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Abstract. Articular cartilage is a complicated material to model for a variety of reasons: its bipha-
sic/triphasic properties, heterogeneous structure, compressibility, unique geometry, and variance be-
tween samples. However, the applications for a biomimetic, cartilage-like material are numerous and
include: porous bearings, viscous dampers, robotic linkages, artificial joints, etc. This work reports
experimental results on the stress-relaxation of equine articular cartilage in unconfined compression.
The response is consistent with simple spring and damper systems, and gives a storage and loss mod-
uli. This model is proposed for use in evaluating biomimetic materials, and can be incorporated into
large-scale dynamic analyses to account for motion or impact. The proposed characterization is suited
for high-level analysis of multi-phase materials, where separating the contribution of each phase is
not desired.

Introduction

Healthy cartilage provides compressive load support and facilitates near frictionless motion within
articulating joints. This flexible substance allows for motion within the joint while protecting the
bone ends from grinding and wear. When this protection fails, osteoarthritis occurs. To understand
healthy and damaged cartilage for biomimetic applications, mechanical tests are performed. In stress-
relaxation experiments on healthy cartilage extracted from equine joints, elastic and dissipative mech-
anisms are displayed. Understanding these mechanisms can lead to advances in other fields, such as
flexible bearings in rotordynamic systems [1, 2], or improved porous bearings in industrial applica-
tions [3].

The majority of cartilage research has focused on the interactions of the collagen matrix and the
lubricating synovial fluid that permeates the joint capsule [4, 5, 6, 7, 8]. In addition, many attempts
have been made to develop constitutive relations for cartilage. The prevailing theories account for
the biphasic (solid-fluid) and triphasic (solid-fluid-ionic) properties of cartilage [9, 10, 11, 12]. While
this is a physiologically comprehensive model that separates the two (or three) phases of cartilage, the
models do not typically match experimental results well. An alternative way of modeling cartilage is to
consider the solid and fluid interactions as part of a total mechanical response. The goal is to describe
the conglomerate behavior of cartilage. This is useful for biomimetics, where a simple, descriptive
model is required. A phenomenological approach, post hoc of experimentation, can provide such a
model. Mechanical systems are well-suited for this application because they include a mechanism for
energy storage and dissipation. The dissipation comes from frictional drag between the solid and fluid
phases, compressibility of the solid matrix, or other mechanisms. The use of fewer material parameters
allows for an extremely convenient comparison of engineered substances. The analogy to mechanical
systems is deliberate for incorporation in engineering designs. Such a model will be useful in the
design and construction of biomimetic materials (e.g. hard and soft foams, gels, and various two-
phase combinations). For additional information on cartilage modeling, the reader is referred to Mow
and others [13, 14].
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Spring and damper models are not new to cartilage mechanics, but most studies limit their use
to the solid part of a biphasic response. However, experimental work shows that these simple me-
chanical systems capture a large range of cartilage behavior. While the biphasic and triphasic theories
remain popular among researchers, a phenomenological model for two-phase materials has utility in
biomimetics. The experimental results indicate that viscoelasticity is appropriate for considering the
conglomerate behavior of cartilage.

In the 1970's, Coletti et al. [15] and Parsons and Black [16] used spring and damper models to
characterize cartilage. Creep tests were performed on cartilage samples with limited success in match-
ing the models to the experimental results. Coletti et al. determined that cartilage exhibits non-linear
viscoelastic behavior dependent on strain. While some attempts were made to model cartilage phe-
nomenologically, the majority of research was focused on constitutively modeling the separate phases
of cartilage. This was the genesis of the biphasic theory [9, 10, 11, 12, 17].

At the same time as the biphasic model was being developed in 1980, Woo et al. [18] looked
at cartilage samples in tension, performing stress-relaxation experiments. Fung's model [19] for soft
tissue is utilized in the work. The experiments compare favorably to the compression relaxation exper-
iments of Mow and others [20]; however, the experimental setup prevented the tests from being ``true"
relaxation tests. Extending the model proposed by Fung, Simon et al. [21] performed relaxation exper-
iments on cartilage specimens. The biphasic and solid models are compared. Simon's work shows the
advantage of mechanical models in that they look at the macro-scale response of cartilage. However,
this is a disadvantage if it is desired to separate the contributions of the solid and fluid phases.

