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ABSTRACT 
For practicing engineers in industry it is important to have 

closed-form, easy to use equations that can be used to predict 
the real contact area, and relate it to friction, wear, adhesion, 
and electrical and thermal contact resistance.  There are quite a 
few such models in the literature, but their agreement or their 
effectiveness has not been determined.  This work will use 
several measured surface profiles to make predictions of 
contact area and contact force from many elastic contact 
models and compare them to a deterministic FFT based rough 
surface contact model.  The results show that several of the 
models show good quantitative and qualitative agreement 
despite having very different mathematical foundations. 

INTRODUCTION 
The ability to accurately predict real contact area as a 

function of load for rough surface contacts is a very difficult 
task due to the complex nature of real surfaces.  Many models 
have been proposed over the years for the prediction of the 
real area of contact between rough surfaces.  One of the very 
first of these was by Archard[1], who showed that although 
single asperity contact might result in a nonlinear relation 
between area and load, by incorporating multiple scales of 
roughness the relationship becomes linear.  Archard used a 
concept where spherical asperities were stacked upon each 
other, each with smaller radii of curvature.  This stacked type 
model was largely abandoned when the Greenwood and 
Williamson (GW) model[2] was published.  This work 
presents for the first time an exact closed-form solution to the 
popular GW model. 

Later researchers considered the multiple scales of 
asperities present on surfaces needed and so fractal 
methodologies were formulated[3, 4].  Fractal models were 
found to have their own deficiencies so a few other methods 

that consider multiple scales of roughness were also created[5-
7].  For example, in the Majumdar and Bhushan (MB) fractal 
model[3] the contact area is calculated from truncation which 
predicts less plastic deformation with higher load.  One 
correction was offered by Morag and Etsion[8].  The current 
work also finds that the MB model has difficulties also in the 
elastic range where it can actually predict negative contact 
forces for positive contact areas. 
 A handful of these models will be implemented in the 
current work and compared to an FFT based deterministic 
elastic contact model [9].  The hope is that the effectiveness of 
these models can be evaluated lending confidence in their 
applicability.  Other comparisons have also been made, but not 
always by using data measured from a real surface and not 
considering as many contact models as are in the current work.  
  
METHODOLOGY 

The current work will make comparisons between the 
following rough surface contact models: 
1. Kato and Stanley FFT deterministic elastic model [9] 
2. GW closed-form solution model (with Gaussian 
distribution) – an exact closed-form solution is included 
herein.  
3. Bush, Gibson, and Thomas statistical model[10] 
4. Greenwood elliptical model[11] 
5. Persson diffusion contact model [12] 
6. Stacked multiscale model [13] 
7. MB fractal (elastic part) [3] 

For conciseness details for each model are omitted, but 
shall be discussed in a subsequent paper.  
 
GW Closed Form Solution 
       This work adheres to the definitions and nomenclature of 
CEB [14] and Etsion and Front [15], and the reader is referred 
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to that work. Therefore, β=ηRσ, where η is the areal density of 
asperities, R is the asperity radius of curvature, and σ is the 
standard deviation of surface heights. Further, h*=h/σ is the 
dimensionless mean separation, σs/σ is the dimensionless 
standard deviation of asperity heights, and ys/σ is the 
dimensionless distance between the means of asperity and 
surface heights. Following Green [16] the “average” elastic 
contact pressure is pe=F/An, where F is the total external force 
(or load), and An is the nominal (or apparent) contact area. The 
pressure is further normalized by the equivalent modulus of 
elasticity. Likewise, the elastic real area of contact, Ar, is 
normalized by the nominal area,  An. Both are given, 
respectively, by, 
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The integrals contain a lower bound having the following 
definition * *

sa h y= − . The Gaussian distribution (φ*(z*)) is 
given in many previous works.  The integrals of Eqs. (2) have 
been considered complex and thus have traditionally been 
either approximated or integrated numerically. This work 
presents for the first time an exact closed-form solution for 
these integrals. For conciseness only the final results of the 
closed-form solutions are given. The solution is given in the 
Appendix. Substitution of Eqs. (A1 and A2) into Eqs. (1) 
provides the desired solution to the GW model. 

