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Constitutive Equations and the 
Correspondence Principle for tlie 
Dynamics of Gas Lubricated 
Triboelements 
A new method for characterizing the dynamic behavior of gas films in triboelements 
is developed. The new method is based on an expansion of the step jump method. In 
this method, the dynamic character of the gas film is preserved in the form of its 
force response to a step jump stimulus. Transforming this step response into the 
frequency domain yields the frequency dependent stiffness and damping properties 
of the gas film. By approximating the step response with analytic constitutive models 
and using the elastic-gas film correspondence principle, it is possible to determine 
the system characteristic equation in analytic form and to find closed-form solutions 
for stability, transient and forced responses. Requirements are given for choosing 
constitutive models that comply with the second law of thermodynamics. The new 
analytical solution method offers a significant time savings compared to direct numer
ical methods, and it is much more conducive to parametric studies. 

Introduction 
The effect of gas films in gas bearing systems was the subject 

of much interest in the sixties with the increasing popularity of 
gas turbine engines and rotor bearing systems. tVIuch of the 
research was devoted to developing design schemes for bearing 
systems and finding methods by which the stability of these 
systems might be predicted. Including the gas film effect in the 
dynamic analysis of gas lubricated tribological elements is very 
difficult, even for simple geometries, because of the nonlinear 
nature of the gas film governing equation. The gas film, like 
other elements of the tribological mechanism, is a medium capa
ble of storing and dissipating energy. Its stiffness and damping 
properties are both transient and frequency dependent. The 
problem with the analysis is made much more difficult because 
the boundaries of the gas film are themselves coupled to other 
dynamic equations. This coupling requires a simultaneous solu
tion of both the gas film governing equation (i.e., the unsteady 
Reynolds equation) and the equations of motion for the triboele-
ment. 

A closed-form solution of the unsteady Reynolds equation 
for compressible flow is impossible, so numerical techniques 
have been employed from the beginning to help analyze the 
dynamics of gas lubricated triboelements. One important advan
tage of the full numerical simulation technique is that it gives 
a large amount of detailed information about the motion of each 
element in the mechanism but at the expense of high computing 
times. Another key advantage is that the method is capable of 
including the nonlinear terms in the equations. Castelli and 
McCabe (1967) and Tang (I97I) were some of the earliest 
researchers to use this method, and now it is almost universal. 
However, every change in geometry, system parameters or ini
tial conditions necessitates another complete solution, thus ren
dering this method inefficient for parametric studies or design. 

A linear analysis by the perturbation method can provide a 
frequency domain solution of the Reynolds equation coupled 
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with the equations of motion. Such a method was first used by 
Ono (1975) to characterize the frequency dependent dynamic 
properties of gas films in magnetic recording devices. Later, it 
was modified to yield the time transient behavior (Ono et al., 
1979), and it has since been employed by several researchers 
(Tanaka et al., 1989 and Smith and Iwan, 1991). 

Another technique was developed by Elrod et al. (1967) 
to help determine the stability of gas lubricated systems. This 
technique, called the step jump method, characterizes the stiff
ness of the gas film by its response to a step disturbance in 
each degree of freedom. These step responses are then converted 
into analytical functions by approximating them with a series 
of Laguerre polynomials. Since the dynamic character of the 
gas film is in analytic form, the method lends itself readily to a 
parametric analysis. The technique has been adopted by several 
researchers (e.g., Shapiro and Colsher, 1970; Kazimierski and 
Jarzecki, 1979; Etsion and Green, 1981; and Sela and Blech, 
1991), and the method detailed by Elrod et al. (1967) has been 
reproduced in the textbook by Gross (1980). However, Miller 
and Green (1997) have shown that using Laguerre polynomials 
to characterize the gas film response can violate the second law 
of thermodynamics. 

The advantages of the direct numerical solution method are 
so important that a full dynamic analysis of a potential design is 
left incomplete without at least some verification by numerical 
simulation. Nevertheless, there is some motivation for a linear
ized analysis by the perturbation method or the step jump 
method. The full numerical simulation does not provide much 
insight into the dynamic characteristics of the gas film or mecha
nism. However, the perturbation method gives the frequency 
response of all the elements in the mechanism as well as the 
gas film. Also, both the perturbation and step jump methods are 
more suited for a parametric study than the direct numerical 
method. 

