GPa). Additional
comparisons are also given in the Appendix for different block
sizes at the critical interference. With such outstanding agreement
between theoretical and FEA results, the model and mesh conver-
gence have been established.

In addition, there is no closed-form solution for elastic-plastic
contacts under the combined load of normal and tangential loads.
For such cases, the elements of the mesh are iteratively refined by
a factor of two until there is less than one percent difference in the
contact width between iterations. Additionally, the region in con-
tact is always confined within the refined mesh.

4 Results and Discussion

The following results are reported for specific boundary condi-
tions applied on the block (shown in Fig. 1(a)): The base of the

Table 1 Comparison of selected values between theoretical predictions and FEA results for a half-cylinder of radius, R, in elastic
contact with a 4R 3 R block (x ranges from 0.2*xc to 1*xc)

Theoretical predictions FEA results

Input Eq. (7) Eq. (2) Eq. (4) Eq. (1) p0/C
x/xc x (mm) b (mm) P/L (MN/m) p0 (GPa) remax (GPa) b (mm) % dif P/L (MN/m) % dif p0 (GPa) % dif remax (GPa) % dif

0.2 0.1854 6.03 6.36 0.672 0.3693 6.04 �0.41 6.33 �0.43 0.661 �1.57 0.3675 �0.50
0.6 0.5562 11.15 21.75 1.242 0.6830 11.20 0.48 21.65 �0.47 1.231 �0.86 0.6904 1.09
1 0.9266 14.88 38.73 1.657 0.9115 15.20 2.17 38.56 �0.43 1.645 �0.75 0.9122 0.08

Fig. 2 Finite element model in ANSYS 17.1
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block, a1, is fixed in both the X and Y directions, and the other
three sides of the block (a2, s1, and s2) are free. The effects of
other boundary conditions will be discussed at the end of the
paper. The results of the finite element model are presented using
the normalized vertical interference, x� ¼ x=xc, ranging from
0.7 (initially inducing a purely elastic regime) to three (initially
inducing an elastic-plastic regime [15], where the plasticity
reaches the surface). Four different frictional coefficients are
imposed at the contact interface, 0.1, 0.3, 0.45, and 1. In order to

describe the oscillatory horizontal displacement, load steps are
used. As shown in Fig. 3, Step 0 represents the start of horizontal
load just after the vertical interference is applied. Each step incre-
ment represents a sliding distance of 0.1�xc. It takes 40 steps to
complete one cycle of loading. Due to the computational burden
(20 h for a single simulation on a 3 GHz Intel Xeon personal com-
puter Workstation), the maximum number of horizontal displace-
ment cycles investigated in this work is set to six.

The following convention of notation is used to signify the
location and the cycle number. Points (A,B,C,D) signify, respec-
tively, d¼ (0,1,0,�1)xc, and n¼ 1,2,…,6 specifies the cycle
number. For example, A4 represents the inception of the fourth
cycle, where d¼ 0*xc.

4.1 The Evolution of von Mises Stress. Figure 4 shows the
progression of von Mises stress at 1*xc interference with l¼ 1
applied at the contact interface. The color-coding in each picture
is maintained at the same scale. The darkest intensity color in the
contact area indicates the maximum von Mises. The next two
parameters are used to identify the horizontal load step. The first
parameter represents the horizontal displacement, and the second

Fig. 3 Load stepping of six cycles oscillatory horizontal load

Fig. 4 Progression of von Mises stresses at 1*xc vertical interference during the first cycle (a)–(n) and the last point (o) at the
end of six cycles of horizontal loading with l 5 1: (a) 0*xc at A1-B1, (b) 0.1*xc at A1-B1, (c) 0.3*xc at A1-B1, (d) 0.5*xc at A1-B1,
(e) 0.6*xc at A1-B1, (f) 0.7*xc at A1-B1, (g) 1*xc at A1-B1, (h) 0.9*xc at B1-C1, (i) 0.5*xc at B1-C1, (j) 0*xc at B1-C1, (k)20.2*xc at
C1-D1, (l) 21*xc at C1-D1, (m) 20.9*xc at D1-A2, (n) 0*xc at D1-A2, and (o) 0*xc at D6-A7
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parameter indicates at which branch of the cycle the displacement
is approached. For example, Figs. 4(a)–4(g) represent the horizon-
tal displacement of the cylinder, d¼ (0, 0.1, 0.3, 0.5, 0.6, 0.7,
1)*xc, respectively, in branch A1–B1 (defined in Fig. 3). Since
the von Mises stress distributions in the cylinder and the block
appear as mirror images, only the progressions of the von Mises
stresses on the cylinder are discussed in the following.

