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Crack Detection in a Rotor
Dynamic System by Vibration
Monitoring—Part I: Analysis
Many practical rotor dynamic systems contain shaft/rotor elements that are highly
ceptible to transverse cross-sectional cracks due to fatigue. The early detection o
chanical malfunction that can be provided by an effective vibration monitoring syste
essential. Two theoretical analyses, global and local asymmetry crack models, are u
to identify characteristics of the system response that may be directly attributed t
presence of a transverse crack in a rotating shaft. A model consisting of an over
whirling rotor is utilized to match an experimental test rig. A 2X harmonic componen
the system response is shown to be the primary response characteristic resulting fro
introduction of a crack. Once the unique characteristics of the system response are
tified, they serve then as target observations for the monitoring system.
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1 Introduction
As rotating machinery is designed to operate at higher mech

cal efficiency; operating speed, power, and load are increase
weight and dimensional tolerances are decreased. The resul
significantly increased level of operating stress in modern rota
machinery. As a consequence, many practical rotordynamic
tems contain shaft/rotor elements that are highly susceptibl
transverse cross-sectional cracks due to fatigue. To accurately
dict the response of a system to the presence of a transverse c
an appropriate crack model is essential. Once the crack is inclu
in the system model, unique characteristics of the system resp
can be identified and attributed directly to the presence of
crack. These predicted indicators then serve as target observa
for monitoring systems.

A significant amount of research involving the prediction of t
response of shaft/rotor systems to the presence of a trans
crack, and the detection of transverse cracks in rotating shaft
vibration monitoring, has been completed in the last 30 to
years. This work is an extension of a body of research focuse
a flexibly mounted rotor~FMR! mechanical face seal system@1#.
The dynamics of the FMR mechanical face seal system have
extensively investigated@2–5#. In Ref. @2# the coupled dynamics
of the seal and shaft is investigated including effects of sh
inertia and slenderness, fluid film, secondary seal, flexi
mounted rotating element, and an axial offset of the rotor cente
mass. The steady-state response was investigated by implem
ing a complex extended transfer-matrix method. In Ref.@3# an
experimental correlation is investigated between the presenc
higher harmonic oscillations in the test rig system and seal f
contact. The dynamics behavior of the FMR seal itself was inv
tigated in Refs.@4# and@5#. Seal failure, diagnostics, control, an
eventual performance restoration are extensively discusse
Refs. @6–10#. To achieve these goals it is imperative that failu
characteristics of seal and shaft are well differentiated. The in
ence of a crack in a seal-driving shaft is the concern of this wo

An uncracked shaft has constant stiffness, and thus cons
displacement under a fixed load, regardless of the angle of r
tion. In a cracked shaft, the cracked portion of the cross sectio
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not capable of supporting a tensile stress. Therefore the displ
ment, as a function of the stiffness, is minimum when the crac
closed and maximum when the crack is open. This opening
closing behavior, which is referred to as ‘‘breathing,’’ results
time-dependent stiffness coefficients in the equations of motio
the system, which is difficult to work with. Obtaining solution
usually requires making broad simplifying assumptions or so
type of numerical approximation.

Systems in which static displacements and vibrational am
tudes remain very small result in a crack that remains essent
open regardless of the angle of rotation. This type of crack, wh
is essentially a local stiffness asymmetry, is referred to as a ‘‘g
ing’’ crack. The analysis of systems containing a gaping crack
extremely useful since the response characteristics, or crack
cators, identified in the gaping crack analysis are also presen
the analysis of systems containing a breathing crack. Furtherm
these indicators prove to be the most practical, in terms of imp
mentation, in the detection of real cracks. Also, since the int
duction of a crack into a rotating system, on the most basic le
results in a system with a stiffness asymmetry, the analysis
systems containing an asymmetry is fundamental to the stud
the dynamics of cracked rotating systems.

The primary effect of the presence of a crack in a rotating sh
is clearly a local reduction in stiffness. This highly localized effe
does not influence the stiffness of the regions of the rotor aw
from the cracked cross section. Regardless of the type of c
model used for analysis, the effective overall stiffness of the ro
is no longer symmetric. The analysis of the response of a ro
with designed-in asymmetry is therefore part of the fundame
basis for the analysis of the dynamics of shafts containing a tra
verse crack.

A free response of a two degree-of-freedom rotor with asy
metric moments of inertia@11# shows a range of shaft speeds
which the response is unstable. The appearance of a regio
instability near the first natural frequency is confirmed in R
@12#, as well as the 2X harmonic response in an analysis of
linearly asymmetric shaft. In Ref.@13# the 2X resonance is also
predicted at approximately one-half of the first natural frequen
An intuitive explanation for the existence of a region of instabil
and a 2X harmonic response in shafts with dissimilar moments
inertia is given in Ref.@14#. It is important to note that for rotating
systems, the terms ‘‘natural frequency’’ and ‘‘whirl frequency’’ a
synonymous. Also, the term ‘‘critical speed’’ refers to a sh
speed for which one or more of the natural~whirl! frequencies of
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the system are equal to the shaft speed. Therefore the maxi
2X harmonic response occurs at shaft speeds that are app
mately one-half of a critical speed, i.e.,1

2ncr .
In Ref. @15# a practical ‘‘hinge model’’ is developed that repre

sents the crack as an additional flexibility in the direction perp
dicular to the crack edge, for positive displacements in that dir
tion. Similar displacement based breathing crack models h
been utilized in Refs.@12,13,16–19#. In Ref. @20# the opening and
closing of the crack is modeled as a step type function of the a
of rotation only. Other similar step and 1/rev continuous functio
of the angle of rotation have been used to model the breat
behavior of the crack in Refs.@16–18,21–28#.