Although the perturbation method and the step jump method 
are both linearized techniques, there are two fundamental differ
ences between the two methods. First, the perturbation method 
solves equations that are linearized about the equilibrium pres
sure and film thickness. In the step jump method, however, the 
Reynolds equation remains nonlinear in pressure. Second, both 
methods are readily used with stability tests such as the Routh-
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Hurwitz stability criterion, but the step jump method has the 
advantage of converting the step response into analytical format. 
Note that conflicting statements on the accuracy of the perturba
tion method are present in the literature. Some researchers (Ono, 
1975 and Tanaka et al., 1989) suggest that the gas film in slider 
bearings can exhibit negative damping, but this phenomenon is 
physically infeasible. For example, Hayashi et al. (1990) 
showed a slider bearing in which negative damping in the gas 
film is predicted by the perturbation method, but a conventional, 
direct numerical analysis proved otherwise. In the analysis 
method presented here, significant attention is placed on creat
ing constitutive models that comply with the second law of 
thermodynamics (see Miller and Green, 1997). Therefore, the 
problem of predicting negative damping will be avoided. 

Based on the previous discussion, there is a need for an 
analysis technique that removes the requirement to solve the 
equations of motion and the Reynolds equation simultaneously 
using a numerical procedure. This need provides motivation to 
develop an analytic model for representing the gas film that 
embodies its distinctive stiffness properties. If the gas film force 
response can reasonably be assumed linear about equilibrium, 
then this task can be accomplished using the step jump method. 
In this work, three new constitutive models for the gas film that 
unconditionally satisfy the second law of thermodynamics are 
formed by approximating the step response with a Prony series, 
a series of complementary error functions, and a series of modi
fied Bessel functions of the first kind of order zero. The constitu
tive law, then, acts as a kernel of the solution of the Reynolds 
equation. Using the new analytic constitutive models to repre
sent the dynamic character of the gas film, the analysis continues 
analytically giving closed-form solutions. 

Thrust Slider Bearing 
In practical gas lubricated triboelement problems, instability 

may be caused by mechanisms other than the gas film (for 
example, gyroscopic effects in mechanical face seals). These 
types of problems are, therefore, unsuitable for use in establish
ing the principles developed here. An application that is uncon
ditionally stable is needed. Consequently, all of the theory and 
examples presented here will relate to a generic gas lubricated, 
thrust slider bearing of infinite width (into the page) shown in 

^fyy/////////yA Be..ng Pad 
./C mass, n 

///////////////////////////TT 
^ Runner 

V 
Fig. 1 Schematic of thrust slider bearing 

Fig. 1. In this bearing, the gas film offers the only mechanism 
of dissipating energy, and, therefore, it is unconditionally stable 
(Miller and Green, 1997). The bearing pad is allowed to move 
only in the y-direction, and the bearing, therefore, has only 
one degree of freedom. The >!-coordinate is measured from the 
equilibrium position where the net gas film force balances the 
external forces on the bearing pad. Ambient pressure conditions 
are apphed at the inlet and outlet regions of the bearing. For 
the given geometry, the minimum film thickness is located at 
the trailing edge of the bearing pad and is designated by h„. An 
arbitrary forcing function is designated by^( f ) . 

For this tribological application, the gas film is governed 
by the isothermal form of the unsteady Reynolds equation for 
compressible gases. To account for gas rarefaction effects, the 
Reynolds equation is modified to include second-order slip ef
fects (Hsia and Domoto, 1983): 

d_ 

dx 

,sdp 

ox \ ph (ph) 

= A 
d(ph) ^ d{ph) 

dx dt 
(1) 

N o m e n c l a t u r e 

A„ = 
B = 

f*(t) = 
fit) = 

ff = 

L = 

/ , = 

F(s) = 
h* = 

h* = 

h = 

J = 
k*it) = 

k{t) = 

«th coefficient 
slider bearing length in x-direc-
tion 
gas film force response 
nondimensional gas film force, 
f*{t)IP„{B-\) 
nondimensional external forc
ing function 
net nondimensional gas film 
force 
total nondimensional gas film 
force 
Laplace transform of/(?) 
film thickness 
minimum film thickness at 
equilibrium 
nondimensional film thick
ness, h*/h$^eq 
imaginary unit, ( - 1 ) ^ " ^ 
gas film step response, 
Af*{t)/Ay* 
nondimensional gas film step 
response, k*(t)h*^^/P^(B-1) 

kg = pseudo-linear spring modulus 
K„ = Knudsen number, k/h^^^q 

K'{ui) = storage modulus 
K"(uj) = loss modulus 

K(s) = Laplace transform of k(t) 
m* = mass of the bearing pad per 

unit width 
m = nondimensional mass, 

m*V^ht^/4B'P„ 
N = number of terms in step re

sponse approximation 
p* = pressure 

p = nondimensional pressure, p */ 
Pa 

Pa = ambient pressure 
s = Laplace variable 

t* = time 
t = nondimensional time, Vt*/2B 

X* = general coordinate 
X = nondimensional variable, x*/B 

y* = general coordinate 
y = nondimensional displacement 

variable, y*/h^^cq 

Ay = step jump displacement 
Y{s) = Laplace transform oi y(t) 

