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Abstract As the state of the art pushes triboelements

toward greater capabilities and longevity, the need for

evolving triboelement technology exists. The following

work explores a novel coupling of phenomena inspired by

biomimetics. A poroviscoelastic substrate coupled to a

fluid film load is modeled and compared to its rigid

counterpart. It is hypothesized that poroviscoelasticity can

improve triboelement properties such as damping and wear

resistance and have utility in certain applications where

flexibility is desired (e.g., biomechanical joint replace-

ments, flexible rotordynamic bearings, and mechanical

seals). This study provides the framework for the analysis

of flexible, porous viscoelastic materials and hydrodynamic

lubrication.

Keywords Porous media � Poroviscoelasticity � Fractional
calculus � Biomimetics � Hydrodynamic lubrication

List of Symbols

a Film inlet to outlet ratio (hi=ho)

B Biot poroelastic constant

D Bearing pad depth

En Fractional calculus viscoelastic parameter

h Fluid film thickness

hi Inlet fluid film thickness

ho Outlet fluid film thickness

H Bearing pad height

k Permeability

K Biot poroelastic constant

L Bearing pad length

p Pore pressure in substrate pad

P Fluid film pressure

u Fluid velocity in x direction

U1 Bearing velocity

Ux Filter velocity in x direction

Uy Filter velocity in y direction

a Beavers–Joseph slip coefficient

aB Biot poroelastic constant

dij Kronecker delta (index notation)

k Fractional calculus viscoelastic parameter

l Lubricant viscosity

�ij Strain

rij Stress

r�ij Effective stress in porous material

ðrveÞij Viscoelastic stress

n Porous film thickness modifier

f Poroelastic fluid strain

1 Introduction

Biomimetics is emerging as an avenue for new tribological

technology. A material of particular interest is articular

cartilage. This load bearing material is a phenomenal

facilitator of motion and has low friction and high wear

resistance [19, 20]. Cartilage is a flexible, porous collagen

(solid) matrix permeated with synovial fluid. It is desired to

mimic this mechanism for application in mechanical

systems.

Porous bearings are already commonplace in engineer-

ing applications. These sintered, or self-lubricating, bear-

ings consist of a metal matrix impregnated with a lubricant.

The interface of the journal and the bearing surface is
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virtually rigid, and the bearings operate in the mixed

lubrication regime. However, if the bearing surface is made

compliant, then deformation occurs in the bearing sub-

strate, potentially leading to operation in the full film

regime. The mechanism by which deformation occurs can

be modeled in a number of ways (e.g., elastic, viscoelastic,

elastic-plastic). Poroviscoelasticity (PVE) is one such

constitutive model for a flexible, porous material. Certain

engineered materials, like polyurethane foams and hydro-

gel scaffolds, display poroviscoelastic character. It is

desired to explore PVE materials in applications such as

bearings and dampers.

The objective of the current study is to couple a fully

saturated poroviscoelastic bearing material with a hydro-

dynamic (HDL) fluid load. The fluid mechanics of thin

films are well defined for conventional, rigid, triboelements

by the Reynolds equation. However, the traditional Rey-

nolds equation assumes no-slip conditions occurring

between rigid plates. With a porous and flexible interface,

the boundary conditions of the Reynolds equation are

modified to allow vertical flow in and out of the substrate

material, as well as effective slip in the horizontal direc-

tion. The implications of the coupled HDL/PVE problem

are studied as they relate to triboelement performance.

Poroviscoelastic materials have two time-dependent

mechanisms, giving rich frequency domain characteristics

(i.e., stiffness and damping). The properties of stiffness and

damping are assessed relative to an equilibrium state. The

purpose of the current work is to simulate a coupled HDL/

PVE problem to equilibrium and compare to the equilib-

rium states of similar bearing designs. This work is fun-

damental to understanding the transient behavior of a

coupled HDL/PVE triboelement.

2 Background

The main subcomponents of the coupled system are the

poroviscoelastic substrate (bearing surface), and the

hydrodynamic lubrication that interacts with the porous

bearing pad. Relevant literature is surveyed, and constitu-

tive relationships are developed herein for each

phenomena.