The complicated system models resulting from the inclusion
a breathing crack model have been solved or approximated
variety of methods. Analog computer simulations@12,15#, Ritz
basis functions based on the asymmetric solution@16#, and nu-
merical integration @13,17,18,20# have been used. Variou
transfer-matrix methods were employed as well@19,23,29#. Flo-
quet theory stability analysis is performed in Refs.@21,27,30#, and
perturbation methods are utilized in Refs.@24,25#.

The most significant result of the analysis of systems contain
breathing crack models that is relevant to this work is the fact
the response characteristics due to a breathing crack model co
of the primary response characteristics of an asymmetric sys
plus some additional phenomena, in form of sub or higher h
monics @20,21,24,25,30–34#. The direction of the investigation
into the response of rotating systems containing breathing c
models tends to focus on the 1X and 2X harmonic response
@17,23–25,33,34#.

On the most basic level the introduction of a gaping crack
sults in a local system stiffness asymmetry that is time indep
dent in a rotating coordinate frame. The additional flexibility i
troduced to the system by the presence of the crack is determ
by methods such as finite element analysis or the Paris s
energy method@21,30#. The localization of the stiffness asymme
try is the key in this analysis.

In Refs. @21,30,33,34# the overall stiffness properties for the
two and three degree-of-freedom systems is determined by
veniently placing the crack at the mid-span of the De-Laval ro
system. To arbitrarily place the crack at some location along
shaft in the system model, it is convenient to utilize a discr
representation of the system, such as a transfer-matrix me
@29#. The presence of a gaping crack in the shaft of a rotat
system tends to primarily affect the 1X synchronous response, an
the 2X harmonics, which has a resonance at1

2ncr .
In summary, the introduction of a gaping crack model into

existing system model has been shown to be a very effec
method of obtaining reasonably accurate results from analysis
it avoids the inherent complexities of cracked shaft analysis du
breathing behavior. A discrete representation of the system all
the additional flexibility due to the crack to be placed arbitrar
along the axis of the shaft of the system. The 2X harmonic com-
ponent of the system response is clearly the most practic
implemented indicator for a monitoring and detection syste
This work utilizes a global asymmetry crack model in a contin
ous representation of the system as well as a gaping crack m
in a discrete representation of the system using a unique exte
transfer-matrix formulation@2#. The theoretical analyses focus o
the prediction of the behavior of the 2X component of the system
response. For each crack model, free and forced response ch
teristics are investigated.

2 Global Asymmetry Crack Model
A shaft into which a transverse crack is introduced experien

a reduction in stiffness which, depending on the relative dim
sions of the crack, can be quite small or quite large. As a fi
approximation we consider a shaft whose entire cross sectio
represented by the remaining uncracked cross section. Thu
resulting shaft is assumed to have an asymmetric cross se
426 Õ Vol. 127, APRIL 2005
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over its entire length. This is referred to as a global asymme
crack model, which is the worst case in terms of the amplitude
the resulting response characteristics.~Such an analysis is usefu
by itself since many rotor dynamic systems contain designe
asymmetric components.!

In Fig. 1~a! the cross section of an overhung massless s
with an attached rotor~which is a reasonable representation of t
test rig system that is detailed in Ref.@35#! is shown to include a
transverse crack. Figure 1~b! shows the same system including th
global asymmetry crack model, which is essentially an asymm
ric Euler-Bernoulli beam. Equations of motion for this system a
derived in a rotating frame to avoid time-dependent stiffness
efficients. TheXYZ coordinate system rotates with the shaft,
shaft speedn, and is oriented such that theX axis is perpendicular
to the crack edge. The relationship between the rotatingXYZ
coordinate system and the inertialjhz coordinate system is show
in Fig. 2. The equations of motion can be derived in the rotat
XYZ coordinate frame as detailed in Ref.@35#, which is based
upon the work in Ref.@36#. For the no damping case we have

Fig. 1 „a… Cracked system; „b… global asymmetry crack model

Fig. 2 Coordinate systems
Transactions of the ASME
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whereX, Y, gX , andgY are displacements and tilts about theX
andY axes, respectively,m is the mass or the rotor,n is the shaft
speed,I p andI t are the polar and transverse moments of inertia
the rotor, andki j are stiffness elements, which are determined
the Appendix. Since in the tested system the mass of the sha
significantly less than the mass of the rotor, it is neglected.
effects of internal energy dissipation in the free response ana
are negligible. Therefore internal damping will be incorporat
into the equations of motion for the forthcoming forced respo
analysis. Equation~1! forms a system of coupled linear ordina
differential equations including gyroscopic effects, where$F% is a
vector of generalized applied forces.

