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Analysis and Optimization of 
Semicircular and Straight Lobe 
Viscous Pumps 
A viscous pump design that is capable of producing higher flow rates than a viscous 
pump previously introduced by Etsion and Yaier (1988) is developed and investi
gated. The key to the new design is straight lobes as opposed to the semicircular 
lobes of the previous design. The geometry of the straight lobes does not lend itself 
to as straightforward a solution as the semicircular lobe analysis. Approximations 
are made and then verified using upper and lower shape factor bounds and finite 
element analyses. Lobe geometry for each lobe design is optimized to produce 
maximum pumping capacity. The results of the optimization show that the straight 
lobe pump is theoretically superior to the semicircular lobe pump. 

Introduction 
A new concept viscous pump was first introduced by Etsion 

and Yaier (1988). The pumping mechanism was provided by 
a semicircular lobe design. In the current work, a more flow-
efficient straight lobe design is investigated. Important features 
of these pumps include nonpulsatile flow rate and discharge 
pressure, a linear flow-pressure relationship, easy adaptability 
to a needed flow-pressure operating point, and no need for 
dynamic seals or valves. 

The viscous pump is advantageous for applications requiring 
easy and accurate flow control, such as in steady flow metering 
pumps, or pumping jobs that require high levels of cleanliness, 
e.g., blood and other biofluid pumps. This is because there is 
no contact between rotor and stator in the fluid flow path, 
nor does this fluid face any lubricating fluids. The viscous 
pump can produce flow rates comparable to peristaltic pumps, 
but avoids the potentially damaging normal force created by 
the squeezing action of peristaltic pumps. The viscous pump 
is comparable to other rotory pumps such as screw or gear 
pumps but avoids the local pressure build up at gear matings 
that can be damaging to the process fluid. In cases of pumping 
slurries containing abrasive crystals, such as aluminum dioxide 
(which has a hardness close to that of a diamond), serious 
damage to the gear surfaces is highly likely. The viscous pump 
can pump such viscous slurries without being damaged by the 
abrasive crystals, providing that the gaps between stator lobes 
and rotor are made bigger than the diameter of the crystal. 

Other pumps that take advantage of the viscosity of the fluid 
to transfer energy from the rotor to the fluid have been in
troduced in the literature. The shear-force pump (Hasinger 
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and Kehrt, 1963) has closely spaced rotor disks that accelerate 
the fluid radially outward. Somewhat extensive work has been 
done in the area of spiral groove viscous pumps (e.g., Sato et 
al., 1990), which also have typical applications in bearings and 
seals. An analytical and experimental investigation of flow 
between a stationary disk and grooved rotating disk was per
formed by Missimer and Johnson (1982). The well known 
narrow groove theory introduced by Vohr and Pan (1969) 
forms the basis for many investigations related to spiral grooves 
(e.g., Hsing, 1972 and 1974). A viscous pump with shrouded 
Rayleigh steps was studied by Sato et al. (1988). 

The idea for the type of viscous pump under study in this 
work originated as a new concept for a zero-leakage noncon-
tacting mechanical face seal proposed by Etsion (1984). The 
idea of the semicircular lobe design was then reformulated as 
an idea for a viscous pump (Etsion and Yaier, 1988). An 
optimization of pump geometry for maximum pump efficiency 
was performed on a limited basis. An experimental investi
gation of a semicircular lobe viscous pump was performed by 
Green et al. (1989). That work proved that the semicircular 
lobe design provides a feasible pumping mechanism. In the 
current work, the semicircular lobes are replaced by straight 
lobes. When the two designs are optimized, the straight lobes 
prove to have the potential of producing significantly higher 
flow rates at a given discharge pressure. 

Operating Principles 
In semicircular lobe pump, the rotor and stator are parallel 

circular disks separated by the process fluid. Specially designed 
circular lobes, shown in Fig. 1, protrude from the surface of 
the stator and make a small gap, c, and a larger gap, C, with 
a flat disk rotor. The gaps C and c are in the order of microns. 
The fluid is sheared by the rotor and is dragged by viscous 
forces in a circumferential direction with the rotor. 

The design of the lobes is the key to obtaining a net pumping 
action. Referring again to Fig. 1, the shear induced flow 
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Fig. 1 Stator of semicircular lobe viscous pump 

(Couette flow) is represented by streamlines that are concentric 
circumferential lines in the direction of the rotor rotation. That 
flow is proportional to the radial extent and the gap height. 
Because of the gap height difference, C-c, more fluid is sheared 
into the center of the pump from point 1 to point 2 than is 
allowed to exit from point 2 to point 3. The fluid in the center 
of the pump can exit through a hole in the center of the stator. 
If the flow through the hole is restricted (e.g., by a valve) then 
pressure is built up at the pump center. Thus, if that pressure 
is greater than the pressure of the fluid surrounding the rotor 
and stator, then a pressure-gradient induced flow (Poiseuille 
flow) will travel from the center of the pump, across the lobes, 
to the inlet low pressure zone. Maximum pumping efficiency 
occurs when the geometry is prescribed such that the net inward 
Couette flow is maximized while the Poiseuille flow (leakage 
losses) is minimized. 