More recently, Wang [22], Ehlers andMarkert [23, 24] andWilson et al. [25, 26] have used various
spring and damper representations to model the fibril part of cartilage. The poroviscoelastic fibril
reinforced model developed by Wilson et al. considers the local morphology of collagen fibers and
their apparent strong influence on stress and strain (the springs are strain-dependent, or non-linear).
Wilson's work compares favorably to DiSilvestro and Suh's [27]. Garcia et al. [28] uses a similar model
to Wilson's [25, 26] to describe the solid portion of the nonlinear biphasic model. Finally, Julkunen
et al. [29] corroborates the work of Wilson et al. [25, 26] with a FEM study, finding good agreement
between the experiment and model in stress-relaxation applications.

Using spring and dashpot systems to model cartilage is not new, and certainly the use of stress-
relaxation experiments is well-established. However, as discussed by Argatov [30] there is a need for
a simple, but complete, model for cartilage. The utility of such a model is apparent in larger scale
studies, e.g. when cartilage is incorporated into an impact study. Here, a phenomenological model is
better suited for the analysis because the cost of including a complex model is not worth the additional
fidelity (if there is any). Argatov notes that the viscoelastic models are not ``true" mathematical de-
scriptions of cartilage; however, the behavioral characteristics are widely applicable. This concept can
be extended to other two-phase materials as well, where the spring and damper systems allow for ef-
ficient modeling. In particular, the proposed model would be appropriate for biomimetic applications
such as biphasic dampers.

Multiple experimental procedures exist for cartilage. Those used by [9, 31, 32] remain the pre-
dominate means for testing cartilage today. Figure 1(a) shows how the pseudo-relaxation experiment is
performed in a confined compression. In these tests, the fluid is forced in the vertical direction through
a porous indenter. The tests require a ramp displacement loading (approximately 2 seconds or greater)
to allow fluid to permeate the indenter or punch (Fig. 1(b)). The ramp input is not analogous to the
type of motion experienced during walking or running. A ``true" stress-relaxation experiment cannot
be performed in confined compression, as the confining chamber creates super high stresses (hydro-
static pressure) in the cartilage plugs when an instantaneous displacement is attempted. Additionally,
the confining chamber creates a 3D stress field on the cartilage plug throughout. This is because the
cartilage is restrained by the rigid walls of the chamber. For example, consider an isotropic, elastic
material- the stress and strain relations are determined as follows in cylindrical coordinates [33]:
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(a) Reproduction of test setup from [9, 31, 32] (b) Reproduction of ramp input from [9, 31, 32]

(c) Schematic of test setup in current study (d) Instantaneous displacement used in current study

Fig. 1: Comparison of experimental setups for measuring cartilage

Journal of Biomimetics, Biomaterials and Biomedical Engineering Vol. 21 77




σr

σθ

σz

 =
E

(1 + ν)(1− 2ν)

1− ν ν ν

ν 1− ν ν

ν ν 1− ν



ϵr

ϵθ

ϵz

 (1)

or for strain in terms of stress:

{ϵ} =


ϵr

ϵθ

ϵz

 =
1

E

 1 −ν −ν

−ν 1 −ν

−ν −ν 1



σr

σθ

σz

 (2)

According to Eq. 1, Poisson's ratio is needed in the confined compression case (ϵr = ϵθ = 0) to obtain
stress in the z (vertical) direction:

σz =

[
E(1− ν)

(1 + ν)(1− 2ν)

]
ϵz. (3)

Poisson's ratio must be assumed or determined experimentally, which adds an additional parameter
to the models using confined compression experiments. It is likely that Poisson's ratio is also time or
frequency dependent; therefore, it poses another challenge to determine. Poisson's ratio is not needed
for the uniaxial, unconfined compression case (σr = σθ = 0) because stress and strain are related only
by E (see Eq. 2):

σz = Eϵz. (4)

The unconfined case shown in Fig. 1(c) does not suffer from the limitations of confined compression.
Therefore, a practically instantaneous displacement can be physically imposed on the cartilage sam-
ple, as shown in Fig. 1(d). This mimics a classical relaxation case to a step strain. Precisely such a test
is needed to directly extract the storage and loss moduli. For a stress-relaxation test, unconfined com-
pression offers multiple advantages over the confined compression used in prior studies [9, 31, 32].
Unconfined compression experiments are used in the current study in part because Poisson's ratio is
difficult to determine for a multi-phasic substance such as cartilage. Although the fluid flows in a
different direction in unconfined compression, a material property must be an invariant property re-
gardless of the test performed; or conversely if a property depends on the test performed, it cannot be
considered a material property.