2.1 Undamped Free Response.The goal of the free re-
sponse analysis is to obtain the system eigenvalues, which ar
natural, or whirl, frequencies. The homogeneous form of the m
trix equation of motion given in Eq.~1! has the general form

@M #$S̈%1@C#$Ṡ%1@K#$S%5$0%, (2)

where@M#, @C#, and@K# are inertia, ‘‘damping’’~i.e., Coriolis and
gyroscopic effects!, and stiffness matrices, and$S% is the general-
ized vector of displacements. The system is conveniently
pressed in a state-variable form by defining the following@A# and
@B# matrices:

@A#5F2@K# @0#

@0# @M #
G ; @B#5F @0# 2@K#

2@K# 2@C#
G . (3)

The system expressed in state-variable form is then given by

$ Ṡ̂%5@A#21@B#$Ŝ%, (4)

where $Ŝ% is the state vector of the displacements and tilts a
their first derivatives, which is given by

$Ŝ%5$X Y gX gY Ẋ Ẏ ġX ġY%T. (5)

For this state vector form the state matrix is formed by@A#21@B#.
The eigenvalues and eigenvectors, or whirl frequencies

mode shapes, are then obtained, corresponding to the state v
expressed in the rotatingXYZ frame. For monitoring purposes th
absolute whirl frequencies are of interest since the monitor
system is typically fixed in the inertialjhz coordinate frame. The
absolute whirl frequencies,v, i.e., the eigenvalues expressed
the inertialjhz frame, can be obtained from

v5v01n, (6)

wherev0 is the relative whirl frequency, andn is the shaft speed
Since the state matrix,@A#21@B#, is 838, four conjugate pairs of
eigenvalues are obtained. The eigenvalues are purely imag
since damping or dissipation effects are neglected in this
response analysis.

In rotordynamics, the sign of the frequency is meaningful d
to the fact that shaft whirl can occur with a negative sense,
posing the direction of shaft rotation, or a positive sense, in
direction of shaft rotation. The proper sign can be assigned to
Journal of Engineering for Gas Turbines and Power
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magnitude of each eigenvalue pair which yields forward or ba
ward whirl according to the analysis detailed in Ref.@35#. The
relative whirl frequencies resulting from the analysis,v0 , are as-
signed the appropriate direction and the absolute whirl frequen
v are obtained from Eq.~6!. Figures 3 show the whirl frequencie
as a function of shaft speed for simulated crack depths rang
from 0–40% of the shaft diameter. The ‘‘3’’ symbols along the
horizontal axis of Fig. 3 indicate shaft speeds for which one
more of the eigenvalues has a positive real part, i.e., shaft sp
for which the response is unstable. This instability is solely due
an asymmetric cross section of a purely elastic shaft~recall that
internal damping has been neglected in this section! ~see also
Refs.@11,12,14#!. Two reference lines are also plotted in each
the figures. The intersection of thev5n line with the locus of
whirl frequencies indicates shaft speeds which are equivalent
whirl frequency, i.e., primary (1X) critical speeds. The intersec
tion of the v52n line with the locus of whirl frequencies indi
cates shaft speeds which are one-half of a whirl frequency,
secondary (2X) critical speeds.

When operating at a secondary critical speed, the 2X compo-
nent of the response of the system is occurring at a natural
quency of the system, and will therefore exhibit a resonance
havior. It is at these 2X critical speeds that the 2X response is
expected to be maximum. Comparing the predicted shaft spee
which the 2X resonance occurs for various crack depths clea
shows a decrease in the natural frequencies of the system d
the presence of the crack. This change in the system natural
quency is due to the reduction in system stiffness resulting fr
the crack. The predicted 2X resonance shaft speeds for the glob
asymmetry crack model are given in Table 1.

2.2 Damped Forced Response.The gravity forced re-
sponse of the system model containing the global asymm
crack model is fundamentally important when considering cra
detection. The resulting 2X harmonic response is the most reliab
and widely used indicator of crack existence.

Energy dissipation effects are included in this analysis in or
to observe the influence of the introduction and propogation of
simulated crack on the magnitude of the system response aX
resonance shaft speeds. The equivalent viscous damping co
cients are incorporated into the matrix equation of motion by
fining a new damping matrix,@Ĉ#, according to

@Ĉ#5@C#1@D#, (7)

where @C# is the matrix which contains the Coriolis and gyro
scopic effects, and the@D# matrix contains the equivalent viscou
damping coefficients. The damping matrix@D# is given by

@D#5F d11Y
0 0 2d12Y

0 d11X
d12X

0

0 d12X
d22X

0

2d12Y
0 0 d22Y

G , (8)
APRIL 2005, Vol. 127 Õ 427
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Fig. 3 Global asymmetry model free response at various crack depth values: „a… uncracked; „b… 20%; „c… 30%; „d… 40%
-
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ed
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where di j X
5di j Y

5ceqi j
5

1
2b̄ (ki j X

1ki j Y
)/v. Here average stiff-

ness elements are used so thatdi j X
anddi j Y

are equal. It is neces
sary to construct the complex equations of motion in the follow
analysis. The equation of motion, including internal damping,
the form

@M #$S̈%1@Ĉ#$Ṡ%1@K#$S%5$F%. (9)

The equations of motion are derived in the shaft-fixedXYZ
coordinate frame. The direction along which gravity acts, which
a stationary vector along thej axis of the inertialjhz coordinate

Table 1 2 X resonance shaft speeds—global asymmetry model
free response

% cracked Shaft speed~Hz!