V = velocity in x-direction 
Z(s) = impedance 

Z(w) = complex impedance 
a,, = nth exponential attenuation fac

tor 
\ = mean free path of gas at ambient 

conditions 
A = nondimensional compressibility 

number, 6//V5/f„(/j*ec,)^ 
fj, = gas absolute viscosity 

u!* = frequency 
u) •= nondimensional frequency vari

able, 2Buj*IV 

Subscripts and Superscripts 
eq = equilibrium state 
/ = forcing 
n = net; indices 
o = outlet region 
t = total 
* = dimensional variable 
00 = steady state; long time 
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Table 1 Common bearing parameters for cases 1-4 

Bearing length 
Velocity 
Bearing pad mass per unit width 
Ambient Pressure 
Gas viscosity—air, helium 
Mean free path—air 

Mean free path—helium 

B = .004 m 
V = 0.56 m/s 
m* = 0.16 kg/m 
P„ = (10)' N/m' 
// = 1.86(10)-'Ns/m' 
X. = 0.064 fjxn at ambient 

conditions 
\ = 0.186 jjoa at ambient 

conditions 

where 

P* u p =^— h 
P 

h* 

h* 

X* V 

B 2B 

K„ = A = 
h' 

6fxVB 

P (h* )^ 
(2) 

The effect of gas rarefaction is measured by the Knudsen num
ber, K„, which is the ratio of the mean free path of the gas at 
ambient conditions to the minimum film thickness. The mean 
free path of the gas depends on the type of gas Used. Since air 
and helium are typically used in magnetic disk storage applica
tions, they will be considered as lubricating gases in this work. 

In this work, four test cases corresponding to the bearing in 
Fig. 1 will be examined. Cases 1 and 2 are lubricated with air, 
and cases 3 and 4 are lubricated with helium. The parameters 
for cases 1 and 2 are chosen to simulate one bearing operating 
at two different flying heights. It is assumed that these two 
cases have the same load bearing capacity, where case 1 is 
considered the reference case for determining this value. Then 
for case 2, the inlet to outlet height ratio is adjusted until the 
load bearing capacity equals that of case 1. The parameters for 
cases 3 and 4 were chosen similarly. The parameters given in 
Table 1 are cpmmon to both bearings and, therefore, are applica
ble to all four cases. Table 2 specifies the bearing geometry 
and other parameters for each individual case. Although the 
dimensional bearing pad mass, m *, is the same for all four cases, 
the nondimensional bearing pad mass, m, changes because of 
the nondimensionalizing process (see nomenclature). 

Gas Film Dynamic Characterization 

An analytic model for the dynamic stiffness and damping 
properties of gas films can be formulated by the step jump 
method. The method expresses a mathematical relationship be
tween the displacement in one degree of freedom and the net 
gas film force resulting from the transient pressure diffusion in 
the gas film. It is based on the assumption that the net gas film 
force is linear in response to successive, small step jumps in 
each degree of freedom. Consequently, the effects of a series 
of step jumps can be individually superposed using Duhamel's 
integral (Miller and Green, 1997): 

Mt) = kit)y(O) + \ y{T)k(t 
Jo 

T)dT (3) 

where y = dy/dr and k(t) is the gas film step response. Note 
that/„(r) is considered positive when pointed away from the 
bearing pad and into the gas film. Equation (3) represents a 

force-displacement constitutive law. Transforming this equation 
into the Laplace domain yields a very useful "relationship, 

F„(s) = sK(s)Y{s) (4) 

where F„(s), K(s), and Y(s) are the Laplace transforms of 
fit), kit), and ^(O, respectively. This equation forms the elas
tic-gas film correspondence principle, which will be employed 
later. 

The gas film step response represents the transient gas film 
stiffness, which is an approximation of the net change in force 
in response to an infinitesimally small change in film thickness. 
Because the force response is assumed linear about the equilib
rium film thickness, the step response completely characterizes 
the dynamic stiffness and damping of the gas film. Therefore, 
the step response forms a kernel of the solution of the Reynolds 
equation. As a result, once kit) is obtained, it is unnecessary 
to solve the Reynolds equation during a dynamic analysis of 
the equations of motion for a gas lubricated triboelement. 