2.1 Poroviscoelasticity

Poroviscoelastic theory traces its roots to soil mechanics

and later biomechanics [24]. It is the combination of

poroelasticity and viscoelasticity. Therefore, porovis-

coelastic theory yields two dissipative mechanisms, one

through a reversible fluid exodus and one hysteretic effect.

Each mechanism acts on a different timescale, giving a

wide spectrum of dissipation. The poroelastic equations are

provided to illustrate the concept of effective stress, fol-

lowed by a description of viscoelasticity.

To develop the poroviscoelastic model of the bearing

material, poroelasticity is first described. Biot [4, 5, 23]

defines the three-dimensional constitutive equations for

poroelasticity in terms of stress (rij), strain (�ij), pore

pressure (p), and incremental fluid content (f):

rij ¼ 2G�ij þ K � 2G

3

� �
�kkdij � abdijp; ð1Þ

f ¼ ab�kk þ p
1

M

� �
: ð2Þ

K, G, M, and aB are physical properties of the poroelastic

structure [8, 10, 11, 18, 23]. The linear relationship

between strains (�; f) and stresses (r; p) is apparent in

Eqs. 1 and 2. If the solid and fluid components are

incompressible, and a volume of fluid added to the element

is equivalent to the change in the bulk volume (aB ¼ 1,

M ! 1), then the principle of effective stress is utilized.

Effective stress is an important concept in poromechanics

and is employed by finite element solvers such as ABA-

QUS [1]. The effective stress (r�ij) in the porous material is

defined as [1, 23]:

r�ij ¼ rij þ pdij; ð3Þ

Equation 3 indicates that the effective stress is simply a

superposition of the total stress and pore pressure. The

effective stress is borne by the solid grains of the porous

matrix [22]. When the viscoelastic effects are applied to the

solid particles only, poroviscoelasticity is defined within

the effective stress:

r�ij ¼ ðrveÞij; ð4Þ

The PVE theory is reduced to an effective stress formula-

tion, where the solid grains contain the viscoelastic action,

and the solid/fluid interactions give the porous fluid dissi-

pation. Any number of viscoelastic formulations can be

used to model the solid particles, as long as they are

thermodynamically permissible [6, 7, 9, 14, 21]. A frac-

tional calculus model will be supplied in the current work

[19, 21]. The following brief description of linear vis-

coelasticity provides the framework for the fractional cal-

culus model.

Linear viscoelasticity relates stress and strain with respect

to time. If each increment of strain makes an independent

contribution to the total stress response, viscoelasticity is

described by the following convolution integral [14]:

rve tð Þ ¼
Z t

0

_� sð ÞE t � sð Þ ds: ð5Þ

where rve tð Þ is the stress, � tð Þ is the strain, and the relax-

ation modulus is denoted by E tð Þ. Equation 5 describes the
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relationship of stress and strain in one dimension. The

relaxation modulus is formulated herein by a fractional

calculus definition, and the one-dimensional formulation is

extended to three dimensions for simulation. Fractional

calculus is advantageous in modeling viscoelasticity

because fewer material terms are often needed relative to

integer-order models (e.g., Maxwell–Voigt, Prony series)

[19–21]. One such model, the complementary error func-

tion fractional calculus model (CERF), has an unambigu-

ous relaxation modulus in the time domain:

EðtÞ ¼ E0 þ
X1
n¼1

Ene
kn

2tð Þerfcðkn
ffiffi
t

p
Þ; ð6Þ

where En and kn are material properties related to the

elastic and dissipative mechanisms, respectively. The

CERF model intersects the convenience of integer-order

mathematics with the flexibility of fractional calculus by

fixing the fractional derivative at 1/2. Biesel [3] shows that

the CERF is a useful model for modeling viscoelastic

behavior in many real materials.

The CERF model is implemented in three dimensions as

the ðrveÞij term in Eq. 4. With the specification of perme-

ability and the initial condition void ratio, the porovis-

coelastic model is defined. The hydrodynamic load acts as

a boundary condition at the interface of the substrate and

the fluid film. It remains to define and couple the HDL

problem to the substrate mechanics.