0 70.62
10 67.04
20 60.55
30 52.29
40 43.01
428 Õ Vol. 127, APRIL 2005
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frame, can be represented by a vector that is rotating with a n
tive sense in theXYZ frame. Therefore the forcing function re
sulting from gravity has the form

Fg5mge2 int, (10)

wherem is the mass of the rotor,g is the gravitational acceleration
andn is the shaft speed. The vector of forces that is now includ
in the right-hand side of the equations of motion@Eq. ~1!# is then
given, in the rotatingXYZ coordinate frame, by

$F%5H mgcos~nt!
2mgsin~nt!

0
0

J . (11)

The equations of motion are then combined by defining the
lowing complex variables for the displacementr and tilt f:

r5X1 iY, (12)

f5gX1 igY . (13)

The resulting complex equations of motion are
Transactions of the ASME
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r̈1D11ṙ1~vr
22n2!r2S Dkr

kr
vr

2D r* 1~2n!i ṙ1D12m
ḟ

1~vrfm

2 !if1S Dkrf

krf
vrfm

2 D if* 5ge2 int, (14)

f̈1D22ḟ1Fn2S I p

I t
21D1vf

2 Gf1S Dkf

kf
vf

2 Df* 2FnS I p

I t
22D G i ḟ

2D12I t
i ṙ2~vrf I t

2 !ir1S Dkrf

krf
vrf I t

2 D ir* 50, (15)

where the ‘‘* ’’ denotes the complex conjugate of the variables
Eqs.~12! and ~13!, and

vr5
kr

m
, vf5

kf

I t
, vrfm

5
krf

m
, vrf I t

5
krf

I t
,

kr5
1
2 ~k11X

1k11Y
!,

kf5
1
2 ~k22X

1k22Y
!, krf5

1
2 ~k12X

1k12Y
!, Dkr5kr2k11Y

,

Dkf5kf2k22Y
, Dkrf5krf2k12Y

, D115
d11X

m
5

d11Y

m
,

D12m
5

d12X

m
5

d12Y

m
, D12I t

5
d12X

I t
5

d12Y

I t
,

D225
d22X

I t
5

d22Y

I t
.

To solve this system of equations, solutions of the followi
forms are chosen for the displacementr, and tilt f:

r5Aeint1Be2 int, (16)

f5Ceint1De2 int, (17)

whereA, B, C, andD are arbitrary complex numbers. These s
lutions are substituted into Eqs.~14! and ~15! and the complex
coefficientsA, B, C, and D are determined. Recalling that th
displacement and tilt in the rotatingXYZ coordinate frame are
given by Eqs.~16! and ~17!, the displacementu and tilt g in the
inertial coordinate frame are obtained according to

u5reint, (18)

g5feint. (19)

The displacement and tilt expressed in the inertial coordin
frame are of interest since the experimental data provided by
monitoring system is also obtained in the inertial coordinate fra
~according to Ref.@35#!. From Eqs.~16!–~19! it is clear that the
displacement and tilt in the inertial coordinate frame will have
form

u5Aei2nt1B, (20)

g5Cei2nt1D. (21)

The presence of the 2X harmonic is evident in Eqs.~20! and~21!.
The magnitudes of coefficientsA andC are the magnitudes of th
2X harmonic response, in the inertial frame, of the displacem
and tilt, respectively. Equations~20! and~21! predict displacemen
and tilt responses which have circular shapes, having radii ofuAu,
anduCu, and are offset byB andD. It is important to note that due
to the form of the assumed solutions@Eqs. ~16! and ~17!#, the
resulting solutions@Eqs. ~20! and ~21!# are limited to predicting
only circular orbit shapes of the 2X component.

Figures 4 show the predicted magnitude of the 2X tilt response,
based on the global asymmetry crack model, as a function of s
speed, for two speed ranges, and crack depths varying from
40% of the shaft diameter. The magnitudes plotted show the r
Journal of Engineering for Gas Turbines and Power
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of the predicted circular 2X tilt responses. It is clear that for an
arbitrary shaft speed, the amplitude of the 2X response is pre-
dicted to increase as the crack depth increases.

The magnitudes of the 2X component of the response plotted i
Fig. 4~a! are significantly smaller than those plotted in Fig. 4~b!.
The range of shaft speeds shown in Fig. 4~b! contains 2X resonant
speeds for each crack depth.

As predicted, the 2X resonant speeds decrease as the cra
depth increases. The 2X resonance shaft speeds predicted bas
on this global asymmetry crack model forced response analy
are given in Table 2. These predicted 2X resonance shaft speed
agree with the 2X resonance shaft speeds predicted in the glob
asymmetry model free response analysis, which are given in Ta
1. Since the 0% simulated crack depth results in a system w
symmetric stiffness properties, no 2X resonance is predicted for
the forced response analysis. Damping is light, thus numerica
Tables 1 and 2 provide similar 2X results.

3 Local Asymmetry Crack Model
Perhaps the most important effect of the presence of a tra

verse crack in a rotating shaft is the highly localized flexibilit

Fig. 4 Global asymmetry model forced tilt 2 X response: „a…
Low-speed range; „b… high-speed range
APRIL 2005, Vol. 127 Õ 429

13 Terms of Use: http://asme.org/terms



o

e

f
-

t
e
h

h

-

th

p

is-

Downloaded F
that is introduced. To locally represent the stiffness properties
cracked cross section in an otherwise uncracked shaft, it is ne
sary to determine the additional flexibility due to the presence
the crack, and incorporate this flexibility into a discrete repres
tation of the system. In this study a transfer-matrix method w
employed to accomplish this desired localizing effect. Figure
shows the cracked system represented by three lumped stif
elements;@F1#, @Fcrack#, and @F2#, and one lumped inertia ele
ment@P#. Since the mass of the shaft is significantly less than
mass of the rotor, the mass of the shaft is neglected.