At the very beginning, before horizontal displacement commen-
ces, the distribution of the von Mises stress (shown in Fig. 4(a))
solely represents a normal contact. The area with large von Mises
stresses is located under the surface for � > 0:1938, in agreement
with Green [32]. In this case, in Fig. 4(a), there is one point in
each body reaching the yield strength. Then, the cylinder is forced
to slide to the right (i.e., in the positive X direction). Depending
on the value of the COF, the status of the contact region is gross
sliding when l¼ 0.1 and 0.3, partial stick and partial slip when
l¼ 0.45, or fully stick when l¼ 1, as indicated by ANSYS. The
region of large von Mises stresses under the contacting surface is
skewed to the left (Fig. 4(b)) due to the introduction of a tangen-
tial force acting in the direction opposite to the relative horizontal
displacement. Then, another two regions of large von Mises
stresses appear at the two edges of the contact (Fig. 4(c)). After-
ward, the left plastic region merges with the one under surface
(Fig. 4(d)) and then the two combined merge with the right one
(Fig. 4(e)). As the cylinder moves further to the right, the region
is stretched in the x-direction (Fig. 4(f)) until it reaches the ampli-
tude of the displacement, 1�xc, (Fig. 4(g)). It is apparent that
large von Mises stresses appear at the edge of the contact. Then,
the displacement is forced back to the left (i.e., in the negative X
direction) and shakedown occurs (Fig. 4(h)). In other words, the
von Mises stress decreases suddenly because of the change in the
direction of the tangential force. As it displaces further to the left,
the von Mises stress keeps decreasing, and the region of large von
Mises stresses starts to show up again at the two edges of the con-
tact area (Figs. 4(i)–4(j)). The area with large von Mises stresses
keeps growing and being stretched (Figs. 4(k)–4(l)) until it
reaches �1�xc, where it has a mirror image shape similar to that
of the case at 1�xc (Fig. 4(g)). Another shakedown takes place
as the displacement is forced to the right (Fig. 4(m)). Finally, the
cylinder moves back to 0�xc and that completes one cycle of

loading (Fig. 4(n)). The large von Mises stress appears at the two
edges of the contact again. The simulation continues for another
five cycles. As shown in Fig. 4(o), the large von Mises stress stays
there after six cycles of load. The development of the von
Mises stresses is also investigated for other interference cases of
0:7�xc, 2�xc, and 3�xc, but the trends remain the same as for the
case of 1�xc (of course, having larger plastic regions as the inter-
ference increases). For brevity, these results are not reported.
From the evolution of von Mises stress above, a conclusion can be
drawn that during the oscillatory tangential loading, the two con-
tact edges tend to experience the largest von Mises stress. It is,
therefore, postulated that cracks and fatigue are most likely to ini-
tiate and propagate at the contact edges.

4.2 The Distribution of Plastic Strain. When the von Mises
stresses reach the yield strength and fretting is in the elastic-
plastic regime, there are plastic strains in the contacting bodies
which are indicated by the equivalent plastic strain, ep. Figure 5
shows the distribution of ep at the region of contact after three
cycles of horizontal loading have completed, at different interfer-
ences and COFs. In all the three cases, the maximum ep is located
at the two edges of contact, which coincides with the location of
the maximum von Mises stress. That is consistent with the direct
correspondence between stress and strain. It can be further
explained by the pileup (discussed further in Sec. 4.5) on the sur-
face of the block.