Materials and Methods

Articular cartilage samples are harvested from the right stifle joints of horses that are euthanized for
other reasons. Equine samples are used for multiple reasons: the cartilage surfaces are large and allow
for ``macro-scale'' analysis, the joints carry large loads (meaning that there are typically higher stresses
within the joints), and the availability of samples is suitable. In addition, equine and human articular
cartilage have similar structural features and collagen organization [34].

After euthanasia, intact joints are removed from the horses. The joints remain sealed in their na-
tive joint capsule until they are needed for analysis. The cartilage is harvested by dissection of the
surrounding tissue, and resized with an industrial bandsaw. The cartilage surface is hydrated with a
saline solution (0.9%) to prevent drying.

The medial condyle of the right rear stifle is used for study. The stifle joint is mechanically anal-
ogous to the human knee, and the condyle contains an area of thick and relatively flat cartilage. It is
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(a) Side schematic of stifle joint before plug is created

(b) Punch embedded in the cartilage as the surrounding
structure is removed

(c) The remaining cartilage plug

Fig. 2: Schematic of the 10 mm plug creation process

hoped that the equine results can eventually be extrapolated to human studies, where artificial knee re-
placements are the second most common type of surgical replacement, behind hip joint replacements.

After bulk harvesting and resizing of the condyle, a 10 mm plug is created with a hollow punch.
The punch is driven into the sample with an arbor press, depicted in Fig. 2. With the punch embedded
in the cartilage and subchrondial bone, the surrounding cartilage is removed with a rotary device. The
punch has an access hole to allow for hydration of the sample. After the plug is created, it is immersed
in a biological medium. The average time from the beginning of dissection to immersion is less than
20 minutes. The joint capsule is open for approximately 10 minutes during the process.

The cartilage plugs are placed in a UMT CETR tribometer. The tribometer imposes a nearly in-
stantaneous (within approximately 30 ms) displacement on the cartilage surface, while tracking the
force generated in the cartilage matrix. By design, this is a stress-relaxation experiment. The tribome-
ter holds a 12 mm rigid aluminum cylinder attached to a load cell, as shown in Fig. 3. Initially, the
cylinder contacts the cartilage surface with a preload of 0.5 N. The preload ensures that the cylinder
makes complete contact with the cartilage surface. In effect, the cylinder is flattening out any curvature
in the cartilage. At time t = t0, a downward displacement is imposed on the cartilage and the resulting
force is measured. After approximately 180 seconds of measurement, the rigid cylinder is withdrawn
from the surface. The cartilage is allowed two minutes to recover between tests, and the procedure is
repeated. Testing indicated that the recovery time was sufficient (additional time did not change the
results). The typical test includes four runs at a lower strain, followed by four runs at a higher strain.
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Fig. 3: CETR UMT3 Tribometer fitted with a 12 mm rigid indenter

Typically, displacements of 0.25 mm and 0.35 mm are imposed on the cartilage matrix. The carti-
lage thickness is measured after the relaxation experiment, so a priori strains can not be determined.
However, the displacements are designed to strain the cartilage matrix from 5-15%. The relaxation
behavior usually reaches an equilibrium by the test's conclusion. In all cases, the bulk of the relax-
ation behavior has occurred by 180 seconds, and the steady-state (rubbery modulus) information can
be extrapolated with the proposed model.

Needle probe techniques are used to determine the thickness of the cartilage plugs. The measure-
ments are averaged to produce a mean thickness. The thickness is needed to determine the modulus.