The purpose of this section is to present the analytical por
of the analysis of the cracked system including a local asymm
crack model using the complex extended transfer-matrix met
@2,37# for free and forced response analyses, along with relev
results. As previously, damping effects will be incorporated in
the forced response analysis.

3.1 Crack Flexibility. The localized additional flexibility
can be represented by a lumped parameter element. A section
shaft containing a crack of deptha is shown, under general load
ing, in Fig. 6~a!. Figure 6~b! shows the cross section of the sha
section in Fig. 6~a! at the location of the transverse crack. T
generalized displacementui in the i direction is obtained by uti-
lizing Castigliano’s theorem@21,30#:

ui5
]

]Pi
E

0

a

J~Y!dY, (22)

wherePi is the generalized force associated withui , andJ(Y),
according to Tada, Paris, and Irwin@37#, is the strain energy den
sity function given by

Fig. 5 Local asymmetry crack model

Table 2 2 X resonance shaft speeds—global asymmetry model
forced response

% cracked Shaft speed~Hz!

0
10 67.04
20 60.55
30 52.29
40 43.01
430 Õ Vol. 127, APRIL 2005
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J~a!5
12n2

E F S (
i 51

6

KIi D 2

1S (
i 51

6

KIIi D 2

1~11n!S (
i 51

6

KIIIi D 2G , (23)

wheren is Poisson’s ratio,E is Young’s Modulus, andKni is the
crack stress intensity factor for moden due to Pi . The stress
intensity factors for a unit width strip containing a crack of dep
a are evaluated according to

Kni5s iApaFnS a

h D , (24)

wheres i are the stresses due to the loadPi at the crack,Fn(a/h)
are appropriate intensity functions, andh is the total strip length
~see Fig. 6~b!!.

The additional flexibility due to the crack for a unit width stri
can be written as

ci j 5
]2

]Pi]Pj
E

0

a

J~Y!dY (25)

which, after integration along the crack edge, becomes

ci j 5
]2

]Pi]Pj
E

2b

b E
0

a

J~Y!dY. (26)

The current analysis is not concerned with torsion or axial d
placement, hence onlyc22, c33, c44, c45, c54, and c55 are re-
quired. These elements are then given by

Fig. 6 Local crack model: „a… shaft section containing a crack;
„b… crack cross section
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c225
4~12n2!

pER E
0

b̄E
0

ā

ȲFII
2 S Ȳ

h̄
D dȲdX̄, (27)

c335
4~12n2!

pER E
0

b̄E
0

ā

ȲFII
2 S Ȳ

h̄
D dȲdX̄, (28)

c445
32~12n2!

pER3 E
0

b̄E
0

ā

X̄2ȲFIY
2 S Ȳ

h̄
D dȲdX̄, (29)

c455c555
64~12n2!

pER3 E
0

b̄E
0

ā

X̄ȲA12X̄2FIXS Ȳ

h̄
DFIYS Ȳ

h̄
D dȲdX̄,

(30)

c555
64~12n2!

pER3 E
0

b̄E
0

ā

~12X̄2!ȲFIX
2 S Ȳ

h̄
D dȲdX̄, (31)

where b̄5b/R, X̄5X/R, Ȳ5Y/R, ā5a/R, and h̄5h/R. The
corresponding intensity functions are given by

FIXS a

h D5F tan~bc!

bc
G1/2

@ .9321.199~12sin~bc!!4#/cos~bc!,

(32)

FIYS a

h D5F tan~bc!

bc
G1/2F .7521.202S a

h D
1.37~12sin~bc!!3GY cos~bc!, (33)

FII S a

h D5F1.1222.561S a

h D1.085S a

h D 2

1.18S a

h D 3GY S 12
a

h D 1/2

, (34)

FIII S a

h D5F tan~bc!

bc
G1/2

, (35)

bc5S pa

2h D . (36)

The additional flexibilities due to the presence of the crack m
therefore be obtained by numerically integrating Eqs.~27!–~31!.
Dimensionless flexibilities can be obtained according to

c̄225c22

pER

~12n2!
, c̄335c33

pER

~12n2!
,

c̄445c44

pER3

~12n2!
c̄455c45

pER3

~12n2!
, (37)

c̄555c55

pER3

~12n2!
,

where the overbar indicates the nondimensional value. Thes
mensionless flexibilities are plotted in Fig. 7, for crack depths
to 50% of the shaft diameter. These local flexibilities may now
introduced appropriately into the discrete representation of
system.

3.2 Transfer Matrix. The transfer-matrix method is
lumped parameter method in which inertial properties of the s
tem are lumped into point matrices, and stiffness properties of
system are represented by lumped field matrices@2#; both relate
state vectors at the two ends of a shaft element. The state vec
station i, expressed in the rotatingXYZ coordinate frame, is de
fined as
Journal of Engineering for Gas Turbines and Power
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$Z% i5$uX uY MY 2VX 2uY uX MX VY%T, (38)

whereu, u, M, andV are the complex magnitudes of the displac
ment, tilt, moment, and shear force, respectively.

