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The need for a methodology to determine the stiffness characler- summary of research in this area of continuum mechanics.
istics of elastomeric seals with- complex geometry has prompled an Other relevant research is presented in works by Ogden
investigalion using a commercially available finite element code. (5), Peng and Landel {6), and Kao and Razgunas (7).
Axial and radial compression of O-rings, as well as the influence Using the theories advanced by some of the aforemen-

tioned researchers, Gent and Lindley (8) examined the
compression characteristics of bonded rubber blocks. While
this research is not directly applicable to O-rings, Lindley
{9) developed a simple theoretical treatment for the stiffness
of laterally unrestrained toroidal rubber rings under axial
compression, As the first to assume plane strain conditions,

of restraining grooves and friction, are investigated. Axisymmetric
analyses are performed, and their resulls are compared with those
oblained by other researchers who assumed plane strain conditions.
The differences in the resulls of the axispnmetric and plane strain
) loading conditions increase with the level of compression, except

= for one loading case. The method of reduced integration is shoun Le extended his theory to obtain a force deflection re-
to effectively handle the problem of high localized hydrostatic siresses, lationship.
which are especially enhanced in confined geomstries, and o provide Later, Lindley (10), (1) offered a nondimensional force-
accurate vesults. Stiffness characteristics of O-ring seals having a deflection relationship for an O-ring.
range of geomelric and material properties are given in a nondi-
mensional form. This form allows for general modeling of the _F__ 1.955%2 + 508° f1]
O-ring stiffness as a force and a spring at compression (i.e., de- wDdE

formation) levels up to 32 percent.
F is the load, D and d are the nominal and wire diameters,

INTRODUCTION respectively (see Fig. 1), E the modulus of el:flsticity, and 3
) is the compression (the axial compression divided by the
Many mec.hamcall systems depend upon the use of elas- wire diameter). Lindley (10) derived the first term analyt-
tomeric O-rings for sealing. They are economical and ef- ically assuming plane strain conditions, then added the sec-
fective over a broad range of service conditions and surface ond term as an empirical correction to accommodate high
finishes. The stiffness and stress relationships associated compression levels (1), Equation [1] agreed fairly well with
with the compression of elastomeric O-ring seals have been experimental results up to 25 percent compression.
examined by several researchers. Because elastomers are George, Strozzi and Rich (12) modeled O-rings in un-
nearly incompressible, strain encrgy density functions were restrained axial loading assuming plane strain, Their results
developed to describe the large elastic deformations that agreed well with Lindley’s predictions and experimental
elastomers .commonlﬁy unf:lergo. . Lo results by George and Williams. These will also be compared
The carliest work in this area is that by Mooney (1) in his to the numerical results in this work. Dragoni and Strozzi
theory of large elastic deformations of isotropic materials, (13 performed a plane strain FEM analysis of an O-ring
late_r complemez}ted by Rivlin (2). Treloar (3) per formed a seal restrained by a rectangular groove. The lateral walls of
variety of extension and compression tests which supported the groove were defined to be tangent to the undeformed

) the theory proposed by Mooney (Z). Rivlin {#) provided a O-ring, and loading was applied until the deformed O-ring

filled the entire groove.
Others have measured stiffness and damping of O-ring

Pmsemeﬁfﬁ;ﬁ;gf"&l’;’g “é‘:iﬁgg seals in the radial mode (14) and in the axial-shear-twist
Ap;ll 29..,,;,3;, 2, 1091 mode (15), but better understanding of static properties is
Final manuscript approved February 13, 1991 needed before dynamic behavior can be properly analyzed.
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Fig. 1-—Basic geometry definitions,

Elastomeric O-ring seals are typically constrained in grooves
and compressed five to 25 percent. Their complex geo-
metries and large deformations suit the finite element method.
Numerical results can be verified for simple cases where
experimental data is available, giving assurance of their va-
lidity for more complicated geometries.

METHOD

Five common loading conditions described in Fig. 2 (in-
cluding combinations of lubricated-frictionless, unlubri-
cated, axial, radial, restrained, and unrestrained loading)
will be examined. Note that Fig. 2(b) represents two cases
of axial unrestrained loading: lubricated and unlubricated.

The restraining grooves are selected similarly to those in -

Ref. (13) such that the groove walls are tangent to the un-
deformed O-ring wire.