Figure 5(a) illustrates the plastic strain distribution at 0.7�xc

interference with l¼ 1. Although there is no plastic strain under
surface just after the normal loading (i.e., purely in the elastic
regime), the introduction of the tangential force spawns plastic
strains that are confined near the contacting surfaces. This also
gives rise to friction-induced work. When the interference
increases to 1�xc (the limit of the elastic regime), as shown in
Fig. 5(b), the plastic strains increase because of the increase of the
normal force caused by the larger interference. As the interference
increases further to 3 � xc (Fig. 5(c)), the plastic strain distribu-
tions change. Since the region under the surface reaches plasticity
in a much larger area (details provided by Jackson and Green
[15]), the plastic strain spreads to a deeper and wider region under

Fig. 5 The distribution of the equivalent plastic strain after three cycles of horizontal load near the contacting area: (a) 0.7*xc

interference, l 5 1, maximum ep 5 2.84; (b) 1*xc interference, l 5 1, maximum ep 5 1.82; (c) 3*xc interference, l 5 1, maximum
ep 5 0.17; and (d) 3*xc interference, l 5 0.3, maximum ep 5 0.0024
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the surface. Consequently, the larger region absorbs the damage
manifested by a deeper scar. As a result, the maximum ep (located
at the edges) is relatively smaller at larger interference. In other
words, as the contact produces more permanent damage, there is
less plastic strain at the edges, i.e., at the location where the fail-
ure, as postulated in Sec. 4.1, is most likely to show up. Evident
from the maximum values in Figs. 5(c) (l¼ 1) and 5(d) (l¼ 0.3),
the plastic strain decreases with the drop of the COF, especially at
the edges.

In order to understand the progression of plastic strain, the dis-
tribution of ep on the contacting surfaces after each horizontal
loading cycle is investigated. Figure 6 represents the evolution of
ep on the surface of the half cylinder during the six cycles of hori-
zontal load at 1*xc interference with l¼ 1. The abscissa is the
horizontal position on the surface normalized by the critical half
contact width bc (as defined and reported earlier). As shown in
Fig. 6, the plastic strain keeps increasing after each cycle of
loading. Additionally, the maximum ep stays at the right edge of
the contact (due to junction growth as discussed in Sec. 4.3, where
the edges of contact keep moving laterally outward after each
cycle). This phenomenon could be attributed to the decrease of
the normal force required to keep the interference. As the oscilla-
tory sliding motion proceeds, the tip of the cylinder keeps being
flattened and the normal force required to maintain the same inter-
ference continues to decrease. Since, at the very beginning of the
horizontal load, the cylinder moves to the right first, the right edge
of the contact experiences deformation caused by the pile-up (or
the abrupt change of the curvature) on the surface of the block
under a larger normal force. As the cylinder returns to the left,
under a smaller normal force, the deformation on the left edge of
the contact is less than that on the right. Consequently, ep is rela-
tively larger on the right edges which are located in the same
direction as the initial horizontal motion of the cylinder. The
observed directional effect is consistent with the initial direction
of motion in the current simulation.

4.3 The Junction Growth. The junction growth, i.e., the
increase of the contact area, is observed during the oscillatory hor-
izontal motion for displacement-controlled analysis performed in
this work. Figure 7 shows the development of the half contact
width, normalized by the critical half contact width, during the six
cycles of horizontal displacement at 1�xc interference for fric-
tional (l¼ 1) and frictionless contacts. When l¼ 1, the frictional
contact area keeps increasing, where it tends to stabilize after suf-
ficient cycles of load. But for frictionless contact, the area remains
constant. The explanation is that the introduction of the friction
force produces plasticity on the contacting surface and conse-
quently increases the contacting width. However, without friction,
there is no plastic region on the surface at 1�xc interference, and
no plastic strain is caused so that there is no junction growth. To

study the effect of COF on the junction growth, different COFs
are applied to the model at the same interference. Figure 8 shows
the development of half contact width at 3�xc interference during
three cycles of load. Two conclusions are drawn from the above
observation. First, the magnitude of the junction growth increases
with the COF. The explanation is that the small COF introduces
small tangential force, which causes less plastic deformation on
the surface so that less junction growth is generated. Second, the
rate of stabilization decreases as the COF increases, because the
normal force keeps decreasing during sliding and the von Mises
stress on the surface decreases faster with smaller COF. Conse-
quently, in the cases with smaller COFs, the von Mises stress on
the surface falls below the yield strength earlier so that the junc-
tion growth stabilizes earlier.