The Field Matrix. The state vector at the left of stationi,
$Z% i

L , is related to the state vector at the right of stationi 21,
$Z% i 21

R , by the field matrix@Fi #:

$Z% i
L5@Fi #$Z% i 21

R . (39)

The field matrix@Fi # has the form

@Fi #5

l

1 l i
l i
2

2EI

l i
3

6EI
0 0 0 0

0 1
l i

EI

l i
2

2EI
0 0 0 0

0 0 1 l i 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 l i
l i
2

2EI

l i
3

6EI

0 0 0 0 0 1
l i

EI

l i
2

2EI

0 0 0 0 0 0 1 l i

0 0 0 0 0 0 0 1

m
, (40)

wherel i is the length of the field,E is Young’s modulus, andI is
the area moment of inertia of the field cross section.

The Crack Matrix. The crack is represented by a field matr
which contains the additional flexibilities introduced by the pre
ence of the crack. The crack field matrix@Fcrack# has the form

Fig. 7 Dimensionless crack flexibilities
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@Fcrack#53
1 0 0 2c22 0 0 0 0

0 1 c44 0 0 0 c45 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 2c33

0 0 c54 0 0 1 c55 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

4 ,

(41)

d
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-
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where the elementsci j are determined in Eqs.~27!–~36!. Notably,
in an uncracked shaft,a50, ci j 50, and@Fcrack#5@ I #.

The Point Matrix. The state vector at the right of the lumpe
mass at stationi, $Z% i

R , is related to the state vector at the left
the lumped mass at stationi, $Z% i

L , by the point matrix@Pi #:

$Z% i
R5@Pi #$Z% i

L . (42)

The solution is sought in the rotating frame,XYZ, thus
@Pi #53
1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 n2~ I p2I t!2I tv0
2 1 0 0 inv0~2I t2I p! 0 0

m~v0
21n2! 0 0 1 22inv0m 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 inv0~2I t2I p! 0 0 0 n2~ I p2I t!2I tv0
2 1 0

2inv0m 0 0 0 m~v0
21n2! 0 0 1

4 , (43)
of
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rom
wherem is the rotor mass,I t and I p are the transverse and pola
mass moments of inertia, respectively,n is the shaft speed, andv0
is the relative whirl frequency~see Eqs.~1! and ~6!!.

The Overall Transfer Matrix. The overall transfer matrix for
this system,@U#, is constructed according to

@U#5@P#@F2#@Fcrack#@F1#. (44)

The state at the support,$Z%support, is then related to the state a
the right of the lumped mass$Z%1

R by the following:

$Z%1
R5@U#$Z%support. (45)

Undamped Free Response.Applying the clamped-free bound
ary conditions, which are no displacement or tilt at the supp
boundary and no shear or moment at the end of the shaft, to
overall transfer matrix expression given in Eq.~45! leads to the
following relations:

FU33 U34 U37 U38

U43 U44 U47 U48

U73 U74 U77 U78

U83 U84 U87 U88

G H MY

2VX

MX

VY

J
support

,@Freq#H MY

2VX

MX

VY

J
support

5H 0
0
0
0
J

1

R

, (46)

FU13 U14 U17 U18

U23 U24 U27 U28

U53 U54 U57 U58

U63 U64 U67 U68

G H MY

2VX

MX

VY

J
support

,@Switch#H MY

2VX

MX

VY

J
support

5H uX

uY

2uY

uX

J
1

R

, (47)
r

t

ort
the

whereUi j are elements of the overall transfer matrix@U#.
By solving the standard eigenvalue problem for Eq.~46!, four

complex-conjugate pairs of eigenvalues result. The problem
assigning whirl directions to each of the four frequency mag
tudes is identical to the previous discussion. To obtain the m
shape for a given eigenvalue, which is essentially the displa
ment and tilt portion of the state vector at the end of the shaf
is convenient to label the 434 matrices in Eqs.~46! and ~47! as
@Freq# and @Switch#, respectively. From Eq.~47!, the shear and
moment portion of the state vector at the support is given by

H MY

2VX

MX

VY

J
support

5@Switch#21H uX

uY

2uY

uX

J
1

R

. (48)

Substituting this expression for$MY 2VX MX VY%support
T into Eq.

~46! results in

@Freq#@Switch#21H uX

uY

2uY

uX

J
1

R

5H 0
0
0
0
J . (49)

For each frequency magnitude, given by the four pairs of eig
values, Eq.~49! forms a linearly dependent system of equation
Solving this eigenvalue problem results in the correspond
mode shape, i.e., the vector$uX uY uY uX%T. Once the eigenvalues
and corresponding eigenvectors, or mode shapes, are determ
whirl directions are also assigned~see previous discussion! to
each frequency, and the true natural frequencies are plotted ve
shaft speed.

Figure 8 shows the whirl frequencies as a function of sh
speed for crack depths ranging from 0 to 40% of the shaft dia
eter. The ‘‘3’’ symbols along the horizontal axis indicate sha
speeds for which one or more of the eigenvalues has a pos
real part, i.e., shaft speeds for which the response is unstable
previously, two reference lines indicating critical speeds and ‘‘2X
resonance’’ shaft speeds are also included in each figure. F
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Fig. 8 Local asymmetry model free response at various crack values: „a… uncracked; „b… 20%; „c… 30%; „d… 40%
p

e
t

t

ctor

fied

to
this analysis, shaft speeds at which the 2X response is maximum
can be predicted for various crack depths. Table 3 gives the
dicted 2X resonance shaft speeds based on the local asymm
crack model. The decrease in the 2X resonance shaft speeds ind
cates the decrease in the natural frequencies of the system r
ing from the increased flexibility introduced by the presence of
crack. This free response analysis of the system containing
local asymmetry crack model indicates that a decrease in na
frequencies, which may be observed as a decrease in primary
secondary critical speeds, is a characteristic of the system
sponse that can be directly attributed to the presence of a tr
verse crack.