The major objective of this work is to determine the static
stiffness characteristics of hyperelastic O-ring seals using a
commercially available finite element code, (6). The non-
linear finite element formulation used is based upon the
Mooney-Rivlin constitutive equations as implemented in
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Fig. 2—({a) Unrestralned radla! icadIng. {b) Unrestrained axlal loading. {c}
Restrained radial toading. {d} Restralined axlal loading.

element ST1F84 (I6). This altows two empirically-determined

constants and a Poisson’s ratio close (0 0.5 to model nearly

incompressible behavior. (

The plan of this work is to examine the theory, to sur-
mount its nontinear difficulties, and to present results for
axisymmetric loading. Consideration is given to mesh se-
lection, convergence, numerical integration, and data ma-
nipulation. The methodology is applicable to other seal geo-
metries such as X-rings or U-rings.

. MATERIAL DESCR[PTION

A hyperelastic material can be described by a strain en-
ergy density function, W, whose derivative with respect to
a strain component determines the corresponding stress
component. Three principal strain invariants, I, I1, and If7,
of the Cauchy-Green deformation tensor can be formed,
see Refs. (1)—(7). While the invariants will not be defined
here, they are described in terms of the principal stretch
ratio, A, If the material is isotropic, the strain energy density
is 2 function of these strain invariants, W=W(IILIIT}. The
Mooney-Rivlin (M — R strain energy density function is the
most extensively used and is implemented in the finite ele-
ment code (16} as

W = A(I-8) + B(II-3)
+ GO -1y + DI — 1)?

(21

Associated with this constitutive equation are four con-
stants, A, B, C, and D, which describe a particular hypere-
lastic material being considered. Only A and B are inde-
pendent, where C and D are functions of A and B and
Poisson’s ratio. As the material approaches incompressibility
(ie., v=0.5), invariant [/ approaches unity leaving only the
first two terms in Eq. [2]. If B =0, the material is said to be
neo-Hookean. The constants, A and B, describe the stress-
deflection response for the type of elastomer under consid-
eration. A is accountable for the stiffness of the material,
while B precipitates a gradual increase in slope, as will be
evident from the following discussion.

The principle stretch ratio, A, is defined for uniaxial ex-
tension as
I + & {

= =1+ i=1+e 3]

4
A=~
fo [0 tG

where ¢ is the strain and J is the deformation. The Cauchy
stress, T, is defined as the partial derivative of W with respect
to the strain and is given by Kao and Razgunas (7) as

T = 202 — I/A)(4 + BIN) (4]

The constants A and B can be determined by curve-fitting
the results from a uniaxial test to Eq. {4], and they should
be non-negative (7). From Eq. [4] it is evident that Cauchy's
stress is a nonlinear function of the stretch. A modulus of
linear elasticity, E, relates to the values of the constants A
and B at relatively small stretches as follows

o =T\ = Esg [5]
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Combining Eqs. [3] and (5] yields

T=EMN®~- N [6]

)

Taking the derivative of T with respect to A and evaluating
at A=1 (the point where linear elasticity is assumed pre-
dominant) yields

aT

a =£ (7]

A=l

=E@\ — 1)

a=t

Performing the same operation on Eq. [4] results in

8T
oA

= B(A + B) (8]
x=1

Hence, an expression for E as a function of A and B is
obtained as
E = 6(A + B) = 6A(1 + B/A) (9]
Therefore, by choosing a value for E, A can be obtained
for the neo-Hookean case (B=90). For B>0 it is possible t0
vary the ratio. of B/A, while maintaining a constant E, to
examine non-neo-Hookean behavior,
Numerical techniques for solving finite element models
of incompressible materials are complicated by the fact that
)Poasson s ratio, v, is equal to or close to 0.5. The work by
George et al. (18) provides details of modeling large strain
axisymmetric and plane strain problems and describes how
reduced integration allowed successful modeling of nearly
incompressible materials. This method handles the numer-
ical displacement locking that occurs most frequently where
such materials are subjected to high hydrostatic stresses such
as the O-ring compression cases investigated here.

NUMERICAL METHODOLOGY

Details of preprocessing (geometry and mesh generation),
solution (convergence considerations), postprocessing, and
data manipulation appear in English (19). These are sum-
marized as follows.

Prepracessing Phase

Geometry and Mesh Generation

Because of its axial and radial symmetry, an O-ring can
be modeled as axisymmetric two-dimensional (sce Fig. 1},
The nominal diameter, D, was held constant for all cases.
To investigate the effects of curvature, the aspect ratio, d/D,
was varied from one-eighth to one. Due to symmetry about
the radial axis only one half of the cross-section was mod-
eled. A two dimensional madel applies also for a plane strain
case; curvature, however, is immaterial.

A first order hyperelastic quadrilateral element was cho-
sen for both the plane strain and axisymmetric problems.
(See comparison by English (19) between first order trian-
gular and first order quadrilateral elements.) It was also
found (19) that doubling the mesh size to 360 quadrilateral
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{d} Restrained radial loading.