The Reynolds equation is used to model the flow field in 
the pump. Although this equation can be solved using a closed 
form integration for the semicircular lobe geometry, some 
approximations must be made to account for the more complex 
geometry of the straight lobes. The simplifications made will 
be justified by comparing the simplified analytical model 
against upper and lower bound shape factors and then to a 
finite element computational model. The equations will then 
be optimized for geometry that will produce maximum pump
ing efficiency. Finally, the optimized results of both the semi
circular and straight lobe designs will be compared. 

Analysis 

For an isothermal, steady, incompressible fluid film, and a 
boundary moving in the x direction at a velocity U, the Reyn
olds equation is 

d_ 

dx 

dp 

dx) ' dy 
, 3 dP\ dh 
hi)^uYx 

(i) 

stator 

lobe 

Fig. 2 Geometric variable definitions for semicircular lobe design 

where y is the transverse direction. For this linear equation, 
the net flow can be calculated by superimposing the Couette 
and Poiseuille flow components. 

Semicircular Lobe Analysis. Geometric definitions of a 
semicircular lobe are shown in Fig. 2, where a lobe is placed 
on a stationary disk (stator) having an outside radius R0. The 
radius R, represents a circle tangent to outer radius of the lobe, 
/•, + A/\ The lobes are stepped to form a large gap, C, and a 
small gap, c, with a flat disk rotor. 

The Couette flow per unit length is given by 

Qs 

uRh 
Rj + Ar<R<R0 

and the Poiseuille flow per unit length is given by 

QP = 
tf dp 

12/u. dr 
r,</-</-0 

(2) 

(3) 

Integrating qs across the radial extent, and qp along the lobes 
circumference and then across their width results in Qs, and 
Qp, respectively. The net flow is the superposition of these two 
components, i.e., Q = Qs + Qp. The details of the derivation 
for the equation describing the pumping capability of n sem
icircular lobes are found in Etsion and Yaier (1988). Their 
resulting equation for the net flow is 

Q = 4<osRt 1 
Ar 

R0 R, 

+ T 2 ^ + 
c') 

uP 

In 1 
Ar 

(4) 

where s = C-c is the machined step height. The geometric 
constraint of lobe tangency at the outer radius requires that 

Nomenclature 

C = 

h = 

L = 

P 
P 
Q 

Q 
Q' 

6c'0 

small clearance between rotor 
and stator 
large clearance between rotor 
and stator 
fluid film thickness (clear
ance) 
length dimension for various 
geometries 
pressure 
differential discharge pressure 
flow per unit length 
dimensional volumetric flow 
dimensionless volumetric 
flow, Eq. (9) 
dimensionless volumetric flow 
for zero clearance, Eq. (22) 

R 

r 
s 

s 
S' 

a 

P 
8 

Ar 

= radial coordinate measured 
from stator center 

= general radial coordinate 
= lobe step height, C-c 
= general path coordinate 
= shape factor 
= operating Conditions parame-

T P ( CV 
ter, — ' 12 Mco \R0) 

= variable lobe angle 
= lobe angle determined by 

number of lobes 
= dimensional V-lobe thickness 
= dimensional semicircular lobe 

thickness 

ix = absolute viscosity of fluid 
J = dimensionless lobe thickness, 

Ar/R0 or 6/R0 

a = dimensionless step height, s/c 
a) = angular velocity of rotor 

Subscripts 

cO = refers to zero clearance case 
/ = inner 
1 = lower 

o = outer 
p = pressure induced (Poiseuille) 
s = shear induced (Couette) 
w = upper 
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TT 
(«-2) (5) 

2 " In 

Introducing F,„ a function of the number of lobes, 

F _ 1 - sin/3 _ /?, 
cos/3 7?0 

and a nondimensional lobe width, £ = Ar/R0, the pump flow 
is rewritten as (Etsion and Yaier, 1988) 

(6) 

Q = —Rlll~(F„ + ti)2]+-r{C3 + c3) 

in I 1 - - U 
tan/3/ 

(7) 

The tangency requirement of the semicircular lobe imposes a 
constraint on the radius R, through Eqs. (5) and (6) once the 
number of lobes, n, and the outer radius R0, have been spec
ified. 