The step response is calculated directly by numerical solution 
of the unsteady Reynolds equation. The procedure for calculat
ing the response to a single, finite step jump is detailed by 
Miller and Green (1997). In that work, an approximation for 
the step response for a step jump in the positive y direction is 
defined by the following equation: 

k^yit) = f,it)-U 
Ay 

(5) 

At the onset of the step disturbance, the identity ph = constant 
is an equation of state corresponding to isothermal conditions. 
For a more accurate approximation, the process above is also 
repeated for steps of jAy, — jAy, and — Ay and averaged to
gether using Richardson's extrapolation (Chapra and Canale, 
1985) giving 

kit) = 3{4[*i,2A,(0 + k-u2Ayit)] 

- [k^yit) + k.^y(t)]} (6) 

Using this procedure, the step response, kit), varied only 
slightly in the third significant decimal place for step jumps in 
the range of Ay = 0.30. The step response curves for cases 1 -
4 are shown in Fig. 2. 

More insight into the dynamic character of the gas film can 
be seen by considering its properties represented in the Laplace 
and frequency domains. In the Laplace domain, the ratio of 
the net gas film force and the displacement is defined as the 
impedance, Zis). According to Eq. (4) , the impedance is 

Zis) s sKis) 
F„is) 
Yis) 

(7) 

To get the frequency domain version, replace s v/ithjui to yield 
the complex impedance. 

Z(w) ^ JLoKiJuj) = K'iio) + jK"iuj) (8) 

The real part of the complex impedance, A^'(a;), is the storage 
modulus, and the imaginary part, K"ioj), is the loss modulus. 
These terms can be obtained directly using the Fourier cosine 
and sine transforms (Miller, 1996), 

Table 2 Individual bearing parameters for cases 1-4 

Bearing 

Bearing #1 

Bearing #2 

Journal of Tril 

Case number 

Case 1 
Case 2 
Case 3 
Case 4 

bology 

Gas type 

Air 
Air 
Helium 
Helium 

h* 

0.5 fim 
0.1 fim 
0.5 fj,m 
0.1 /im 

' ' i ,cq' '^o,eq 

1.800 
1.335 
1.800 
1.243 

K„ 

0.128 
0.640 
0.372 
1.860 

A 

10.0 
250.0 

10.0 
250.0 

APRIL 1998, Vol. 

m 

lO-"* 
2 (10)-' 

10"'* 
2 (10)-' 
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Step Response Curves for Cases 1-4 Comparison of Frequency Response for Case 1 
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, 

NondimenslonalTime 

Fig. 2 Step response curves for cases 1 -4 

K'(w) 

K"(oj) = - \ k 
Jo 

k(t) cos (ujt)dt 

k{t) sin {uit)dt (9) 

The storage and loss moduli can be obtained either analyti
cally, if k(t) is known, or by numerical integration when the 
step response, k(t), is given in tabular form as obtained from 
the step jump method. Using the above procedure, the storage 
and loss moduli for cases 1 - 4 are calculated and presented in 
Fig. 3. These curves show characteristics that are common to 
viscoelastic materials. The storage moduli begin at the rubbery 
modulus at low frequencies and proceed smoothly through the 
transition region to the glassy modulus at high frequencies. 
Likewise, the loss moduli start at zero at low frequencies and 

Storage Modul i for C a s e s 1 - 4 

Nondimensional Frequency 

Loss Moduli for C a s e s 1 - 4 

5. 

Paeudo Random Input - Frequency Reaponae (500 Averagaa) 
Step Jump - Time Domain Metfiod 

Nondimensional Frequency 

Fig. 3 Storage and loss moduli for cases 1-4 

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 6 1 0 2 3 4 5 8 7 8 1 0 0 

Nondimensional Frequency 

Fig. 4 Comparison of the frequency response for case 1 generated by 
a direct numerical method and by transforming the step response into 
the frequency domain 

show a peak in the transition region and end up settling toward 
zero at high frequencies. 

The curves generated by transforming the step response into 
the frequency domain are just approximations of the gas film 
complex impedance because the step jump method assumes that 
the product ph = constant at the onset of the step jump in 
displacement. To test the validity of using this procedure to 
approximate the gas film complex impedance, the results ob
tained by transforming the step responses into the frequency 
domain using Eq. (9) are compared to results obtained by a 
direct numerical method, which is discussed in detail in Appen
dix A. 