{¢) Unrestrained radtal loading.

Flg. 3—Definition of boundary conditlens and applied displacements.
{a) Unrestralned axial loading.
{b) Restrained axial loadlng.
(¢) Unrestralned radial loading.
(d) Restrained radial loading.

elements caused less than two percent change at the highest
compression. The results presented herein were obtained
using the 360 element model.

Boundary Condition

Gap elements were used at contact boundaries (Fig 3).
In the case of unlubricated-unrestrained axisymmetric axial
loading, a coefficient of friction of 0.9 was used to prevent
slippage at the contact boundary. In all other cases fric-
tionless gap elements were used. Ten load steps were ap-
phed to the unrestrained cases, totalling 32 percent compres-
sion. Only seven load steps were possible in restrained cases,
totalling 22.4 percent compression.

Material Properties

The material was assumed homogeneous and isotropic.
For the results to be normalized with respect to modulus
of elasticity, 3.5 Mpa (510 psi) was chosen as typical for com-
mon rubbers. The Mooney-Rivlin constants were varied from
BIA=0 to 1, while maintaining E = constant (i.e., E=
6(A +B)=3.5 MPa). For the majority of the cases v = 0.49
was used, but for comparison, several cases were examined
with v = 0.495 and 0.499.

COMPRESSION RESULTS

The final deformations for the five loading cases of Fig. 2
are presented in Fig. 4. Dashed lines represent the unde-

formed geometry. As can be seen, the axial loading of the

lubricated (frictionless) unrestrained O- -ring causes it to
translate radially. In the restrained cases the O—rmg essen-
tially fills up the groove.

Figure § shows a comparison of contact stress profiles at
32 percent compression for unrestrained lubricated axial
loading. The reduced integration method yields much lower
contact stresses {therefore, lower strain energy) suggesting
more accurate results, see also examples in Ref, (18). All
further solutions used reduced integration.

Results for normalized reaction force (F/mdDE, Fig. 6)
show that varying B/A while holding E constant has very
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Fig. 4—Deformed vs. undeformed O-Ring geometries.
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Fig. 5—Comparlson of the normallized contact stress profiles at 32 per-
cent compression.

little impact on the response. English (19) validated this
behavior also in uniaxial loading by plotting Cauchy's stress,
Eq. {4], as a function of stretch with B/A as a parameter.
The plot shows that for deformations up to 32 percent the
differences in Cauchy’s stress are very small. Thus, O-rings
subjected to strains up to about 30 percent can be treated
as neo-Hookean.

English {19) found that a variation of Poisson’s ratio from
0.49 to 0.495 had a negligible effect on the calculated re-
sponse of all cases. However, increasing Poisson’s ratio to
0.499 resulted in the divergence of the solution for re-
strained loadings, even at the first load step. It is suspected
that the formulation in which the nearly incompressible
strain energy density function is implemented in (16) has
reached its limit. Dragoni and Strozzi (13) reported varia-
tion of the peak contact stress as a function of Poisson’s ratio
and successful application of Poisson's ratio up to 0.4999
for their code.

The effect of curvature was investigated by solving a set
of axisymmetric problems where the nominal diameter re-
mained constant at 2="76.2 mm (3 inches), but the diameter
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]

B/A=0,0

X o+

T T T T T T T T T T T

12 24
Percenl: Compression

Fig. 8—The effect of varlous ratlos of the M-R constants, B/A, for the
case of restrained axial loading.

aspect ratio, d/D, varied from 1/8 to ! in increments of 1/8.
No significant differences can be detected in the resuls in
Fig, 7 for the various aspect ratios, The experimental results
in Ref. (15) by and large conform with this finding. For the
remainder of the work here, all models use the diameter
aspect ratio of 1/8, i.e., a wire diameter of 9.53 mm (0.375
inches). Since curvature has no effect on the results in axi-
symmetric loading, it is of interest to compare these results
with those of plane strain loading. It should be pointed out
that using a plane strain model implies that, because cur-
vature is immaterial, axial and radial loading responses are
indistingnishable.

The first comparison (Fig. 8} is made for all unrestrained
cases, i.e. 1) lubricated-unrestrained axial loading, 2)
unlubricated-unrestrained axial loading, 8) unrestrained-
radial loading, and 4) unrestrained-plane strain loading.
This plot clearly shows that the lubricated (frictionless} O-ring
and the unlubricated O-ring {friction coefficieni=0.9) be-
have quite differently under axial loading conditions. The
mean diameter of the well lubricated O-ring increases as
the load is applied, while the cross-section becomes smaller
to maintain constant volume, This case results in the lowest
stiffness, The plane strain case results are similar only to
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Fig. 7—The effect of various aspect ratios, d/D, for the case of lubrlcated-
unrestrained axisymmetric axial compresslon.
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Fig. 8—Normalized force vs. percent compression for all unrestrained
cases.

those of unlubricated axial loading, while radial loading
gives the highest stiffness.