2.2 Hydrodynamic Lubrication with Porous

Interface

The poroviscoelastic substrate gives two unique dissi-

pation mechanisms: one from hysteresis in the solid par-

ticles and one from fluid dissipation. The fluid transmission

also provides a strong coupling mechanism with the fluid

film. At a porous boundary, fluid flow is allowed to per-

meate into (or out of) the porous medium. In addition,

pressure generated in the fluid causes deformation of the

porous substrate. These interfacial mechanisms are con-

sidered when developing the constitutive model of the

fluid. It is desired to describe the fluid mechanics in this

configuration in a similar manner to the rigid case, which

generates the well-known Reynolds equation [15]:

o

ox

oP

ox
h3

� �
þ o

oz

oP

oz
h3

� �
¼

12l
o

ox

�U1h

2

� �
þ U1

oh

ox
þ oh

ot

� �
:

ð7Þ

The introduction of a porous and flexible boundary, as

shown in Fig. 1b, modifies the boundary conditions of the

Reynolds equation. A popular porous boundary condition is

attributed to Beavers and Joseph [2]. Beavers and Joseph

provide a slip-flowcondition for the porous interface,which is

based on experimental findings. Figure 2 shows a snapshot of

the fluid velocity profiles in the fluid channel and the porous

filter.U1 is thefluidvelocity at the no-slip interface (y ¼ h),uB
is the fluid velocity at the porous interface (y ¼ 0), and Ux is

the porous filter velocity (fromDarcy’s law). TheBeavers and

Joseph boundary condition relates the interface velocity to the

filter velocity. In effect, the slip-flow boundary condition

approximates the boundary layer shown in Fig. 2. Mathe-

matically, the slip-flow condition is given as [2]:

ou

oy

����
y¼0

¼ � affiffiffi
k

p uB � Ux½ � ð8Þ

where a is a slip coefficient, and k is the permeability of the

porous structure. Beavers and Joseph show that this ad hoc

boundary condition reasonably captures experimental

results for a range of materials. In reality, it is unlikely that

slip is actually occurring at the interface; however, the slip

coefficient helps to rectify the results from experiments and

the theory. Therefore, the slip coefficient is a useful

parameter for the designer to retain. The porous interface is

incorporated in the Reynolds equation by modifying one of

the rigid boundary conditions, leading to a modified

velocity profile in the horizontal direction:

uðyÞ ¼ � 1

2l
oP

ox
y� hð Þ yþ 1

3
hn1

� �
þ U1

h
y 1� n0ð Þ þ hn0½ �;

ð9Þ

where n0 and n1 are film thickness modifiers [17]:

n0 ¼
ffiffiffi
k

p
=a

hþ
ffiffiffi
k

p
=a

ð10Þ

n1 ¼
3 h

ffiffiffi
k

p
=a

� 	
þ 2k


 �
h hþ

ffiffiffi
k

p
=a

� 	 : ð11Þ

Applying continuity to the fluid film (retaining the sign

convention of Fig. 2):

oðqvÞ
oy

� oðquÞ
ox

þ oðqwÞ
oz

þ oq
ot

¼ 0; ð12Þ

and integrating across the film thickness, the porous Rey-

nolds equation is obtained:

o

ox

oP

ox
h3 1þ n1ð Þ

 �� 


þ o

oz

oP

oz
h3 1þ n1ð Þ

 �� 


¼

12l
o

ox

�U1h n0 þ 1ð Þ
2

� �
þ U1

oh

ox
þ V þ V0 þ V 0ð Þ

� 

;

ð13Þ

where V is the traditional squeeze term (oh
ot
). Equation 13

describes the pressure in a thin film with a porous, flexible
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interface. In addition to the film thickness modifiers, two

additional ‘‘squeeze’’ terms are present: V0 and V 0. These
terms represent the vertical flow of fluid and the rate of

change of the porous interface, respectively. The vertical

fluid flow is governed by Darcy’s law:

V0 ¼ k
op

oy

����
y¼0

ð14Þ

As permeability approaches zero ðk ! 0Þ, Eq. 13 becomes

the conventional Reynolds equation (Eq. 7). As a result of

the porous interface, three types of coupling effects are

apparent: film thickness modifiers (n0 and n1), deformation

of the substrate (V 0), and vertical fluid flow (V0). The

material properties of the substrate have a strong influence

on the coupling terms. These parameters will be explored

in the following section.

3 Results

The Beavers–Joseph boundary condition is considered for

its effect on the velocity profile in the fluid channel (Eq. 9).