The storage and loss moduli for case 1 calculated by both 
procedures are compared in Fig. 4. For this case, transforming 
k(t) into the frequency domain produces a loss modulus that 
closely follows the curve obtained by the direct numerical 
method. However, for the storage modulus, the two curves are 
slightly offset, although the trend is still very much the same. 
It is suggested that the offset in the storage modulus is due to 
the ph = constant approximation at ? = 0 in the step jump 
method. The small error introduced by this assumption shifts 
the high frequency asymptotes by a small percentage. As a 
result, only the storage modulus is affected by the approxima
tion since the high frequency asymptote is zero for the loss 
modulus. For conciseness, the comparisons between the two 
methods for cases 2 -4 are not shown here but can be found in 
Miller (1996). For each of these curves, the results are very 
similar to the results shown in Fig. 4. 

The amount of computing time needed to obtain the step 
response and to transform it into the frequency domain is ap
proximately 30 to 60 seconds on a 90 MHZ personal computer. 
However, the smallest time necessary to obtain the complex 
impedance using the direct numerical method is approximately 
50 to 60 minutes on the same computer. Since the step jump 
method results represent the gas film very well and since the 
computing time is far less than for the direct numerical method, 
it is concluded that transforming the step response into the 
frequency domain is the preferable method of describing the 
gas film stiffness and loss properties. 

New Constitutive Models 

Once the step response has been calculated by a numerical 
procedure, the analysis is made analytic by approximating the 
curve with an analytic function. The analytic approximations 
of the step response curves are called constitutive models, and 
these functions are subject to constraints. Functions used to 
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approximate the step response must satisfy a criterion based on 
the second law of thermodynamics (Fabrizio and Morro, 1988 
and Miller and Green, 1997). The criterion requires the loss 
modulus, K"(oj), which is defined above in Eq. (9) , to be 
positive semi-definite over the range of frequencies from zero 
to infinity. Furthermore, it is important to choose functions that 
have representations in both the time and Laplace domains since 
much of the analysis procedure that uses the approximation is 
done in the Laplace domain. 

In accordance with these two stipulations, three new constitu
tive models are formulated by approximating the step response 
with a Prony series, a series of complementary error functions, 
and a series of modified Bessel functions of the first kind of 
zero order. These models have previously been used to model 
the behavior of linear viscoelastic materials (Szumski, 1993). 
These particular analytic functions were chosen because they 
have both time and Laplace domain representations and satisfy 
the second law of thermodynamics for all sets of positive mate
rial constants. The time domain representations of the constitu
tive models are not often used directly. In most cases, the La
place domain forms are used directly in analyses. The three 
constitutive models are given below. 

1. Prony Series. The step response can be approximated 
with a series of decaying exponential functions. 

k(t) = /t(oo) + X A„e^°"' (10) 

where a„ axe the decay parameters and A are constant coeffi
cients. For this series, the sK(s) function is given by 

sK(s) = kM -f I A„ 
i -f- a„ 

(11) 

2. Complementary Error Function Series. A series of 
complementary error functions is also used to approximate the 
step response. 

k{t) = fc(oc.) + X A„e<' erfc (a/t) (12) 

where erfc (•) i& the complementary error function. The corre
sponding sK(s) function is given by 

N r 
sK(s) = A:(oo) + X A„ 

•is + a„ 
(13) 

3. Series of Modified Bessel Functions of tlie First Kind 
of Zero Order. The third approximating function is given 
below as 

k(t) = A:(oo) + X A„e~''«'Io(a„t) (14) 

where /o( •) is the modified Bessel function of the first kind of 
zero order. The appropriate sK(s) function is given by 

N r 
sK(s) = k(^) + I A„ • 

is + 2a„ 
(15) 

In all three of these models, A„, a„ and A:(oo) depend on the gas 
film and operating parameters. The values for A„ and a„ are 
determined using a curve fitting process either in the time do
main with the step response or in the frequency domain with 
the complex impedance. Note again that the complex imped
ance, Z( w), for each constitutive model is obtained by replacing 
s with7w [see Eq. (8)] . In most instances, the curve fit on the 
storage and loss moduli gives a preferable fit since the dynamic 
characteristics of the gas film are better portrayed in the fre
quency domain representation of the step response than in the 
time domain representation. 

The constitutive models represented by each of these three 
functions become an exact fit if the number of terms is allowed 
to approach infinity. However, a very large number of terms is 
impractical for computing purposes. The number of terms actu
ally needed depends on the shape of the step response curve 
and the degree of accuracy wanted. This number can be chosen 
either by a trial and error method or by applying a criterion to 
measure the quality of fit. A trial-and-error procedure is used 
in this work. For the Prony series, typically a small number of 
terms, only two or three, provides an adequate fit for the step 
responses in both the time domain and the frequency domain. 
For the complementary error function and Bessel function ap
proximations, one term constitutive models prove to be robust. 
As an alternative to the curve fitting procedure, it is also possible 
to use a simpler collocation method in which a collection of 
points may be used to emphasize significant regions in the time 
or frequency domain curves. 