The stress-relaxation experiment is particularly useful as a biomimetic model because it contains
a wide spectrum of storage and loss properties. In 1962, Gurtin and Sternberg [35] developed a consti-
tutive law relating stress, strain and the relaxation modulus using Boltzmann's superposition principle.
The viscoelastic model is time-dependent, or in other words, it retains memory of the material history:

σ (t) = ϵ (0)E (t) +

t∫
0

ϵ̇ (τ)E (t− τ) dτ. (5)

where σ (t) is the stress, ϵ (t) is the strain, andE (t) is the relaxation modulus. Typically, σ(t) and ϵ(t)
are either set or measured during experimentation, while E (t) is obtained from a fixed strain input
ϵ = ϵstep, such that E(t) = σ(t)/ϵstep. The parameters of stress, strain, and elastic modulus in Eq. 5
are time-dependent. It should be noted that Eq. 5 describes a linear relationship between the strain
history and the current stress. Transferring Eq. 5 into the Laplace domain allows for simple treatment
of the convolution integral:

σ (s) = sE (s) ϵ (s) (6)

Equation 6 is similar to Hooke's Law in the Laplace domain (for the uniaxial case). This provides the
foundation for the elastic-viscoelastic correspondence principle.

To transfer between the Laplace and frequency domains, the s in Eq. 6 is replaced with iω, where
i is defined as

√
−1 and ω is the frequency in rad/s.
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Hence, applying s → iω, Eq. 6 becomes:

σ (ω) = (iω)E (ω) ϵ (ω)
△
= E∗(ω)ϵ(ω) (7)

where:

E∗ = (iω)E (ω) (8)

E∗ is the complex modulus, which has two components- a real and an imaginary:

E∗(ω) = E ′(ω) + iE ′′(ω) (9)

The real component (E ′) is known as the storage modulus, while the imaginary component (E ′′) is
known as the loss modulus. Both measures describe the dynamic behavior (frequency dependency)
of the material. The correspondence principle is powerful because one constitutive formulation de-
termines the amount of modulus retained (stored) or lost (loss). Accurate stress-strain constitutive
equations must be formed to describe cartilage or a biomimetic material.

Spring and dashpot systems have both elastic and dissipative mechanisms simultaneously [35,
36, 37]. The dissipative mechanisms are rate-dependent, much like a dashpot or damper in physical
systems. The Prony series (Fig. 4) is one such model. The Prony series model is composed of a free
spring and an infinite series of Maxwell elements in parallel. Each Maxwell element is an individual
spring and dashpot in series.

Fig. 4: Prony series

The Prony series captures the a wide spectrum of behavior- at high frequencies the dashpots
``lock," and become rigid. Here, only the springs contribute to the mechanical response. At low fre-
quencies, the individual Maxwell elements have no contribution to the overall load support (the dash-
pots in theMaxwell elements transmit a negligible force). Therefore, the only load support comes from
the free spring, E0. This model accurately captures features that are seen in cartilage and biomimetic
materials.

The functional form of the Prony series combines multiple exponentially decaying functions:

σT =

(
E0 +

∞∑
n=1

Ene
λnt

)
ϵ0, (10)

which mimics the stress-relaxation behavior seen in cartilage. The infinite sum in Eq. 10 allows for
different decades of relaxation. For instance, a material that rapidly expels energy may require many
short-lived decay terms, which the Prony model accommodates easily. Although the Prony series is a
robust model, it may require a large number of Maxwell elements to fully capture material behavior.
The additional terms in the Prony series expand the eigenvalue problem, and make extrapolation more
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difficult. The Prony model readily characterizes the stress-relaxation behavior of biphasic materials
like cartilage.

The Prony series is fit in the time-domain. At a given strain, some stiffening occurred between
experiments; therefore, the model was fit to the average relaxation data. The experimental data is
particularly noisy from the tribometer. Transferring the raw experimental signal from the time to the
frequency domain is challenging, evenwith filtering and smoothing algorithms. Therefore, the analytic
form of the Prony series in the frequency domain is used:

E(ω) =
E0

iω
+

∞∑
n=1

En

(
λn − iω

λ2
n + ω2

)
(11)

The storage and loss moduli are given as a function of frequency, ω, respectively:

E ′ = E0 +
∞∑
n=1

ω2

(
En

λ2
n + ω2

)
(12)

E ′′ =
∞∑
n=1

(
Enλnω

λ2
n + ω2

)
(13)