Semicircular Lobe Optimization. To determine which of 
the two lobe designs is superior, optimization of lobe geometry 
for maximum flow is performed. The variables of the semi
circular lobe design are the number of lobes, n, the nondi
mensional lobe width, £, and the step height, s. The step is 
nondimensionahzed by the small clearance parameter, c, such 
that a = s/c. In Etsion and Yaier (1988), the step height was 
not treated as a variable; it was defined to be a given operating 
condition. The step height, however, is a geometric variable 
and does not necessarily need to be prescribed as an operating 
condition. Therefore, the step height is treated in the present 
work as a design variable to be optimized for maximum flow. 
Because of the new role of the step height, this work bifurcates 
now from the work presented by Etsion and Yaier (1988). 

An operating conditions parameter, S ' , is defined by 
2 

(8) S ' = ^ 
P_ 

12 JXCO 

S' contains all the variables usually specified by the design 
requirements of the pump. (It may be regarded to have the 
role of the inverse of the Sommerfeld number in journal bear
ings.) 

The equation for flow (Eq. (7)) can be written as 

Q = ~o,cR2
0Q' (9) 

where Q' is the nondimensionahzed flow that includes the 
operating conditions parameter S' as follows: 

-CF„ + £ ) 2 ] + S ' [ ( C T + 1 ) 3 + 1 ] - ( " " 2 ) an 
G ' = T [ i -

In 1 
tan/3/ 

(10) 

This equation is optimized for a given operating conditions 
parameter, S ' , by setting its partial derivatives with respect 
the nondimensional lobe width, £, and the nondimensional 
step height, a, equal to zero for a particular number of lobes, 
n. The result from dQ'/d£ = 0 is 

.-i_V' 
tan/3/ 

(11) 

no(F„ + k) 

S ' = -

ln 1 (tan/3 - f ) 

(77-

The result from dQ' /da 

«[(F„ + £ ) 2 ~ l ] l n ( l -

S ' = -

2) [ (a+ l ) J +l ] 

0 is 

_£ 
tan/3 

6 ( « - 2 ) ( a + l ) / ( 1 2 ) 

The resulting Eqs. (11) and (12) were solved simultaneously to 
yield the optimal values of £ and a for a specified number of 
lobes, n, at a given operating conditions parameter, S ' . The 

Table 1 Semicircular lobe optimization results at two values 
of S' for various lobe numbers, « 

Lobes 
n 

Lobe width Step 
height, a 

Flow 
Q' 

1 x 10" 

1 x 10" 

3 
4 
5 
6 
7 

3 
4 
5 
6 
7 

0.253 
0.194 
0.158 
0.133 
0.116 

• 0.273 
0.213 
0.176 
0.151 
0.133 

238.96 
211.73 

.193.23 
179.30 
168.20 

6.79 
5.96 
5.40 
4.97 
4.63 

173.66 
177.54 
178.18* 
176.93 
174.65 

4.443 
4.407 
4.310 
4.180 
4.036 

'Designates maximum flow and optimal number of lobes. 

Table 2 Compilation of semicircular lobe optimization results 
for maximum flow 
Parameter 

S' 

1 x 10~6 

2 x 10~6 

3 X 10~6 

4 x 10~6 

5 x 10"6 

6 x 10~6 

7 x 10"6 

8 x 10"6 

9 x 10~6 

1 x 10~5 

2 x 10~5 

3 x 10~5 

4 x 10~5 

5 x 10"5 

6 x 10~5 

7 x 10~5 

8 x 10~5 

9 x 10~5 

1 x 10~4 

2 x 10~4 

3 x lO"4 

4 x 10"" 
5 x 10-" 
6 x 10~4 

7 x 10-" 
8 x 10~4 

9 x 10~4 

1 x 10~3 

2 x 10~3 

3 x 10~3 

4 x 10~3 

5 x 10~3 

6 x 10~3 

7 x 10"3 

8 x 10~3 

9 x 10~3 

1 x 10~2 

2 x 10~2 

No. of 
lobes, n 

5 

4 

3 

Lobe 
width, £ 

0.15779 
0.15802 
0.15819 
0.15834 
0.15847 
0.15859 
0.15870 
0.15880 
0.15890 
0.15899 
0.15973 
0.16029 

0.19689 
0.19733 
0.19774 
0.19811 
0.19846 
0.19879 
0.19910 
0.20166 
0.20366 
0.20538 
0.20691 
0.20833 

0.26959 
0.27085 
0.27204 
0.27318 
0.28285 
0.29087 
0.29809 
0.30484 
0.31126 
0.31746 
0.32350 
0.32941 
0.33523 
0.39208 

Step 
height, a 

193.23 
136.42 
111.25 
96.245 
86.005 
78.447 
72.573 
67.838 
63.915 
60.597 
42.631 
34.672 