The curve-fit parameters for the four test cases are summa
rized in Table 3. These parameters are calculated by a least 
squares method based upon a multi-variable function minimiz
ing process using a Nelder-Mead simplex algorithm. The func
tion minimized in the algorithm is the norm of the difference 
between the data points obtained numerically and the constitu
tive equation. 

The step response for case 1 is shown in the time domain in 
Fig. 5 along with the three approximate curves from the consti
tutive equations. Figure 6 shows the storage and loss moduli and 
their approximate curves for case 1 in the frequency domain. It 
is evident from the loss moduli that the three constitutive models 
are thermodynamically valid for the chosen set of material pa
rameters. By observation, it appears that the Prony series fit 
approximates the actual data the closest, especially in the transi
tion region from rubbery modulus to glassy modulus. 

Dynamic Analysis Using the Constitutive Law 

The dynamic contribution of the fluid layer in gas lubricated 
systems can be incorporated into the dynamic model using the 
elastic-gas film correspondence principle (Miller and Green, 
1997). It is a direct result of the Laplace domain representation 
of the force-displacement relationship for gas films given in Eq. 
(4). According to the principle, a gas lubricated problem can 
be formulated by first modeling the gas film stiffness as if it 
were a spring with a constant spring modulus, kg, and then 
appropriately developing the time-domain equations of motion. 
After transforming the equations into the Laplace domain, the 
transient stiffness property of the gas film is incorporated into 
the problem by replacing the pseudo stiffness, kg, with sK(s). 
The resulting equation is a Laplace domain version of the equa
tions of motion, and it contains the transient nature, or the 
frequency dependence, of the gas film. This equation is the 
basis for the new solution technique discussed below. 

When the equations of motion are attained in the Laplace 
domain, several solution options are available. At this point, it 
is possible to write any variable of interest in terms of analytic 
functions of the Laplace variable, s, and with that to obtain the 
time response by inverse Laplace transform. Also, it is possible 
to form a transfer function relating any two output-input vari
ables of interest. Furthermore, the system characteristic equation 
can be written. 

To illustrate these procedures, consider the general problem 
of forced vibration of the thrust slider bearing shown in Fig. 1. 
The equation of motion can be written in the time domain as, 

my(t) = fit) + ff{t) (16) 

The variable / ( ; ) is the net gas film force, and ff(t) is the 
forcing function. The elastic-gas film correspondence principle 
states that the gas film should be modeled as a pseudo linear 
spring, in which case/(r) = -kgyit), giving 
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Table 3 

Case # k( 

Curve fit parameters for prony 

Prony series 

») N A„ 

series. 

oi„ 

complementary 

Comp. 

N A„ 

error function 

error function 

<in 

series , and Bessel function series 

Bessel function 

N A„ «» 
0.24070 

0.13647 

0.13226 

0.08914 

A, = 0.0462 
A2 = 0.0579 
A3 = 0.4965 
A, = 0.0191 
A2 = 0.8306 
Ai = 0.1017 
A2 = 0.5468 
Ai = 0.0679 
A, = 0.7984 

a, = 309.933 
a^ = 56.261 
aa = 3.567 
ai = 237.887 
oii = 1.438 
aj = 149.414 
aj = 6.377 
a, = 108.224 
ttj = 2.136 

1 0.6214 a, = 1.783 0.5296 

1 A, = 0.8694 a, = 0.583 

1 A, = 0.7021 ai = 2.574 

1 A, = 0.8990 a, = 1.033 
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Actual and approximate storage and loss moduli for case 1 

my{t) = -k,y{t) + ff(t) (17) 

Then, transforming the resulting equation into the Laplace do
main yields 

m[s^Y(s) - syiO) - y(0)] = -fc,F(,?) + F^is) (18) 

According to the elastic-gas film correspondence principle, 
sK(s) is substituted for k^ giving 

m[s'-Y(s) - sy(0) - y(0)] = -sKis)Yis) + F / j ) (19) 

The terms y(0) and y(0) are the initial displacement and veloc
ity of the bearing pad, respectively. The characteristic equation 
is easily extracted. 

ms^ + sK{s) = 0 (20) 

The roots of this equation are the system eigenvalues. 
Reconsidering the Laplace domain equation of motion for 

the problem at hand, a transfer function can be written relating 
the bearing pad displacement and the forcing function. 

1 Y(s) ^ 

Ffis) ms^ + sK{s) 
(21) 

Replacing s with jus in this equation yields the frequency re
sponse. 