Figure 3 shows the apparent slip at the porous boundary

(y ¼ 0) for a virtually parallel channel (as shown in Fig. 2).

The parameters used for Fig. 3 are given in Table 1. At the

top interface (y ¼ h), no slip occurs, and the fluid moves

with the journal’s velocity U1, while the lower, porous

interface experiences nonzero velocity, ub. This is in con-

trast to the rigid, no-slip case, where u=U1 ¼ 0 at y ¼ 0

(also shown in Fig. 3). Beavers and Joseph indicate that

Fig. 1 Thrust bearings in the

rigid and porous cases. a Thrust

bearing with rigid interfaces.

b Thrust bearing with porous

interface on bottom boundary

Fig. 2 Velocity profile in fluid

channel and porous filter

(modified from [2])

Fig. 3 Velocity profiles in the fluid channel for various slip values (a)
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real materials have slip coefficients between a ¼ 0:001 and

a ¼ 10. The implications of a porous boundary are to

change the relative fluid velocity between the two plates. In

cases where a is large (e.g., lattice foametals), there is a

large effect on the velocity profile. This can even cause a

negative velocity at the interface if the Poiseuille flow is

large enough and acts counter to the Couette flow. In the

case of the Poiseuille flow acting counter to the Couette

flow, there is a unique combination of a and k that repli-

cates the no-slip condition.

Considering the porous bearing surface, the domain of

the porous substrate is defined. Figure 4 shows the

boundary conditions imposed on the porous pad. Assuming

a submerged bearing, the leading and trailing edges of the

pad are exposed to atmospheric pressure (gauge), which

allows fluid flow across the boundary. The same condition

is imposed on the lateral direction (into and out of the

page). The bottom boundary is fixed and rigid, and the top

boundary is flexible and the pressure, p, is equal to the fluid

film pressure, P. The pressure gradient in the porous pad

facilitates fluid flow throughout the pad. The pressure

boundary and initial conditions are defined mathematically:

pð0; y; z; tÞ ¼ pðL; y; z; tÞ ¼ 0 ð15Þ

pðx; y; 0; tÞ ¼ pðx; y;D; tÞ ¼ 0 ð16Þ

op

oy
ðx;�H; z; tÞ ¼ 0 ð17Þ

pðx; 0; z; tÞ ¼ Pðx; 0; z; tÞ ð18Þ

pðx; y; z; 0Þ ¼ 0 ð19Þ

�ð0; y; z; tÞ ¼ �ðL; y; z; tÞ ¼ 0 ð20Þ

�ðx; y; 0; tÞ ¼ �ðx; y;D; tÞ ¼ 0 ð21Þ

�ðx;�H; z; tÞ ¼ 0 ð22Þ

rðx; 0; z; tÞ ¼ �Pðx; 0; z; tÞ ð23Þ

rðx; y; z; 0Þ ¼ 0 ð24Þ

Equations 15–18 enforce the fluid pressure boundary con-

ditions, while Eqs. 20–23 are placed on the solid matrix.

Equation 17 enforces no flow across the rigid boundary at

y ¼ �H.

Before simulating the fully coupled HDL/PVE problem,

the corresponding rigid/porous case is studied under a

hydrodynamic load. The rigid/porous case gives insight

into the pressure distribution in the porous pad, which

indicates where deformation will occur in the flexi-

ble/porous case. The pressure in the porous substrate is

known analytically by Laplace’s equation. If the 2D case is

considered, the coupled HDL/porous problem also has an

analytical solution [13, 17]. Figure 5 shows the pressure in

an example rectangular porous pad (L=H ¼ 4), exposed to

a hydrodynamic fluid load (from Eq. 13). Within the por-

ous pad, the pressure is highest at the film interface and

decays throughout the body to the zero pressure bound-

aries. The lower, rigid interface also experiences a pressure

load, dependent on the geometric dimensions H and L. The

solution of the rigid/porous case is calculated from

Laplace’s equation as a reference for the HDL/PVE prob-

lem. In addition, the rigid/porous solution is used to ini-

tialize the HDL/PVE problem for efficient numerical

calculations.