Figure 9 provides a comparison between prescnt and pre-
vious results for the cases of unrestrained leading. These
indicate that Lindley's Eq.[1] underestimates the load-
deflection characteristics of alt but the well lubricated O-ring.
Note the good agreement of the results for unlubricated-
unrestrained axial loading, and therefore, plane strain load-
ing, with Strozzi’s numerical results (Strozzi used a plane
strain model). George’s and Williams’ experimental results
also agree well with these. The good agreement of the re-
sults for these particular cases with previous work, validates
the current method, and, therefore, the results for other
cases. Hence, the differences between the solutions for the
various cases in Fig. 9 implies that O-rings cannot always
be described by the plane strain assumption for all loading
cases.

Results for the three restrained cases are provided in
Fig. 10. Axial, radial and plane strain results agree welf up
to about 10 percent compression only. As for previous cases
of unrestrained loading (Figs. 8 and 9) it can be seen that
the radial response is greater than either the axial response
or the plane strain response. Generally, restrained loading
response is greater than that of unrestrained loading.
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Flg. 9—Comparlson with existing resulis for the case of unrestralned
loading.
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Fig. 10—Resulis for ali three cases of restrained loading.

STIFFNESS

Expressions for nondimensional force versus compres-
sion were calculated by curve, fitting the numerical data to
a two term exponential similar to Eq. {1]

= qd® + ¢ [10]

F
L = iDE

where 8=x/d (x being the dimensional compression). The
coefficients and exponents are given in Table 1. The stiff-
ness, K, is defined as

d
S _AmdDER p @" - el [
x ox a5
Dimensionless stiffness is then,
o K e -1
K DE " ® ab®" ™ 4 cdd 12

Hence, the dimensionless stiffness, K, can be determined
for all cases using the coefficients in Table 1.

SUMMARY AND CONCLUSION

Numerical analysis difficulties associated with large elastic
deformation of elastomeric O-rings using a commercial
finite element code have been described. No justification
was found for using more terms than required by the neo-
Hookean representation of material behavior, Numerical
instabilities developed when Poisson’s ratio approached 0.5,
especially when restrained O-rings were analyzed. The
method of reduced integration appears to give more real-
istic solutions in such cases with high localized hydrostatic
stresses. '

The validity of the plane strain assumption was explored,
and it agreed well for the unlubricated-unrestrained axial
loading case, but not as well for the other cases. It was found
that the results are affected by the formulation (i.e., plane
strain or axisymmetric constitutive equations), rather than
by the aspect ratio or curvature. Consequently, since most
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TABLE 1—LEAST-SQUARES COEFFICIENTS FOR THE CALCULATION OF NONDIMENSIONAL
STIFFNESS.

TyPE OF LOADING a b € d

Axial Unrestrained Lubricated 0.74602 1.25282 5.09259 3.38757
Axial Unrestrained Unlubricated 0.87275 1.29292 " 693373 3.6b385
Radial Unrestrained 1.03792 1.28710 7.77994 3.53400
Plane Strain Unrestrained 0.97184 1.29093 7.10140 3.55262
Axial Restrained 1.63328 1.38463 £85.984 5.18690
Radial Restrained 176730 1.38755 948.475 5,32269
Plane Strain Restrained 1.65365 1.58072 530.677 513163

commercial codes can handle axisymmetry with the same
ease as plane strain, the latter is an unnecessary assumption.

Boundary conditions were found to have a major role on
the responses. This is evident from the different behaviors
of lubricated vs. unlubricated, axial vs. radial, and restrained
vs. unrestrained loadings. '

Generalized analytical expressions for load-deflection, and
stiffness, were presented in Eqs. [10] and [12], respectively.
‘The coefficients in these expressions were determined by
curve-fitting the numerical data for seven types of loading
{Table 1).

The aforementioned expressions were made nondimen-
sional with respect to modulus of elasticity, E. It is well
known (20), however, that E is a function of various effects,
two of which are tme (relaxation} and frequency {strain
rate). A proper value of E should accordingly be used for
mearingful load-deflection prediction. In static loading, a
relaxed vaine would be appropriate. In dynamic loading, £
is a function of the strain rate or loading frequency, and is
represented by a complex number. The real part is refer-
enced (20} as the storage modulus (i.e., stiffness) and the
imaginery part as the loss modulus (i.e., damping). Using
the complex modulus, E, will result, respectively, in a force
due to material stiffness and damping.
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