Table 3 2 X resonance shaft speeds—local asymmetry model
free response

% cracked Shaft speed~Hz!

0 70.62
10 70.34
20 69.24
30 66.97
40 62.44
Journal of Engineering for Gas Turbines and Power
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Damped Forced Response.To account for a forcing function
in the transfer-matrix method described above, the state ve
and field and point matrices are extended to 931 and 939, re-
spectively, similar to Ref.@2#. Likewise, the point matrix for this
local asymmetry model forced response analysis will be modi
to include damping effects.

The state vector for stationi now has the form

$Z% i5$uX uY MY 2VX 2uY uX MX VY 1%T. (50)

The field matrices, including the crack matrix, are identical
those given in Eqs.~40! and ~41! with an additional row and
column of zeros, except for element~9,9!, which is one unit. The
damped forced response point matrix@ P̂i # contains damping ef-
fects, and is given by

@ P̂i #5F @Pi # $0%

$0% 1 G1@ P̃i #, (51)

where@Pi # is the 838 point matrix given in Eq.~43!, and@ P̃i # is
the 939 matrix given by
APRIL 2005, Vol. 127 Õ 433
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@ P̃i #53
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

ivd12Y
2 ivd22Y

0 0 0 0 0 0 0

ivd11Y
2 ivd12Y

0 0 0 0 0 0 mg

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 ivd12X
2 ivd22X

0 0 0 4 , (52)
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where di j q
5ceqi j q

5b̄ki j q
/v, and g is the acceleration due to

gravity. This matrix contains the influence of internal dampi
and the forcing function. The overall transfer matrix is obtain
by combining these 939 field and point matrices as in Eqs.~44!
and ~45!. Applying the clamped-free boundary conditions, whi
are no displacement or tilt at the support boundary and no she
moment at the end of the shaft, results in the following relatio
for the forced response:

FU33 U34 U37 U38

U43 U44 U47 U48

U73 U74 U77 U78

U83 U84 U87 U88

G H MY

2VX

MX

VY

J
support

1H U39

U49

U79

U89

J 5H 0
0
0
0
J

1

R

,

(53)

FU13 U14 U17 U18

U23 U24 U27 U28

U53 U54 U57 U58

U63 U64 U67 U68

G H MY

2VX

MX

VY

J
support

5H uX

uY

2uY

uX

J
1

R

.

(54)

The vector$MY 2VX MX VY%T in Eq. ~53! is obtained as the so
lution of a linearly independent system of equations. This solut
is substituted into Eq.~54! and the forced response vect
$uX uY uY uX%T is obtained. Each element of the state vector i
complex number. The displacement in theX andY directions, for
example, are of the form

uX5uXr
1 iuXi

, (55)

uY5uYr
1 iuYi

, (56)

where ther and i subscripts denote real and imaginary comp
nents, respectively. The displacement in theX andY directions,X
andY, will be given by

X5Re@uXeint#, (57)

Y5Re@uYeint#. (58)

So, taking the real part of each,

X5uXr
cos~nt!2uXi

sin~nt!, (59)

Y5uYr
cos~nt!2uYi

sin~nt!. (60)

Recalling that the point and field matrices were derived in
rotating coordinate frameXYZ,

r5X1 iY5~uXr
1 iuYr

!cos~nt!2~uXi
1 iuYi

!sin~nt!. (61)
434 Õ Vol. 127, APRIL 2005
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It is desired to observe the results in a stationary coordinate fra
The transformation from the rotatingXYZcoordinate frame to the
inertial jhz coordinate frame is given by

u5reint, (62)

so, the displacement of the rotor expressed in the stationary c
dinate frame is

u5
1
2 @~uXr

2 iuxi
1 iuYr

1uYi
!1~uXr

1 iuxi
1 iuYr

2uYi
!ei2nt#.

(63)

Similarly, the tilt of the rotor expressed in the stationary coor
nate frame is

g5
1
2 @~uXr

2 iuxi
1 iuYr

1uYi
!1~uXr

1 iuxi
1 iuYr

2uYi
!ei2nt#.

(64)

It is clear from Eqs.~63! and~64! that the constant radial force o
gravity acting on the cracked system results in a 2X harmonic
response which is predicted by this analysis to have a circ
shape. The predicted 2X circular tilt response has a radius o
1
2 u(uXr

2uYi
)1i(uXi

1uYr
)u and is offset according to12 @(uXr

1uYi
)

2 i (uXi
2uYr

)#. The magnitude of the 2X tilt response is plotted
as a function of shaft speed in Fig. 9, shown separately for
low- and high-speed ranges, and for crack depths varying fro
to 40% of the shaft diameter. It is clear that for an arbitrary sh
speed, the amplitude of the 2X response is predicted to increase
the crack depth increases. The range of shaft speeds shown
tains 2X resonant speeds for each crack depth~Fig. 9~b!!. As
previously, the 2X resonant speeds decrease as the crack d
increases. The 2X resonance shaft speeds predicted based on
local asymmetry crack model forced response analysis are g
in Table 4. Since the 0% crack depth results in a system w
symmetric stiffness properties, no 2X resonance is predicted fo
the forced response analysis. Damping is light~typical damping
ratios are less than 1%, as experimentally found@35#!, thus nu-
merically Tables 3 and 4 provide similar 2X results.