 
Stacked Multiscale Model 
 The stacked multiscale model[13] is a simplified version 
of the full multiscale model by Jackson and Streator [6].  
Assuming that all the frequencies of roughness are present 
everywhere on the surface, than the parts of the surface in 
contact must overcome the pressure required to flatten all the 
contributing frequencies or scales of asperities.  This of course 
assumes that the contact areas are larger then this limiting 
frequency.  Then the real contact pressure is defined by the 
pressure required to obtain complete contact at the scale with 
the largest ratio between amplitude and wavelength (B=Δ/λ).   
Johnson et al. [23] provide the pressure to cause complete 
contact between sinusoidal surfaces as: 

fEp Δ′= π2*    (3) 
where Δ is the amplitude and f is the frequency of the sine 
wave describing the shape of the surface (inverse of λ).  By 
assuming that each asperity scale can be described by a 
sinusoidal shaped surface, the real contact pressure (pr) is then 

approximated by Eq. (3), although Jackson et al. [13] have 
found that in some cases the pressure is slightly less. 
 Now consider the stacked surface originally described by 
Archard. As each scale is iteratively included in the model, the 
contact area will reduce. For self affine surfaces, the value B 
will continue to increase as the scale is decreased, ultimately 
resulting in the contact area reducing to zero[7].  However, not 
all surfaces may be self-affine, and if so, the iteratively 
increasing pressure will eventually overcome the pressure 
required to obtain complete contact (given by Eq. (3).  Then 
the area of contact is given by[13] 

max2 BE
FAr ′

=
π

    (4) 

 
Elastic part of Majumdar and Bhushan Fractal Model 
 Majumdar and Bhushan[3] derived a very popular model 
for the contact between fractal surfaces.   First they assumed 
that the surface can be described by the Weierstrass 
Mandlebrot function and the fractal parameters G and D.  
Contact was then assumed to occur at where the fractal surface 
would truncate an opposing flat surface.  For elastic contact 
the load was then calculated by elastic Hertz contact and the 
average radius of curvature of the parts of the surface in 
contact (predicted by truncation).  The resulting elastic portion 
of the equation is: 
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However, then a problem with this equation becomes 
apparent.  Note that D ranges between 1 and 2.  When D is 
greater than 1.5, Eq. (5) becomes negative, which is 
impossible.  Therefore the elastic portion of the MB fractal is 
invalid. The real surfaces examined here  do provide a value 
of D>1.5, and because of this, we will not make further 
comparisons with the MB fractal model in the current work. 

 
Figure 1: A comparison of real area of contact predictions by 
several elastic rough surface contact models for the same 
surface. 
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RESULTS 
 Three-dimensional surface data is recorded using a 
XYRIS4000CL Taicaan Con-focal Laser Profilometer over an 
area 1 mm2 with a resolution of 1001x1001 points (vertical 
resolution is 10nm). Three surfaces with very different 
roughness are measured.  Using the surface data, the models 
listed above are then used to predict the real area of contact 
and real contact pressure as a function of contact force.  The 
results for one of the surfaces are shown in Figs. 1 and 2.  As 
shown, the predictions are all within the same order of 
magnitude.  This is actually surprising considering that the 
methods are derived very differently and that except for the 
deterministic model, reduce the surface data down to two or 
three parameters. 

 
Figure 2: A comparison of real contact pressure predictions by 
several elastic rough surface contact models for the same 
surface. 
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where ( )Γ ⋅ is the Gamma function, ( ), ( )I and K⋅ ⋅ are the modified Bessel functions of the first and second kinds, respectively, and 
( )erfc ⋅  is the complementary error function. 
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