The parameters λn and En are obtained from the time-domain fit.
The tribometer samples at 1000 Hz, which yields approximately 180,000 data points for a typical

experiment. A least squares fitting routine is implemented in Matlab to parse the combined relaxation
data. For a full dynamic simulation, the eigenvalue problem is minimized by fitting the relaxation data
with as few terms as possible. However, more terms typically describe material behavior better. The
consequence of increasing the number of terms is that the model develops ``wiggles'' in the frequency
domain. These wiggles are not material based, but rather a figment of the modeling. In this regard, the
fewer Prony terms that can be used, the better. The fitting routine also begins to fail to converge when
the number of Prony terms gets too high (n ≥ 5). The convergence issues are due to the least squares
algorithm becoming ill-conditioned. When this occurs, the Prony terms are more difficult to uniquely
define. Four Prony terms is the maximum that can be fit reliably to the experimental data; however,
this covers a wide spectrum of cartilage and biomimetic material behavior.

Results

A four-term Prony series is used to fit the relaxation behavior, which is pronounced in the initial sec-
onds of the experiment (Fig. 5(a)). In general, the four-term Prony series does a suitable job fitting
the relaxation behavior. In the initial decay period (1s), some deviation between the fit and the actual
data is seen. The deviation between the model and experimental data corresponds to the highest fre-
quency information. For horses (and humans), frequency ranges greater than 5 Hz are not accessed
during even the most strenuous exercises. Therefore, it is less important to accurately capture this re-
gion of the relaxation. The physiological region of the relaxation occurs from t = 0.25s and on. The
Prony series is able to robustly model these decades of relaxation behavior (shown in Fig. 5(b) using
a semi-log scale), which makes its utility apparent.

The empirical data indicates that the decay properties of cartilage are strain-dependent. Cartilage
exhibits greater stiffness with higher strain, and appears to decay more slowly. An effective time
constant is created to quantify this observation. In exponential decay, the time constant represents
the time it takes for the response to reach

(
1
e

)
of the initial value. This is typical of a first-order system

that mimics the relaxation behavior. For a series of exponential decays, the effective time constant can

82 Journal of Biomimetics, Biomaterials and Biomedical Engineering Vol. 21



(a) Example of a four-term Prony fit to experimental data (Saline (d))

(b) Four-term Prony series fit, displayed on a semi-log scale (Saline (d))

Fig. 5: Example fit of Prony Series (Saline (d))
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Table 1: Time constant information for cases immersed in saline
Name Lower Higher

Strain (s) Strain (s)
Saline (a) 1.57 1.98
Saline (b) 6.38 8.36
Saline (c) 5.00 10.06
Saline (d) 10.28 15.36
Saline (e) 17.06 13.23
Saline (f) 15.71 19.37

be found by locating the time when 63.2% of the relaxation has occurred. This means 0.368 = 36.8%
of E(t) remains. The time constant is found numerically with Matlab. The flowchart shown in Fig. 6
outlines the process taken to locate the time constant. When the relaxation threshold is reached, the
program records the time and exits the loop.

Fig. 6: Flowchart depicting the steps taken to locate the time constant

The time constant information is presented in Table 1 for the six cases in saline (µ ≈ 0.890 (mPa s)
[38]). With one exception (Saline (d)), the time constant is greater for the higher strain tests. Cartilage
takes longer to dissipate energy at higher strains, proportional to the initial value of the response. This
finding is interesting because higher strains probably occur during periods of high activity. In effect,
cartilage has a higher modulus during periods of higher strain, which likely allows for a more fluid
joint motion. This finding agrees with the work of June [39]. The implications for biomimetics are
similar- in periods of increased activity (strain), a biomimetic material could be designed to respond
with additional cushion or load-support.