32.835 
29.288 
26.670 
24.635 
22.995 
21.636 
20.487 
14.264 
11.507 
9.8641 
8.7429 
7.9154 

8.2698 
7.6848 
7.2003 
6.7905 
4.5723 
3.5904 
3.0055 
2.6065 
2.3121 
2.0831 
1.8985 
1.7455 
1.6158 
0.90295 

Maximum 
flow, Q' 

178.18 
125.59 
102.29 
88.397 
78.918 
71.922 
66.484 
62.101 
58.470 
55.398 
38.768 
31.400 

27.013 
24.029 
21.826 
20.114 
18.734 
17.591 
16.624 
11.389 
9.0708 
7.6889 
6.7461 
6.0502 

5.5206 
5.0943 
4.7413 
4.4427 
2.8256 
2.1090 
1.6816 
1.3896 
1.1738 
1.0060 
0.87061 
0.75836 
0.66334 
0.14948 

nondimensional flow, Q', was then computed with those £, 
a, and n values. Values for Q' were then compared over a 
range of n values to determine which n (and the corresponding 
£ and a) yielded the maximum flow. The optimization was 
performed in this manner because the number of lobes must 
be an integer parameter. 

.Table 1 presents the results of the optimization for two 
extremes of the operating conditions parameter, S ' . Table 1 
reveals that the optimization of Q' is not particularly sensitive 
to the number of lobes, providing that the corresponding £ 
and a values are used. Table 2 contains the collection of those 
cases for which the number of lobes, n, yields maximum flow 
for a wide range of S' values (i.e., the collection of all "star" 
cases, such as in Table 1). Table 2 reveals that n = 5, and n 
= 3 are optimal for low and high values of S ' , respectively, 
while n = 4 is optimal for intermediate values of S ' . (This 
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finding differs from the finding by Etsion and Yaier (1988) 
who suggest n values greater than five.) 

Numerical Examples. The same numerical examples as in 
Etsion and Yaier (1988) will be examined: 

(a) General Application 

Pump rotor radius, R0 100 mm 
Minimum gap, c 50 (im 
Step height, s 50 (tm 
Fluid viscosity, JX . 100 mPa s 
Pump speed, w 377 rad/s (3600 rpm) 
Discharge pressure, P 1.5 MPa 

Etsion and Yaier (1988) suggest using n = 5 and £ = 0.155. 
Using Eqs. (5)-(7) one obtains Q = 1.040 x 10~4 mVs. In 
the current method of optimization the step height, 5, is treated 
as a design variable. First, the value for S' is calculated using 
Eq. (8) (S' = 2.6 X 10~3). Table 2 provides for this value 
(using Lagrangian interpolation) « = 3, £ = 0.28778, a = 
3.9144, and Q' = 2.3456. Thus, the step to be machined is s 
= ac = 196 fim, and using Eq. (9), or Eqs. (5)-(7), the di
mensional flow is Q = 2.211 X l(T 4m 3 /s . The latter represents 
113 percent improvement over the previous value. 

(b) Medical Application 

Pump rotor radius, R0 80 mm 
Minimum gap, c 30 fim 
Step height, s 40 /un 
Fluid viscosity, fx 2 mPa s 
Pump speed, w 120 rad/s (1146 rpm) 
Discharge pressure, P 80 kPa 

Etsion and Yaier (1988) suggest using n = 3 and £ = 0.27392. 
Using Eqs. (5)-(7) one obtains Q = 5.021 X 10"6 m3/s. In 
the current method of optimization the same steps as above 
are repeated: S' = 1.227 X 10~2. Table 2 provides for this 
value (again using Lagrangian interpolation) n = 3, £ = 
0.34822, a = 1.3820, and Q' = 0.49245. Thus, the step to be 
machined is s = ac = 41.5 ^m, and the dimensional flow is 
Q = 5.671 x 10 - 6 mVs. The latter represents 13 percent 
improvement. It is worth noting that while the step heights are 
very similar in both methods, improvement is due to a better 
lobe width selection. 

It is clear from Table 2 that it is preferable to operate the 
pump with the smallest S' possible to generate maximum flow. 
One way to achieve that, according to Eq. (8), is by selecting 
a designed clearance, c, as small as practically possible. (In 
fact, the best pumping conditions are when c = 0, as will be 
discussed later.) It is also evident that as S' decreases the 
corresponding nondimensional step height, a, increases, which 
keeps the dimensional step height, s, practical. 