The junction growth is also found even at 0.7�xc interference,
but that is combined with fretting (sliding motion) under a COF of
l¼ 1. Since there is plastic strain at the interface, it is reasonable
to expect junction growth. And indeed, there is a 9.7% increase in
the contact width after one cycle of horizontal loading.

4.4 The Evolution of the Tangential Force per Unit
Length. As the fretting motion proceeds, the output of the tangen-
tial force per unit length, Q/L, is recorded. Even with l¼ 0, it is
found that Q=L 6¼ 0. For instance, the absolute Q/L at 1�xc inter-
ference, with l¼ 0, ranges from 0 to 573 N/m during the
first cycle of the horizontal loading. It is noted, however, that
the maximum value of Q/L¼ 573 N/m, by comparison to
Pc/L¼ 3.873�107 N/m, (i.e., Q/Pc¼ 1.5� 10�5), is minute. It is
caused by numerical round-off errors, and effectively, it verifies a
frictionless case. In contrast, at 1�xc interference and with l¼ 1,
the absolute Q/L ranges from 0 to 1.79� 107 N/m during the first

Fig. 6 The distribution of the equivalent plastic strain on the
contacting surface of the cylinder at 1*xc interference with l 5 1 Fig. 7 The development of junction growth at 1*xc interference

for fictional and frictionless contacts during six cycles of load

Fig. 8 The development of junction growth at 3*xc interference
with different COFs during three cycles of load
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cycle of the horizontal loading. Figure 9 shows the development
of the Q/L, normalized by critical normal load per unit length
Pc/L, during six cycles of loading at 1�xc interference with l¼ 1.
The evolution of the traction force in Fig. 9 begins to stabilize
after the first one-quarter of the cycle. The stabilized curve is the
typical fretting loop at the initial few cycles of loading (also
reported by Walvekar et al. [33]). The enclosed area represents
the energy loss caused during the fretting motion. It is evident that
the maximum tangential force increases as fretting proceeds. It is
caused by the cumulative plastic deformation on the contacting
surfaces.

4.5 Scars on the Block. As the fretting motion proceeds, a
scar is generated at the surface of the flat block. The scar can be
visualized by the deformed curve of that surface. Figure 10 shows
the deformed curve at 1�xc interference with l¼ 1 just after the
interference is applied. The curve is identical in shape to that of
an elastic half-space with line loading, as given by Johnson [2].
When the curve near the contact is zoomed in (see the inset in
Fig. 10), the indentation caused by the interference becomes
clearly visible.

The scar grows during the oscillatory horizontal loading.
Figure 11 depicts the deformed curves of the surface of the con-
tact region at 3�xc interference with l¼ 0.1 (gross sliding),
l¼ 0.45 (partial slip and partial stick), and l¼ 1 (fully stick) after
three cycles of loading. For l¼ 0.1, the depression is the shallow-
est. For l¼ 0.45, the depression is deeper and wider, but the

center part of the surface is dragged somewhat upward by the lat-
eral motion. The change of the curvature at the inflection point
(the position of the edge of the contact) is more pronounced. For
l¼ 1, the trends mentioned earlier are intensified, and pileup
shows up near the inflection point of the curve. According to the
results above, the pileup will occur at the edges of the indentation
with a sufficiently large COF, especially in the case of the fully
stick. The abrupt change of the curvature or pile-up will further
produce the large von Mises stress and plastic deformation at the
corresponding position of the contact.