The frequency domain offers a different analytic tool for analyzing materials. Ultimately, the goal
of characterizing a biphasic material is to understand how it responds in dynamic situations, such
as during normal operation or overload. The elastic-viscoelastic correspondence principle transfers
time-dependent information to the Laplace and frequency domains without loss of generality. In the
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(a) Comparison of the storage information

(b) Comparison of the loss information

Fig. 7: Storage and loss comparison of different Prony models (Saline (c))

frequency domain, a stress-relaxation experiment shows the storage and dissipation moduli as a func-
tion of frequency, ω. For articular cartilage, the storage and loss moduli are functions of the animal's
gait, and for a biomimetic material they are a function of frequency. Studying cartilage as a function
of gait offers insight into the adaptive nature of biological mediums. The physiological range of carti-
lage appears to fall within a transition region, where higher frequencies approach the glassy region and
lower frequencies approach the rubbery region. Cartilage can then adjust to a stimulus by storing and
dissipating different amounts of energy, depending on the frequency of protuberance. A biomimetic
material should have a similar property, dependent on the requirements of the design.

Although an infinite number ofMaxwell elements can be used in the Prony series, the problemwith
using additional terms is threefold: (1) the time-domain curve fitting fails to converge as the number of
terms increases, (2) additional terms develop waviness in the frequency domain, and (3) the eigenvalue
problem increases in dynamic modeling (as the number of degrees of freedom increases in the model).
A comparison of a 1, 2, 3, and 4-term Prony series is presented in Fig. 7(a) for the storage modulus,
and Fig. 7(b) for the loss modulus. The development of waviness, or ``wiggles," is a construct of the
model, not a material property. Additionally, the wiggles only appear with significance in the loss
modulus.

A trade-off exists between better fitting in the time-domain, and wiggles in the frequency domain.
The one and two-term Prony models do not satisfactorily model the rapid decay characteristics of
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cartilage during stress-relaxation, and are unable to fully capture thematerial behavior in the frequency
domain. These models are disregarded for that reason. However, the increase in fidelity of the four-
term model over the three-term model is relatively minor when considering the norm values of the
fits. For a given material, a judgment is made considering the best combination of fitting in the time
and frequency domains.

With biological tissues, large variations are expected between samples. It is not surprising since
each cartilage explant is unique. Genetics, weight, age, diet, gender, and use can influence the mechan-
ical properties of cartilage. Therefore, the model parameters obtained from experiments are expected
to have large variations. This variability is not seen in manufactured substances. One trend that ap-
pears ubiquitously is that the transition period of cartilage coincides with the physiological range of
exercise. At lower frequencies, cartilage dissipates more energy than at higher frequencies, where ad-
ditional elasticity is available in the joints. The transition range of cartilage occurs in the middle of the
common frequencies of motion (0.25 - 4 Hz). It is possible that the adaptive nature of cartilage is bio-
logically designed for this purpose. The adaptive traits of cartilage could be exploited for a biomimetic
material.

One challenge in determining the glassy and rubbery moduli of cartilage is the thickness of the
samples is not known a priori. The testing procedure imposes a predetermined displacement on the
cartilage sample. The strain is determined by the thickness of the sample. Therefore, results obtained
from the relaxation experiments are inherently over a range of strains. Attempts were made to limit
the strains to 5-15%; however, there are a few cases where 15% is exceeded. Figure 8(a) shows the
glassy modulus for the saline cases. Taken together, the six cases seen in Fig. 8(a) do not display a
correlation between strain and the instantaneous modulus. Of course, the individual samples typically
have a larger glassy moduli at higher strains; however, a general trend for cartilage is not substantiated.
The average glassy modulus is obtained by combining all of the samples, and statistical bounds are
determined with a Student's t test. This information is presented in Table 2. It should be reiterated that
such variations should not be apparent in engineered materials.

On a smaller scale, the rubbery modulus mimics the behavior of the glassy modulus, as shown
in Fig. 8(b). The two cases that show higher moduli in the rubbery data also correspond to higher
moduli in the glassy data. Neither sample had known physiological differences from the others in the
group. A very weak positive correlation (R2 = 0.112) exists between the strain and rubbery moduli
information. It is expected that the glassy and rubbery moduli will increase (on average) with higher
strains. Physiological limits may dictate if the increase is pronounced or not. The combined rubbery
modulus information is included in Table 2.