Straight Lobe Analysis. The straight lobe concept is in
troduced in Fig. 3. A straight symmetric V-shaped lobe is 
shown in Fig. 3(a) in relation to a semicircular lobe. When 
both lobe designs have the same radial extent (as shown) the 

net inward Couette flow is the same. For the symmetric V-
lobes, however, the Poiseuille flow is less than the Poiseuille 
flow of the semicircular lobe because the symmetric V-lobe 
has a shorter effective length over which the fluid can flow. 
In other words, even when both lobe designs have the same 
inward flow (pumping), the straight lobe design has reduced 
losses. The more important advantage of the straight lobes, 
however, is that the radial extent (and, therefore, net inflow) 
is not limited by geometric tangency constraints as is the case 
for the semicircular lobes. The radial extent for the straight 
lobes could theoretically be the entire radius of the stator, thus 
augmenting the net inflow. These make the straight lobe a 
superior design. 

Moreover, the straight lobe concept can be further improved. 
Consider Fig. 3(b) where a nonsymmetric V-lobe is shown in 
relation to a symmetric V-lobe. For both designs, the net in
ward Couette flow is the same if r\ — r2. The nonsymmetric 
V-lobe design, however, has the potential to have smaller 
Poiseuille flow losses than the symmetric V-lobe. The losses 
are proportional to the gap height raised to the third power 
(Eq. (3)). Because the gap between the rotor and stator for the 
leg of the lobe labelled C (C-leg) is larger than the gap over 
the leg of the gap labelled c (c-leg), the length of the C-leg 
should be minimized. The nonsymmetric V-lobe design ac
complishes this. It is true that the losses related to the c-leg 
increase because this leg is now longer (which also makes the 
total lobe length, i.e., the length of c-leg plus the length of C-
leg, for the nonsymmetric V-lobe greater than that for the 
symmetric V-lobe). However, the increase in losses due to this 
increased length varies only linearly with the length of the leg. 
In cases where C is sufficiently larger than c, the result will 
be that the nonsymmetric V-lobe overall has less flow losses, 
i.e., it has higher pumping capabilities than the symmetric V-
lobe. 

As for the semicircular lobe case, the geometries of the two 
straight lobe designs were optimized to achieve maximum flow. 
Because the nonsymmetric V-lobe did indeed turn out to be 
superior (see Mainland, 1990), the investigation of the sym
metric V-lobe will not be presented here. 

The geometry to be considered for the nonsymmetric V-lobe 
(hereto referred to as the V-lobe) is shown in Fig. 4. The 
variables are the lobe width, 5, the step height, s = C - c, 
the angle, a, and the number of lobes, n. The equation for 
net flow is found by superimposing the Couette flow com
ponent with the Poiseuille flow component. The Couette flow 
is found by integrating the Couette flow per unit length (Eq. 
(2)) for the geometry in Fig. 4. The integration is from Rs to 
# 0 and the result is: 

a=f(*2- Rl) (13) 

where 

- Semicircular lobe 
- Symmetric v —lobe 

- Symmetric v - l obe 
- Nonsymmetric v—iobe 

(a) (b) 

Fig. 3 Graphical comparison of lobe designs (a) symmetric V-lobe ver
sus semicircular lobe, (b) nonsymmetric V-lobe versus symmetric V-lobe 

Nonsymmetric 
v- lobe 

iobe leg end 

-|E = conslo, 
3s 

lobe leg end 

-2E = constant 

Fig. 4 Geometric variable definition and FEM boundary conditions for 
nonsymmetric V-lobe design 
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Ri = 5z + 
R„ sina 

sin(a + 2B) +
 tm(a + 2P 

(14) 

The Poiseuille component cannot be solved exactly, so two 
approximations are made. It is assumed that the c-leg and C-
leg have uniform lengths L, and L2, respectively, and the cor
responding pressure gradients, dp/dx and dp/dx', are both 
equal to P/8 = constant (Fig. 4). Using the sine theorem and 
trigonometric identities, the.lengths L\ and L2 are determined 
to be (Mainland, 1990) 

RB sm2f3 

and 

L2 — Rn 

tan 

sin(a + 2/3) 

5 i?0sina 
a + 2|8\ sin(a + 2/3) 

Integrating the Poiseuille flow per unit length (Eq. (3)), along 
the length of the legs, Lx and L2, results in 

QP=-
12/J.S 

Rn 

R„ sina 
tam/< sin(a + 2/3) 

c3P 
12^5 

fl0sin2/3 
sin(a + 2(3) 

(15) 

where ^ = (a + 2/3)/2. Qs and Qp (Eqs. (13) and (15)) are 
added together to account for the total flow for n lobes: 

7?„sina 
sin(a + /3) tarn/-

nP_ 
~12n8 tanip sin(a + 2(5) + c° 

JRQsin2/3 

sin(a + 2/3) 

(16) 

As in the case of the semicircular lobe design, Eqs. (8) and (9) 
are used to solve for Q'. For the nonsymmetric V-lobe, the 
dimensionless flow is 

2 ( sina § 

2S' 

' fir 

i - r -

d + a ) J 1 -

sin(a + 2/3) tanf 

£ sina 

tani/- sin(a + 2/3)/ sin(a + 2/3) 

sin(2/3) 

(17) 

where £ = 8/R0 and a = s/c. 