4.6 The Effect of the Boundary Conditions on the Block.
As shown in Table 2, several different types of boundary condi-
tions applied on the four sides of the block are now investigated.
The four sides of the block, a1, a2, s1, and s2, are consistent with
Fig. 1. In all six types, the midpoint M on the bottom side a1 is
fixed in the X and the Y direction to ensure the relative motion
between the half cylinder and the block. The top of the block is
always free. The symbol “þ” means the side is fixed in the corre-
sponding direction. Type0 represents the boundary condition
where all the results above are generated. The bottom side a1 is
fixed in the X and the Y direction. In Type1, the boundary condi-
tion of the bottom side a1 is changed relative to Type0 to be free
in the X direction. In Type2, the boundary conditions of the two
sides s1 and s2 are changed to be fixed in the X direction relative
to Type1. In Type3, the boundary conditions of the two sides s1

and s2 are changed to displace 1�xc to the right and left, respec-
tively, again relative to Type1. The magnitude of that displace-
ment is changed to be 2�xc and 3�xc in Type4 and Tpye5,
respectively. The displacements on the two sides, s1 and s2, gener-
ate prestresses in the compressed block. Considering the effect of
Poisson’s ratio, the top side of the block a2 will displace Dy

Fig. 9 The development of tangential force at 1*xc interference
with l 5 1 during six cycles of load

Fig. 10 The curve of the surface of the block after 1*xc

interference

Fig. 11 The scars on the surface of the block at 3*xc interfer-
ence after three cycles of load

Table 2 Different types of boundary conditions on the four
edges of the block (shown in Fig. 1(a))

a1 s1 s2

Type X Y X Y X Y

0 þ þ
1 þ
2 þ þ þ
3 þ þ1xc �1xc

4 þ þ2xc �2xc

5 þ þ3xc �3xc

Note: “þ” represents that the edge is fixed in the corresponding direction.
Blank represents the edge is free in the corresponding direction. Edge a2 is
always free, while the midpoint M on the edge a1 is always fixed in both
the X and the Y direction.
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upward according to the following. In plane strain, the constitutive
equation is
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ry

rz

sxy

8>><
>>:

9>>=
>>; ¼

E

1þ �ð Þ 1� 2tð Þ

1� � � 0

� 1� � 0

� � 0

0 0
1� 2�

2

2
6666664

3
7777775

ex

ey

cxy

8<
:

9=
;

(8)

According to Eq. (8), the normal stress in the Y direction can be
expressed as

ry ¼
E

1þ �ð Þ 1� 2tð Þ �ex þ 1� �ð Þey

� �
(9)

However, ry ¼ 0, before the cylinder is compressed downward,
since the top side is set free. Using the condition that the compres-
sive displacement, Dx, is applied on both sides of the block, s1

and s2, but in opposite directions, the normal strain in the X direc-
tion is compressive

ex ¼ �
Dx

2R
(10)

According to Eqs. (9) and (10), the normal strain in the Y direction is

ey ¼
�

1� �
Dx

2R
(11)

Using the definition of the normal strain in the Y direction

ey ¼
Dy

R
(12)

The displacement of the top side, a2, is therefore

Dy ¼ �

1� �
Dx

2
(13)

In order to compare the results of the prestressed cases with those
of the original cases, Dy must be taken into consideration. If x is
always the interference imposed, as it is the case with no prestress,
then the interference in the prestressed case is

x0 ¼ x� Dy (14)

Figure 12 shows the junction growth results of the first quarter of
the loading cycle at 1*xc interference with l¼ 1 for different

types of boundary conditions. It is obvious that the boundary con-
ditions vary the development of the junction growth. Notably, in
Type1, the two sides are free to displace laterally outward in the X
direction. After the interference is applied, it is equivalent to
stretching the block instead of compressing. Therefore, there is a
trend of increased junction growth among Type1, Type2, and
Type4. In other words, the junction growth increases with the
compressive displacement on the two sides (from negative to zero
to positive). Additionally, Type0 has the close junction growth
with Type2, because the bottom of the block being fixed in the X
direction in Type0 introduces a similar effect of the two sides
being fixed in the Y direction in Type2. These two conditions
characterize most closely the block as a half-elastic space.