The coupled PVE/HDL problem is solved with a com-

bination of finite elements and finite difference/finite vol-

ume methods. The commercial finite element program

ABAQUS is used to simulate the PVE problem, by using

pore pressure elements (CPE8RP) and a fractional calculus

viscoelastic constitutive model for the solid grains. The

CPE8RP element is a plane-strain, 8-node biquadric dis-

placement element with pore pressure degrees of freedom

[1]. An ABAQUS user-subroutine solves the Reynolds

equation with a combination of finite difference and finite

volume methods [16]. The subroutine is written in FOR-

TRAN to comply with the requirements of ABAQUS. At

each increment in time, nodal information is stripped from

the results file. This information is used to determine V, V 0,
V0, and h. The Reynolds equation is solved explicitly at

each time increment and applied to the solid-fluid boundary

of the PVE pad. ABAQUS incorporates the new boundary

condition and proceeds forward in time (t þ Dt). Effec-
tively, the HDL solution acts as a continuously updating

load and boundary condition on the substrate. Figure 6

shows the control schematic for the coupled simulation.

The simulation runs until a steady state is achieved. This

means that the viscoelastic, porous, and squeeze mecha-

nisms have all achieved steady-state behavior. At that

point, the analysis is queried for the metrics of interest,

including load support/film thickness, vertical flow. The

parameters used in the current study are listed in Table 2.

These parameters are chosen to establish a methodology

for solving problems of this nature and are not specific to

an application; however, the material properties of the solid

Table 1 Parameters for Beavers–Joseph slip analysis

Parameter Symbol Value (units)

Permeability k 10-10 (m2)

Pressure gradient dP
dx

500 (Pa/lm)

Channel height h 100 (lm)

Fluid viscosity l 1 (Pa s)

Bearing velocity U1 0.1 (m/s)
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(E0, E1, kn, v) are loosely based on biological materials

[19].

A long bearing (L[ [D) is analyzed to reduce com-

putation time and provide insight into the coupling process

of the fluid film and poromechanics. The film thickness

ratio, a ¼ 2:2, is known to maximize load carrying

capacity in the rigid case. The solution to the coupled

problem is performed in two steps to alleviate convergence

issues. The first step places a hydrodynamic load on the

surface of the poroviscoelastic pad and reaches a fluid

pressure equilibrium without deformation in the body

(corresponding to the rigid/porous case). The second step

‘‘releases’’ the pad to deform according to the pressure load

obtained from the porous Reynolds equation (Eq. 13). The

coupling terms are updated at every increment in time. The

simulation is run to steady state, where the temporal pro-

cesses have completed. From this equilibrium, the desired

system properties are obtained. An example simulation is

characterized in Table 3.

During the simulation to steady state, the film profile

and corresponding pressure profile in the bearing are

tracked in time. Figure 7a shows the evolution of the film

Fig. 4 Solid and fluid boundary

conditions on porous pad.

a Fluid pressure boundary

conditions on the PVE pad.

b Solid boundary conditions on

the PVE pad

Fig. 5 Pressure in the porous

pad from HDL load. a Isometric

view of pressure in the porous

pad. b Top view of pressure in

the porous pad
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thickness over time, and Fig. 7b shows the evolution of the

pressure profile. Initially, the porous pad is undeformed. As

the porous and viscoelastic mechanisms respond to a HDL

load, deformation occurs. In a viscoelastic sense, this

relates to the transition from the glassy (t ¼ 0þ) to rubbery

modulus (t ¼ 1). The pressure profile (Fig. 7b) also

evolves in time, as the maximum pressure increases and

changes lateral location in the bearing. The time-dependent

action of the bearing gives stiffness and damping character

in the frequency domain as well [19, 21].

Figure 8 shows results of the rigid, rigid/porous, and

flexible porous cases simulated at steady state (t ! 1).

Figure 8a shows the fluid film thickness generated by each

case for equivalent geometries and loads (k ¼ 10�14 ½m2�).
Here, the rigid/porous and flexible/porous bearings have a

smaller film thickness to support an applied load, as flow

from the fluid film is forced into the porous medium.

Figure 8b shows the corresponding pressure profiles pro-

duced to sustain a fixed load (W). The pressure profiles are

different for the flexible/porous case and shifted to com-

pensate for the deformation in the porous pad. Finally,

Fig. 8c shows the flow of fluid into the porous pad for the

rigid/porous and flexible/porous cases. There is no vertical

flow in the corresponding rigid case (Uy ¼ 0). The flow

spikes near the location of Pmax in the flexible/porous case.