Nonsymmetric V-lobe Optimization. The next step in the 
investigation of the nonsymmetric V-lobe is to optimize Eq. 
(17) with respect to the variables a, £, a, and n. The optimi
zation was performed using the method of path of steepest 
ascent and the results are presented in Table 3. The general 
method of optimization was to vary the variables a, a, and £ 
for n = 3, 4, 5 . . . for a given operating conditions parameter, 
S ' , to find which geometry yielded maximum flow. The results 
show that Q' increases as n increases and no optimal n is 
found. While a very large number of lobes is possible in theory, 
it would be impractical because there would not be sufficient 
room for the fluid to flow into the center of the pump. Note 
also that in all cases, the optimal a is zero degrees. This angle, 
a = 0 provides for maximum lobe thickness, 5, (and therefore 
minimum Poiseuille losses), for a given net Couette inflow. 
Again, a = 0 is not a practical value since there is no room 
for the fluid to exit through the center of the pump. Later, 
the geometry will be optimized for a practical a value. 

Before comparing the values for Q' in Table 3 to the values 

Table 3 Nonsymmetric V-lobe optimization results 

S' 

1 X 1CT6 

1 x KT3 

n 

3 
4 
5 
6 
7 

3 
4 . 
5 
6 
7 

Lobe 
width, if 

0.362 
0.313 
0.269 
0.234 
0.207 

0.379 
0.329 
0.284 
0.249 
0.220 

Angle 
a (deg) 

0.0 
.0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 

Step 
height, a 

313.3 
308.6 
296.5 
282.9 
269.6 

9.13 
9.03 
8.68 
8.23 
7.88 

Flow 
Q' 

258.3 
330.4 
389.8 
440.7 
485.6 

6.98 
8.90 

10.43 
11.69 
12.77 

for Q' obtained in the semicircular lobe optimization, the 
validity of the equations used to approximate the Poiseuille 
component of flow for the nonsymmetric V-lobe need to be 
checked. To check the validity, shape factors borrowed from 
heat transfer (Kreith and Bohn, 1986, and Blech et al., 1986) 
are used to see if the previously derived equations fell within 
the bounds of the possible solutions. Following this, the finite 
element method (FEM) is used to check the more detailed 
accuracy of the equations. 

Verification of V-lobe Analysis Using Shape Fac
tors. Shape factors are used to provide approximate analyt
ical expressions for the flow across complex geometries, for 
which a closed-form solution is not feasible, or a numerical 
solution is not sought. The analytical expressions can be used 
for a quick performance prediction, preliminary design, and 
optimization. Here we check whether the previously derived 
leg lengths Lx and L2 are appropriate for the Poiseuille flow 
calculation over the nonsymmetric V-lobe. For U = 0 the 
Reynolds equation (Eq. (1)) reduces to 

d_ 

dx 

,3 i A B t ^ p 
dx) dy dy 

= 0 (18) 

The height, h, is alternately C over the short leg, and c over 
the long leg as in Fig. 4. Since h is constant over each of the 
legs, Eq. (18) reduces to the Laplace equation, V2/? = 0. For 
the geometry being considered the pressure is governed by the 
Laplace equation with Dirichlet boundary conditions over one 
portion of the boundaries, and homogeneous Neumann con
ditions over the remaining boundaries (leg ends). It is apparent 
that the Poiseuille flow problem is analogous to the heat flow 
problem: the potential is the pressure p, the conductance is 
h3/\2n, and the flow is the fluid flow. The shape factor, which 
is determined solely by geometry, is the same as in the heat 
transfer problem. The upper bound is found by assuming iso
bars, which are analogous to isotherms. The lower bound is 
found by assuming streamlines, which are analogous to adi-
abats. A formal proof of the validity of the bounds is given 
in Mainland (1990). 