Both metrics relating to the time constant show no strain dependency for the combined cases. The
time constant, found numerically from the four-term Prony series, has no distinguishable trend when
considering the samples in saline, as shown in Fig. 8(c). For a given sample, the time constant typically
increases with higher strain. The lines linking individual samples together show this phenomenon.
One exception exists for both cases. In Table 2, each metric is averaged, and the 95% confidence
intervals are given. The absence of a strong trend indicates that cartilage is unique between samples.
A generalization of all samples is difficult for this reason. The strain-dependent increase in modulus
and time constant seen in most of the individual samples does not appear in the compiled data. In a
particular sample, function, weight, age, and other physiological variables likely influence the cartilage
responsemore than strain. The combined results represent a range of likely cartilage behavior, and each
sample is said to have certain strain-dependent properties. More exhaustive testing and additional data
should be used to corroborate this finding. Regardless, the model and results can serve as a guide for
the design of bio-inspired materials.
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(a) Glassy modulus

(b) Rubbery modulus

(c) Time constant

Fig. 8: Results of stress relaxation experiments in saline

Journal of Biomimetics, Biomaterials and Biomedical Engineering Vol. 21 87



Table 2: Tabulated data for saline cases
Fluid Bath Saline

Number of Samples 12
Degrees of Freedom 11

Strain Range 7.35-13.08%
Glassy Rubbery Time

Modulus [MPa] Modulus [MPa] Constant [s]
Avg. 1.294 0.439 10.36
Std. 1.088 0.321 5.91
SE 0.314 0.093 1.71

Two-Tailed, 95% Student's t test 2.201
Confidence Interval +/- 0.692 0.204 3.755

Lower Mean 0.603 0.235 6.61
Upper Mean 1.986 0.643 14.12

Discussion

The current study provides a functional alternative to biphasic models for cartilage. The proposed
model also has utility in the field of biomimetics. A significant number of additional tests are required
to quantitatively describe the behavior of equine cartilage in the stifle joint in general. Limitations of
the spring and dashpot models will arise; however, there are many applications where these models
are useful. This is particularly apparent in impact studies, and when a multiphase material is used as
a component of a larger system.

The experimental data taken from cartilage explants indicates a few interesting trends for biomimetic
materials: 1) the bulk mechanical response of a biphasic material like articular cartilage to a fixed
displacement can be described with spring and damper systems, 2) cartilage exhibits a correlation
between modulus and strain in individual samples; however, the strain-dependency is lost when mul-
tiple samples are combined, and 3) in the individual saline cases, with one exception, the time constant
increases with strain. These trends are potentially useful in the design of bio-inspired materials.

The current work is focused on providing a model for the stress-relaxation behavior of a bipha-
sic material in unconfined compression. Many previous researchers have used stress-relaxation to
determine properties for modeling, but a strictly phenomenological model has not been throughly ex-
plored. The majority of tests being performed are creep tests, which are typically easier to execute.
However, stress-relaxation experiments are more analogous to movements experienced during ex-
ercise. The methods used herein are advantageous compared to previous studies because they more
closely mimic biological function, and require fewer material properties. This is a critical point for the
modeling of bio-inspired materials.

The transition range of cartilage from a rubbery to glassy modulus is directly in the physiological
range of the typical gaits that humans and horses experience. Cartilage is likely either inherently de-
signed to operate in this manner, or it adapts to the user. In either case, this is another unique aspect of
cartilage that helps to protect joints and facilitate motion. The tailored nature of cartilage makes it dif-
ficult to draw comparisons between samples; however, a general range for the instantaneous modulus
is between 0.603 and 1.986 MPa for all of the samples combined. For the equilibrium modulus, the
range is between 0.235 and 0.643 MPa. The time constant is: 10.36 s +/- 3.76 s. The strain varied in
the tests from 7.3% to 17.9%. A limitation to the current study is the availability of sample explants.

Unconfined compression tests characterize cartilage and similar materials with as few as two types
of terms. Poisson's ratio and other experimental ``fudge-factors" are not required for fitting the data.
With a complex material, models that can capture the majority of the mechanical response with rel-
atively few parameters are very useful. Although the relaxation appears to be strain-dependent, the
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variation due to strain could be small enough to negate. In addition, biomimetic materials could po-
tentially be designed as strain-independent. The advantage of the phenomenological characterization is
its simplicity. The techniques given can be used for comparisons between species, or between healthy
and diseased cartilage. The material properties given are needed for a full dynamic or impact study.
As discussed, a phenomenological approach is not a mathematical construct of a biphasic material,
but it does provide the properties needed for further analysis.
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