The amplitude of the 2X response at each 2X resonant speed is
shown to increase in magnitude as the crack depth increases
shaft speeds at which the 2X peaks occur decrease due to t
reduced stiffness, which changes the system natural frequen
resulting from the presence of the crack. The increased ampli
of the 2X component of the system response is due to the
creased asymmetry as the crack depth increases. This force
sponse analysis of the system containing the local asymm
crack model indicates that an increase in the amplitude of theX
component of the system response, as well as a decrease i
shaft speed at which the 2X component of the response is max
mum, are characteristics of the system response that may b
rectly attributed to the presence of a transverse shaft crack.
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4 Conclusions
Two theoretical analyses have been presented to identify c

acteristics of the system response that may be directly attribute
the presence of a transverse crack in the shaft of the tes
system. Both the global and local asymmetry crack model an
ses qualitatively predict response characteristics which have
experimentally observed in the response of a system containi
gaping crack.

The behavior of the 2X harmonic component of the syste
response is an effective target observation for a monitoring
tem. The predicted behaviors of the 2X harmonic component o

Fig. 9 Local asymmetry model forced response: „a… low-speed
range; „b… high-speed range

Table 4 2 X resonance shaft speeds—local asymmetry model
forced response

% cracked Shaft speed~Hz!

0
10 70.34
20 69.24
30 66.97
40 62.44
Journal of Engineering for Gas Turbines and Power
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the system response include an increase in magnitude for inc
ing crack depth as well as a decrease in the shaft speed at w
the 2X harmonic component of the system response is maxim
The presence of a transverse shaft crack has also been sho
induce an unstable response for some shaft speeds. The dete
of changes in the magnitude of the 2X harmonic component of the
system response becomes much more difficult for shaft spe
which are greater than 2X resonance speeds. Frequency-swe
tests, which pass through 2X resonance shaft speeds, would pr
vide the most useful information; however, observation of t
magnitude of the 2X component could also provide crack dia
nostic information.

This research utilizes a method to account for a shaft crac
the transfer-matrix method. By employing these transfer matric
coupled systems that include shafts, seals, bearings, etc., ca
systematically analyzed in a modular fashion@2#.
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Appendix: Asymmetric Stiffness
The stiffness elements relate the displacement and tilt at the

of the shaft to the applied forces or moments in theX and Y
directions. The stiffness relationships for a cantilever Eul
Bernoulli beam are obtained from general beam theory as

H FX

MY
J 5F k11Y

2k12Y

2k21Y
k22Y

G H X
gY

J (A1)

and

H FY

MX
J 5F k11X

k12X

k21X
k22X

G H Y
gX

J , (A2)

where k11X
512EIX / l 3, k12X

5k21X
56EIX / l 2, k22X

54EIX / l ,

k11Y
512EIY / l 3, k12Y

5k21Y
56EIY / l 2, andk22Y

54EIY / l .
The area moments of inertia,I, are calculated about theX andY

axes. For the uncracked case, theX andY axes are also the neutra
axes of bending.

The asymmetric stiffness relationships are obtained by calcu
ing the appropriate asymmetric area moments of inertia and p
erly substituting them into the stiffness coefficientski j above.

The cross section of the shaft at the location of the crack, wh
is shown in Fig. 10, has asymmetric area moments of inertia ab
the neutral axes of bending which are parallel to theX andY axes.
To find the area moments of inertia about the neutral axes
bending, the parallel axis theorem was utilized.

Fig. 10 Asymmetric shaft cross section
APRIL 2005, Vol. 127 Õ 435
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The area moments of inertia about theX andY axes,Î X and Î Y ,
are defined as

Î X5E
A
Y2dA5E

A
Y2dXdY, (A3)

Î Y5E
A
X2dA5E

A
X2dXdY, (A4)

where A is the uncracked area of the cross section. The cro
coupled area moments of inertia,I XY and I YX , are zero since the
X axis is an axis of symmetry. After integrating over the u
cracked area, the following equations forÎ X and Î Y result:

Î X5
pr 4

8
1

1

4 F ~r 2a!~r 224ra12a2!A2ra2a2

1r 4 sin21S r 2a

r D G , (A5)

Î Y5
pr 4

4
1

~r 2a!~2Y!3

12
2

1

4 FY~2Y22r 2!Ar 22Y2

1r 4 sin21S Y

r D G , (A6)

where r is the shaft radius,a is the crack depth, andY
5Aa(2r 2a) for convenience.

The following expressions for the area of the cross sectionA,
and the distance from theX axis to the centroid of the cros
section,X̄, can be obtained

A5~r 2a!A2ra2a21r 2 sin21S 12
a

r D1
pr 2

2
, (A7)

X̄5
2

3A
~2ar2a2!3/2. (A8)

The moments of inertia about the parallel centroidal axes,I X and
I Y , are then obtained according to the parallel axis theorem a

I X5 Î X , (A9)

I Y5 Î Y2AX̄2. (A10)
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