For the Poiseuille flow over the V-lobes, each of the lobe 
legs can be generically described by the geometry of Fig. 5. 
Although one end of each lobe leg is an arc, it will be ap
proximated as a secant. The upper bound shape factor is found 
in reference to Fig. 5(a) to be (Mainland (1990)): 

tana + tan/3 

In 
L 

£-Z>( tana + tan/3) 

(19) 

and the lower bound shape factor is found using the variables 
of Fig. 5(6): 

S/ = -
a + /3 

In 
L-D(tana + tan/3) 

(20) 
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Fig. 5 Generic V-lobe geometry for shape factors (a) upper bound, (b) 
lower bound 

Now upper and lower bounds for Poiseuille flow can be cal
culated by: 

(Qp)ll/l = KSu/,Ap; @K = 
12/x 

(21) 

where K is the conductance. 
The equation for Couette flow (which was obtained in closed-

form (Eq. (13)) was used with the bounded Poiseuille flows to 
account for the bounded total flows. Specified operating con
ditions were selected based on possible operating conditions 
for the pump, though any set of conditions could be used. 
Figure 6 shows that the equation for flow of the nonsymmetric 
V-lobe (Eq. (16)) predicts pump performance very close to the 
flows predicted using the bounds. Note that S„ represents an 
upper bound for the Poiseuille flow, and, therefore, a lower 
bound for the total flow. Although the results from the equa
tion are slightly out of the range predicted by the bounds the 
variation is negligible. 

Verification of V-lobe Analysis Using Finite Element 
Method. The finite element model can only be solved for a 
given geometry, i.e., it cannot be used to arrive at an optimal 
geometry unless the optimization process is done on a case by 
case basis. The finite element model was solved over a range 
of geometries for the nonsymmetric V-lobe configuration. A 
detailed formulation appears in Mainland (1990). 

A fluid film height ratio of C/c = 6 (or a = 5) was selected 
for the FEM model. The optimization of the pump equations 
yielded values in this range and higher (see Table 3). The lower 
end value of six was selected instead of a higher value so that 
the contribution to the flow across the c-leg could be examined. 

The boundary conditions are p = P along the lower edge 
of the lobe, and p = 0 along the upper edge of the lobe, as 
shown in Fig. 4. Along the lobe ends it was assumed that the 
pressure varies linearly, i.e., dp/ds = constant (s being the 
path along the ends of the legs). This closely simulates the 
condition of no flow across the lobe ends. (Any flow that does 
cross these boundaries is a loss that would make the pump less 
than optimal.) 

The FEM model was solved for the full range of optimal 
values of n, S/R0 and L/R0 encountered (Mainland, 1990). 
Once the pressure field was solved, the flow was calculated. 
A comparison between the Poiseuille flows predicted by Eq. 
(15) and by the FEM model reveals a difference of less than 
three percent throughout. It is concluded that Eq. (16) (which 
contains Eq. (15)) predicts the flow quite accurately, despite 
the approximations made with regard to the c-leg and C-leg 
having uniform lengths Lx and L2, respectively. 

Comparison of Lobe Designs 

Complete Optimal Case. The investigation above for the 
semicircular lobe and the V-lobe designs is based on optimal 
boundary conditions (no flow) at the lobe ends. These bound
ary conditions will be maintained throughout this work. The 
optimization results for the semicircular and V-lobes, as pre-

- i o b e Eqn. (16) 

50 100 150 200 

Pressure (kPa) 

Fig. 6 Comparison of flow predicted by bounds to flow predicted by 
analysis 

sented in Tables 1 and 3, respectively, were obtained assuming 
that a small clearance, c, exists. However, it can easily be 
verified from Eqs. (4) and (16), that maximum flow occurs 
when c = 0 (i.e., minimum Poiseuille flow losses). Thus, of 
all possible values of c the zero clearance condition theoretically 
results in the greatest pumping capacity, i.e., an ultimate upper 
bound for maximum flow to which any other pump can be 
compared. (Because the lobes and rotor are in full contact at 
zero clearance it is not recommended, however, to operate the 
pump under this condition. Practically, a minimal clearance 
should be set subject to system limitations such as rotor runout, 
misalignment, surface roughness, and maximum particle size 
in the fluid being pumped.) 

The equations to be optimized for c = 0 must be altered 
slightly from the previous optimization. This is because non-
dimensionalizing s by c (a = s/c) is no longer appropriate. 
Hence, the following nondimensional parameters are used: 