For low permeabilities, the fluid mechanics are dominated

by the film profile (wedge term) rather than the vertical

flow of fluid into the porous pad. The film thicknesses,

maximum pressures, and vertical flow values are provided

in Table 4.

The results shown in Fig. 8 indicate that the PVE/HDL

solution changes the character of the film profile. There

does not appear to be a significant penalty to the porous/

flexible configuration, except for smaller outlet film

thicknesses. The hypothesized benefits of the porous/flex-

ible case (damping and lubricant availability) are weighed

relative to these costs. The implications of this are dis-

cussed in the following section, after varying permeability

is considered.

When the inlet film thickness is fixed (hi ¼ 40 lm), the

effect of permeability on the load support capacity is

shown in Fig. 9. The PVE case is compared to the rigid

case with respect to permeability. The load support has a

strong dependency on the permeability in the substrate,

which highlights the importance of substrate material

selection. In particular, permeability changes between

k ¼ 10�16 ½m2� and k ¼ 10�9 ½m2� have a strong influence

on the load support, as shown in Fig. 9b.

Substrate geometry proves to be less influential for the

example parameters chosen. This is shown in Fig. 10 for

various pad length to width ratios (at the said fixed inlet

film thickness). The influence of the porous pad’s depth on

load support capacity is marginal except for extremely

shallow or deep pads. For permeabilities low enough to

support fluid film loads, the pressure gradient at the inter-

face does not appear to be significantly influenced by the

pad’s dimensions. The pad depth is larger than the film

thickness by at least one order of magnitude in this simu-

lation. Larger pressures may alter the sensitivity to pad

Fig. 6 Flow of information schematic

Table 2 Parameters for PVE/HDL analysis

Parameter Symbol Value (units)

Permeability k 10-14 (m2)

Load per depth W 600 (N/m)

PVE pad length L 25 (mm)

PVE pad height H 6.25 (mm)

Bearing velocity U1 0.02 (m/s)

Fluid viscosity l 0.1 (Pa s)

Slip coefficient a 0.1

Inlet film thickness (if fixed) hi 40 (lm)

Film thickness ratio (if fixed) a 2.2

Fractional elastic modulus E0 5 (MPa)

Fractional elastic modulus E1 5 (MPa)

Fractional dissipative constant kn 4 (s-1/2)

Poisson’s ratio m 0.45

Table 3 Simulation metrics

Parameter Value

Element type CPE8RP

Nodes 2077

Elements 650

Computer 3.00 GHz, 8 GB RAM

CPU time (single simulation) 32 s
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geometry; however, general bearing pad configurations

will not see a large variation in load support (or film

thickness for fixed loads) due to the pad dimensions.

4 Discussion

The coupled HDL/PVE problem is simulated for a simple

configuration to study flexible/porous pads in tribological

applications. The temporal nature of poroviscoelasticity

demands that the film thickness evolves in time, giving

stiffness and damping properties. However, once a steady

state is reached, the resulting film profile can be signifi-

cantly different from the rigid/porous and rigid cases. This

has implications for bearing performance. The discussion

of a PVE/HDL problem begins at the porous/film interface.

The Beavers–Joseph boundary condition is ad hoc;

however, it has been verified experimentally [2]. The

advantage of using the slip coefficient is that the boundary

condition is applicable across a wide range of materials and

material properties. Also, the formulation decouples the

lateral directions of flow from the PVE solution, helping to

manage model size and convergence issues. Therefore, the

film profile (h) and vertical flow (Uy) into, or out of, the

porous pad are the only coupling terms between the fluid

film and porous pad.

The current study highlights a number of considerations

for flexible/porous bearings and dampers. When compared

Fig. 7 Film thickness and

pressure profile evolution with

time. a Film thickness over

time. b Pressure profile over

time

Fig. 8 Comparison of rigid,

rigid/porous, and flexible pad

designs at t ! 1.

a Comparison of film thickness

required to sustain load.

b Pressure profile obtained from

above film profile. c Normalized

flow in the rigid/porous and

flexible porous cases
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to the rigid case, the inlet and outlet film thicknesses are

reduced (Fig. 8a) for the rigid/porous and flexible/porous

simulations. However, the flexible/porous case sustains a

larger film thickness on the trailing end of the pad, due to

deformation in the PVE pad. Considering the porous

Reynolds equation (Eq. 13), the V0 term acts in opposition

to the ‘‘wedge’’ term; therefore, the film thickness must be

reduced to sustain an equivalent load. The reduced film

thickness could have implications on friction and wear. The

cost of a reduced film thickness should be compared to the

benefits of increased damping in the system. As shown by

Etsion [12, 13], porous mechanical face seals provide

stiffness in mechanical face seals, with marginal costs from

increased leakage. The permeability of the porous pad

strongly influences this effect and must be carefully

designed with the desired application.