Yjoj) 
Ff{uj) K'{LO) 

1 

+ jK"{io) 
(22) 

An explicit expression for the complete bearing pad response 
can be written: 

Y{s) = 
m[y(0)5 + y(0)] ^ 

ms^ + sK{s) ms^ -h sK{s) 

Ff(s) 
(23) 

The time history of displacement for the bearing pad is now 
available by obtaining the inverse Laplace transform of this 
equation either analytically or numerically. 

Certainly, the solutions just discussed are not the only ones 
possible with this technique. These are just a few representative 
examples. The important factor is that the gas film stiffness 
properties have been characterized and written in a compact 
form. This breakthrough introduces new analytic, Laplace and 
frequency domain solution techniques to the dynamic analysis 
of gas lubricated triboelements. 

Results 

To measure how effectively the new constitutive models ap
proximate the gas film properties, the dynamic properties of 
the bearing system are found using the previously described 
technique and compared to results obtained using conventional 
numerical methods. The dynamic properties compared are the 
damped natural frequencies and the time history of displacement 
of the bearing pad. For the conventional numerical method, the 
time history of bearing pad response is found directly from the 
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Table 4 Damped natural frequencies for cases 1-4 and the estimated values obtained using the new constitutive models 
(all values nondimensional) 

Case* 

System damped 
natural frequency from 

DFT 

Prony series 
approximation 
(relative error) 

Complementary error 
function approx. 
(relative error) 

Bessel function 
approximation 
(relative error) 

906.32 
2221.80 
877.63 

2194.20 

914.63 (0.9%) 
2220.33 (0.07%) 
882.17 (0.5%) 

2185.61 (0.4%) 

914.66 (0.9%) 
2234.23 (0.6%) 
890.35 (1.4%) 

2207.15 (0.6%) 

877.57 (3.2%) 
2186.89 (1.6%) 
847.19 (3.4%) 

2111.49(3.8%) 

output of a full numerical integration technique, and the damped 
natural frequencies are found by identifying the resonant peaks 
in the spectrum of the response time history. 

The system damped natural frequencies found from the nu
merical simulation and from the new technique with the three 
new constitutive models are listed in Table 4. The estimated 
system eigenvalues are found by substituting the appropriate 
analytic approximation for sK(s) into Eq. (20) and solving for 
the roots, or eigenvalues, of this characteristic equation with a 
numerical algorithm. The damped natural frequencies are the 
imaginary parts of these eigenvalues. The relative errors be
tween the estimated and the actual system damped natural fre
quencies are shown in parentheses in Table 4. The results found 
using the new technique with all three constitutive models are in 
excellent agreement with those achieved from the full numerical 
simulation. The accuracy achieved by this new technique is not 
surprising since the curve fits for the storage and loss moduli 
for all four cases and with all three constitutive models are 
close in the frequency range of interest. If the bearing pad 
oscillated at a frequency that was in a range where the approxi
mate storage and loss moduli did not match up well with the 
actual frequency response, then the predicted values would be 
less accurate. However, in special cases when it is known in 
advance that the system will be oscillating in a certain frequency 
band, it is possible to adjust the curve fitting algorithm to em
phasize the frequency band of interest and to minimize the 
relative error in that range. 

One important advantage of this analysis technique is that it 
can give a time history of a variable of interest. In this case, 
the time history of bearing pad displacement is found by per
forming an inverse Laplace transform the Y(s) expression. For 
the displacement expression with the Prony series approxima
tion for sK(s), the inverse Laplace transform can be computed 
analytically, so a closed form solution to the bearing pad dis
placement can be formulated. Figure 7 shows a comparison of 
the time histories of bearing pad displacement for case 1 (with 
an initial nondimensional velocity of -50.0) calculated by a 

^ °' ^ 
>. 
g 002 

1 000 

g- -0.01 

b -0.02 

Comparison of Bearing Pad Re sponse 

i fflnlii lilllllln^' 

l:-
Nondimensional Time 

Fig. 7 Comparison of bearing pad response predicted using Inverse 
Laplace transform and direct numerical metfiod 

full numerical simulation of the coupled set of the Reynolds 
and the motion equations and by the analytic solution obtained 
from the new method with the Prony series constitutive model. 
The correlation between these curves shows that the predicted 
bearing pad displacement matches up well with the result from 
the numerical solution. This figure not only shows that the 
damped natural frequency is predicted to be very close to the full 
numerical solution, but also that the damping itself is estimated 
accurately since the decay envelopes of the two curves are very 
close. For the other two constitutive models, the inverse Laplace 
transform must be calculated numerically. 