Figure 13 illustrates the equivalent plastic strain on the upper
surface of the block after one cycle of loading at 1*xc interference
with l¼ 1 under different types of boundary conditions. It is
shown that the plastic strain is larger in Type0 than in any type
with a prestress, and it is the smallest in Type5 with two sides dis-
placing 3*xc laterally inward. Therefore, the prestress can reduce
the plastic strain on the surface, where the plastic strain decreases
with a larger prestress. There are two reasons for that behavior.
First, there is rz, which elevates the hydrostatic situation (see
Eq. (8)), thus reducing the von Mises stress. Second, the negative
rx opposes the natural tendency of creating a positive rx in the
fretting sliding motion, which also reduces the von Mises stress
during sliding. With smaller von Mises stresses, the corresponding
plastic strain is smaller. The compressive prestress is envisioned
to also suppress any crack initiation and/or growth at the two
edges of the fretting contact.

5 Conclusion

This work presents a 2D plane strain finite element fretting
model of a half cylinder in contact with a block. The materials of
the two bodies are set to the same elastic-perfectly plastic steel.
The fretting model is displacement-controlled, where it is loaded
with an interference first, and then a reciprocating horizontal dis-
placement is applied to the top of the half cylinder. Different
COFs are used in the model.

Five aspects of the fretting model are studied in this work: the
progression of the von Mises stress distribution, the evolution of
the plastic strain, the junction growth, the development of tangen-
tial force, and the scars on the surface of the block. During the
oscillatory tangential loading, the two contact edges tend to expe-
rience the largest von Mises stress. It is, therefore, postulated that
cracks and fatigue are most likely to initiate and propagate at the
contact edges. Likewise, the largest plastic strain shows up at the
edges, too. These two phenomena are caused by the abrupt change
of the curvature at the edges of the indentation on the surface.
When the COF is large enough to reach the fully stick condition,
pileup will appear at the position of the abrupt change, which will

Fig. 12 The junction growth results of the first quarter of the
loading cycle at 1*xc interference with l 5 1 in different types of
boundary conditions

Fig. 13 The distribution of equivalent plastic strain on the sur-
face of the block after one cycle of loading at 1*xc interference
with l 5 1 in different types of boundary conditions
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intensify the phenomena. The plastic deformation on the surface
of the cylinder is not perfectly symmetric about the origin point,
where it is slightly larger on the right, which is the direction of the
initial motion. This is attributed to the decreasing normal force
necessary to maintain a prescribed interference. Also on the right
edge, material pileup is larger under a larger normal reaction force
relative to the left edge. Due to the plastic deformation of the
surfaces, junction growth is found. The magnitude of the junction
growth increases with the COFs, while the rate of the convergence
of the growth decreases with the COFs. The behavior of the junc-
tion growth is found to agree qualitatively with the experimental
results [7,9]. Also, larger COF introduces larger tangential forces,
which results in larger von Mises stresses. The fretting loop (i.e.,
the development of the tangential force versus fretting motion) for
the initial few cycles of loading is likewise found, where the
enclosed area indicates the energy loss. That loop is similar to that
found experimentally by Courtney-Pratt and Eisner [7]. Different
types of boundary conditions including prestress conditions on the
block are applied to the model. It is shown that the boundary con-
ditions vary the junction growth results. Putting forward a design
advantage, the prestressed conditions are shown to reduce the
residual plastic strain by decreasing the von Mises stresses.
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Nomenclature

b ¼ half contact width
bc ¼ critical half contact width
C ¼ Poisson’s ratio parameter
E ¼ elastic modulus
E0 ¼ equivalent elastic modulus
p0 ¼ maximum contact pressure

p0c ¼ critical maximum contact pressure
P/L ¼ normal force per unit length

Pc/L ¼ critical normal force per unit length
Q ¼ tangential force
R ¼ radius of half cylinder

Sy ¼ yield strength
Dx ¼ compressive displacement of the two sides of the block in

the case of prestress
Dy ¼ displacement of the top side of the block in the case of

prestress
d ¼ horizontal displacement
ep ¼ equivalent plastic strain
ex ¼ normal strain in the X direction
ey ¼ normal strain in the Y direction
l ¼ coefficient of friction
� ¼ Poisson’s ratio

re ¼ equivalent von Mises stress
rx ¼ normal stress in the X direction
ry ¼ normal stress in the Y direction
x ¼ interference

xc ¼ critical interference
x* ¼ normalized interference, x/xc

x0 ¼ interference in the case of prestress
x1 ¼ the compression of the half cylinder
x2 ¼ the compression of the block