When film thickness is fixed, as shown in Fig. 9, the sen-

sitivity to permeability is apparent. The permeabilities shown

in Fig. 9 span many orders of magnitude, but also encompass

many promising materials, from articular cartilage

(k � 10�16 ½m2�) to polyurethane foams (k � 10�9 ½m2�). To
sustain appreciable loads, a relatively low permeability is

required. However, coupled with an elastic or viscoelastic

action, the PVE pad can significantly influence triboelement

performance. Like a sintered bearing, lubricant availability

from the porous substrate is an operational advantage. It is

hypothesized that these bearing types could have use in harsh

operating environments, where shock loads or lubricant loss

are possible. Considering the rigid/porous and flexible/porous

cases, the flexible boundary allows more vertical flow across

the porous interface. The fluid flow contributes to the solution

of the Reynolds equation and may be important for the

dynamic properties of the bearing. This is the subject of

continued study.

For materials with permeabilities that could be used in

triboelements, the influence of the porous pad dimensions

are minimal with respect to the load support. Therefore,

special consideration of the porous pad dimensions is not

required for load support concerns. However, unique

geometries or configurations (e.g., porous region followed

by an impermeable region) could be employed to create

effective converging gaps. Etsion and Michael [13] pro-

pose a similar concept for the rigid/porous case, with

special consideration for sealing applications. The tools

developed herein allow for studies of this type and are the

foundation of study into the dynamic performance of

coupled HDL/PVE problems.

Table 4 Results from the simulations in Fig. 8

Case Parameter Value

Rigid hi 40.1 lm

ho 21.9 lm

Pmax 38.5 kPa

Uy 0

Rigid/porous hi 38.8 lm

ho 20.6 lm

Pmax 38.3 kPa

Uy 0.0066 mm2/s

Flexible/porous hi 38.1 lm

h0 16.3 lm

Pmax 38.4 kPa

Uy 0.0080 mm2/s

Fig. 9 Load support versus

permeability. a Load support

versus permeability for the full

HLD/PVE solution. b Load

support in permeability range of

potential engineering materials

Fig. 10 Load support versus permeability for different pad length to

height ratios
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5 Conclusion

The genesis of coupled PVE/HDL comes from biomimet-

ics, where biological solutions exist for many tribological

problems. With biological materials, the engineer cannot

control the material properties; however, the physics can be

described. The proposed PVE/HDL describes the physics

of a flexible/porous material interacting with a fluid film

load. Potentially, the model has use in the study of bio-

logical mechanisms, as well as biomimetic tribological

applications. Articular cartilage is of particular interest in

biomimetics because of its adaptability and longevity.

Coupling mechanisms like a fluid film and porous pad help

to translate from biomechanical to tribological

applications.

New demands in triboelement performance require

innovative technology. A coupled HDL/PVE bearing is a

feasible configuration for certain applications. These

include biomechanics, flexible bearing technology, and

sealing elements. In addition, PVE materials have strong

dissipation characteristics, making them suitable for shock

absorption and damping elements. The results of the cou-

pled HDL/PVE simulation indicate that flexible, porous

substrates can promote tunable triboelement performance.

This can potentially improve tribological considerations,

especially wear and damping. Additional study is required

to quantify this performance.

The current work addresses the mathematics of coupling

unique mechanisms, and merging solid and fluid mechanics

of triboelements. The concepts established in this work

provide the foundation for future simulations. Possible

research avenues include: determining dynamic stiffness

and damping, transient analysis of coupled PVE/HDL

problems, nonuniform permeability patterns in the PVE

pad, geometric tailoring of the PVE pad, and new confining

boundary conditions on the PVE pad, among others.
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