Although an example is not presented here, the new technique 
can also be used to analyze problems with external forcing 
functions that can be represented in the Laplace domain. Some 
examples of common forcing functions that have analytic La
place transforms are the impulse, step, ramp and sinusoidal 
functions. In this case, the characteristic equation is the same 
as for unforced problems. Then for the time domain solution, 
the technique for the forced problem is similar to that of the 
initial value problem in that an explicit expression for Y{s) 
can be attained and the inverse Laplace transform can then be 
computed. 

Conclusions 
It has been shown in this work that transforming the step 

response into the frequency domain provides an accurate model 
of the gas film stiffness and damping properties. Using the step 
jump method also takes less computing time than generating 
the frequency response using a direct, numerical method. The 
computing time savings is approximately two orders of magni
tude. Such savings are significant particularly when more realis
tic, multiple degrees of freedom systems are analyzed. 

Also, a new solution procedure has been presented for analyzing 
the dynamics of gas lubricated triboelements. This new procedure 
represents the gas film analytically in the form of a constitutive 
model, thus removing the need to solve the Reynolds equation 
and the equations of motion simultaneously. The constitutive mod
els must comply with the second law of thermodynamics. Even 
for complex tribosystems, once a thermodynamically admissible 
constitutive model is formed for the gas film, it can be incorporated 
into the dynamic analysis without fear of introducing false instabiU-
ties because of misrepresenting the gas film. Using the elastic-gas 
film correspondence principle, the solution of the complex problem 
of the triboelement dynamics coupled with the gas film is obtained 
analytically rather than numerically. As long as the gas film param
eters remain the same, the system can be investigated to find the 
effect of a change in any system parameter, such as mass, support 
stiffness, forcing function, etc., with relative ease and quickness. 
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A P P E N D I X A 

Direct Numerical Procedure for Determining the Gas 
Film Frequency Response 

A novel, direct numerical method is introduced here for de
termining the complex impedance, or frequency response, of 
the gas film. In this approach, a pseudo-random input displace
ment is applied to the bearing pad in the form of 

y{t) = X J'i sin (w.r) (24) 

Yt is the relative amplitude of the j ' " ' sinusoid. It is chosen to 
be a random number in a range of ±5 percent of the flying 
height. This amplitude range is much smaller than the 30 percent 
ampUtude range in which the force response was found to be 
approximately Unear. The M frequencies, a;,, are chosen in 
even increments in a range that provides a suitable amount 
of information for frequencies below, through and above the 
transition region. The displacement form is chosen to be a sum
mation of sine functions since they are infinitely differentiable 
and they yield the initial displacement to be zero (hence, the 
assumptionp/i = constant is moot). Also, the bearing pad veloc
ity can be found in closed form, 

^(O = S '^i'Yt COS {uJit) (25) 

The continuous forms of ^(f) and y{t) above comply with the 
need to have analytical representations of the film thickness and 
its time derivative as needed in the Reynolds equation during 
the time integration process. 

Now, the problem requires calculating the resulting net gas 
film force (i.e., the total force minus the force at equilibrium) 
from a direct numerical solution of the unsteady Reynolds equa
tion. The first step in the process is to determine the equilibrium 
state. Then, the displacement and velocity as specified in Eq. 
(24) and Eq. (25), respectively, are applied to the bearing pad, 
and the Reynolds equation is integrated forward in time. At 
each time increment, the net gas film force is calculated and 
stored along with the displacement. Next, the spectra of the 
displacement and net force response, Y{uj) and F„(w), respec
tively, are calculated digitally by a fast Fourier transform 
(FFT). Then, the gas film frequency response is defined as 

^"'''^'' - K'{uj)+ jK"{Lj) (26) Z{LJ)^ 
Y{uj) 

The spectra computed by the FFT are tabulated at discrete, 
evenly spaced frequencies in the range of interest. To make each 
oj, of the input sinusoids correspond to one discrete frequency in 
the spectra, the number of terms in the input displacement, M, 
is chosen to equal half the number of points in the FFT. 

The procedure described so far yields one set of M data points 
in the frequency response, and the result of this complete procedure 
is called a record. One record, however, inherently contains a 
significant amount of random error due to the pseudo-random 
nature of the displacement. To reduce the apparent random nature 
of the results, several records are computed by repeating the pro
cess above and averaged together. It is well known from random 
data analysis theory (Bendat and Piersol, 1986) that the random 
error decreases proportionally with the square root of the number 
of averages. However, the computing time increases linearly with 
the number of averages. Consequently, for this work 500 averages 
are chosen as a compromise between the desire to reduce the 
computing time and the amount of random error. 
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