Appendix

The interference of a half cylinder in contact with a block is
derived below where the dependence of the results on the size of
the block is investigated. According to Johnson [2] (taken from p.
130, and shown in Fig. 14(a)), the elastic compression of a cylin-
der in contact with two elastic bodies is obtained. The compres-
sion of the upper part of the cylinder O1C is

d1 ¼
P

L

1� �2ð Þ
pE

2 ln 4R=b1ð Þ � 1
	 


(A1)

where the half contact width b1 is calculated according to the
Hertzian theory

b2
1 ¼ 4PR=ðpLE�1Þ (A2)

Here, E�1 is the composite modulus of the upper body and the
cylinder

Fig. 14 The contact model to derive the compression of the elastic cylinder in contact with an
elastic block: (a) the model in contact mechanics by Johnson [2] and (b) the equivalent model
of the compression of the half cylinder herein
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1

E�1
¼ 1� �2

1

E1

þ 1� �2

E
(A3)

The model of interest in this work is that of a half cylinder in con-
tact with a block. For that, we use the equivalent model shown in
Fig. 14(b). The horizontal axis of the half cylinder (passing
through point C) is prescribed to have a vertical displacement, x,
which is defined as the interference. That interference consists of
two parts, the compression of the half cylinder, x1, and the com-
pression under the centerline of the block, x2. For x1, Eq. (A1)
yields the compression of the lower half cylinder

x1 ¼
P

L

1� �2
1

� �
pE1

2 ln 4R=bð Þ � 1
	 


(A4)

where b is the half contact width between the cylinder and the
block. The parameters E1, �1, and R belong to the half cylinder.
For x2, according to Johnson [2], the compression under the cen-
terline of the block is equal to the compression of a half-space
under the load of the Hertzian pressure relative to a point at a
depth, d. Hence

x2 ¼
P

L

1� �2
2

� �
pE2

2 ln 2d=bð Þ � �2= 1� �2ð Þ
	 


(A5)

The interference is then the addition of Eqs. (A4) and (A5)

x ¼ P

L

1� �2
1

� �
pE1

2 ln 4R=bð Þ � 1
	 


þ P

L

1� �2
2

� �
pE2

2 ln 2d=bð Þ � �2= 1� �2ð Þ
	 


(A6)

Herein, �1¼ �2¼ �, E1¼E2¼E, and d¼R. By substituting
Eqs. (2) and (3) into Eq. (A6), the interference simplifies to

x ¼ P=L

2pE0
2 ln

2pRE0

P=L

� �
� 1

1� �

� �
(A7)

To verify the assumption of viewing the block as a half-elastic
space, different dimensions of the block have been used to com-
pare FEA results with theoretical predictions, where % dif, as
given in Table 3, indicates the relative percentage difference
between them. According to the table, the FEA results agree very
well with the results calculated according to Eqs. (5)–(7), when
the depth varies from 0.5R to 4R. When the depth is 0.25R, how-
ever, the maximum von Mises stress predicted by the FEA has a
somewhat larger deviation from the theoretical value (7.99%).
While that indicates that the boundary conditions applied on the
block start to affect the stress distribution in the area of the con-
tact, the other differences are still quite low. So, a block of depth,
d, that equals to R can clearly be regarded as a half-elastic space.

Indeed in this work, all reported results are specifically given for
that case of d¼R. Moreover, the nondimensionalized results in
this work can safely be applied to blocks with depths that are
about 0.5R or larger. That proposition conforms to the classical
Saint-Venant’s Principle, which reassures that the critical interfer-
ences between two cylinders, as derived by Green [32] in
Eq. (24), and the one derived herein for the contact of a half-
cylinder against a block in Eq. (7), match closely with a mere 5%
difference.
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