OcO 
s 

~~~RZ 
•K P 1 
12 fioi 2 

(22) 

where s is nondimensionalized by R0, S^, is a new version of 
the operation conditions parameter, S ' , and a new dimen
sionless flow, Q'CQ is defined from Q^ being the flow, Q, when 
the clearance is zero. Using these definitions, the dimensionless 
equation for flow at c = 0 is 

<&-?!.• (F„ + ?)2] + S>^o-
(n-2) 

In 1 
tan/3 

(23) 

for the semicircular lobe (from Eq. (7)), and 

I smry f- \ 

1 Qco- 2 H2- sma 

sin(a + 2/3) 

71-£ 

tarn/-

1 -
tan^ sin(a + 2/3) 

(24) 

for the nonsymmetric V-lobe (from Eq. (16)). 
These equations were optimized using the path of steepest 

ascent method. Table 4 shows a representative comparison of 
the results of the optimization. The V-lobe design outperforms 
the semicircular design for the complete optimal case. The 
optimal geometry occurs at n = 5 for the semicircular lobe 
design, while Q^' continues to increase with n for the V-lobe 
design (this is consistent with the results for small S' in Tables 
2 and 3, respectively). 

Practical Optimal Case. The investigation of the complete 
optimal case above, as well as the results in Tables 1 and 3, 
demonstrate that the V-lobes have greater potential than the 
semicircular lobes. The above optimized results for the V-lobes, 
however, produce a = 0. This means that the lobes are con-
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Table 4 Optimal pumping comparison for complete optimal 
case 

Sc'o 

1 x 10~6 

1 x 10~3 

n 

3 
5 
8 

3 
5 
8 

Qa semic Q 

5.526 
5.678* 
5.484 

174.8 
179.6* 
173.4 

& V-lobe 

8.206 
12.389 
16.736 

259.5 
391.8 
529.2 

&'o V/Q^S 

1.48 
2.18 
3.05 

1.48 
2.18 
3.05 

•Designates maximum flow and optimal number of lobes. 

Table 5 Optimal pumping comparison for a practical angle 
a = 11.54 deg 

S' 

1 x 10~6 

1 x 10~3 

n 

3 
5 
7 
9 

3 
5 
7 
9 

< 
Q' 

Semicircular 
lobe 

173.66 
178.18* 
174.65 
171.81 

4.443* 
4.310 
4.036 
3.888 

Nonsymmetric 
V-lobe 

233.46 
350.22 
432.09 
467.36 

6.315 
9.337 

11.304 
12.108 

'Designates maximum flow and optimal number of lobes. 

tiguous and there is no room at the center of the pump for 
the fluid to exit. In practice an exit hole must exist and its 
radius should be large enough to minimize resistance to out
flow. It should be noted, however, that the exit hole can un
dercut the lobes from beneath, subject to the constraint that 
its radius, R/„ does not reach the low pressure zone. Referring 
to Fig. 2 for the semicircular lobes, R>, < R, + Ar, and to 
Fig. 4 for the V-lobes, R), < R0 sincv. + 5. Practically, these 
conditions are not very restrictive because of the additional 
space that Ar and 5 provide. 

An angle a greater than zero imposes a constraint on the 
optimization process. Therefore, the value of maximum Q' 
decreases as a increases. The following is a check to ensure 
that even when a takes on a physically reasonable value, the 
V-lobe design still outperforms the semicircular lobe design. 
For this check also the small clearance, c, is nonzero. 

A generous angle a = 11.54 deg (which corresponds to Rh 

= 0.2Ro) was selected to provide a wide separation between 
lobes. Table 5 lists a comparison between the optimal Q' values 
for the semicircular and V-lobes at two extreme values of S ' . 
Table 5 proves again that the V-lobe design provides a more 
efficient pumping mechanism even when a takes on a non-
optimal value. (Note in Table 5 that the Q' values for the 
nonsymmetrical V-lobes are lower than those in Table 3, as 
expected. Hence, one should always attempt to design with 
the smallest a possible.) 

Conclusions and Recommendations 
Both a semicircular lobe and a new V-lobe viscous pump 

have been analytically investigated. The analysis was per
formed using several approaches. The solution for the semi
circular lobe is exact (it is based on closed form integration 
(Etsion and Yaier, 1988)). For the V-lobe, however, a closed 
form solution does not exist. An analytical model is provided 
based on reasonable approximations. The approximations are 

D I S C U S S I O N 

Y. Sato1 

In this paper, the authors extended the analysis by Etsion and 

'Saitama University, Shimo-Okubo, Urawa, 338 Japan. 

validated using shape factors and finite element models. For 
both lobe designs, pump geometry is optimized for maximum 
pumping capacity. The results of the optimization show that 
the V-lobe produces a superior pumping mechanism to the 
semicircular lobe. 

The V-lobes have two major advantages over the semicir
cular lobe. The first is that simply making the lobes straight, 
as opposed to being curved, reduces the pumping losses. The 
second, and most important advantage, is that the radial extent 
of the V-lobes and the number of lobes, are not limited by 
geometry constraints (such as the tangency requirement of the 
semicircular lobes). For the straight lobes, pumping capacity 
increases with the number of lobes and the radial extent. 

Increased pumping capacity could be realized by locating 
the rotor between two stators. This is equivalent to operating 
two pumps in parallel. Further improvements could probably 
be made on the lobe leg configuration such as variable lobe 
width and step height along the length of the lobe legs. Mod
ifications of this nature, however, would be made at the cost 
of increased manufacturing complexity. The optimization here 
was performed on the basis of maximizing the flow rate, Q. 
An alternate optimization could have been performed to max
imize the pressure. 
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