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Fellow ASME Many practical rotor dynamic systems contain shaft/rotor elements that are highly sus-
ceptible to transverse cross-sectional cracks due to fatigue. The early detection of me-

COdv Casev chanical malfunction that can be provided by an effective vibration monitoring system is
Schlumberger, essential. Two theoretical analyses, global and local asymmetry crack models, are utilized
14910 Airline Road, to identify characteristics of the system response that may be directly attributed to the
Rosharon, TX 77583 presence of a transverse crack in a rotating shaft. A model consisting of an overhung

whirling rotor is utilized to match an experimental test rig. A 2X harmonic component of
the system response is shown to be the primary response characteristic resulting from the
introduction of a crack. Once the unique characteristics of the system response are iden-
tified, they serve then as target observations for the monitoring system.
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1 Introduction not capable of supporting a tensile stress. Therefore the displace-

As rotating machinery is designed to operate at higher meChaant’ as a function of the stiffness, is minimum when the crack is

cal efficiency; operating speed, power, and load are increase osed and maximum when the crack is open. This opening and

weight and dimensional tolerances are decreased. The result ogl_r:jg beh;vuir,t\_/f\;hlch IS reégr_redt tc_) etlﬁ breat?lng, :(esultt_s n f
significantly increased level of operating stress in modern rotati (gre-daependent stfiness coetficients In the equations of motion o

e system, which is difficult to work with. Obtaining solutions

machinery. As a consequence, many practical rotordynamic s i . Kinal broad simplifvi i
tems contain shaft/rotor elements that are highly susceptible gually requires making broad simp ifying assumptions or some
yoe of numerical approximation.

transverse cross-sectional cracks due to fatigue. To accurately |5 ¢ in which static displ " d vibrational i
dict the response of a system to the presence of a transverse crac§,yS ems In which static displacements and vibrational ampli-
ges remain very small result in a crack that remains essentially

an appropriate crack model is essential. Once the crack is includd dl fh le of on. Thi ; K which
in the system model, unique characteristics of the system respoﬂgsn regardless of the angle of rotation. This type of crack, whic

can be identified and attributed directly to the presence of tipessentially alocal stiffness asymmetry, is referred to as a “gap-

crack. These predicted indicators then serve as target observatibigs crack. The analysis of systems containing a gaping crack is

for monitoring systems. extremely useful since the response characteristics, or crack indi-

A significant amount of research involving the prediction of th ators, identified in the gaping .crack analy;is are also present in
response of shaft/rotor systems to the presence of a transv a”?"y?"s of systems containing a breath[ng crack. Furthgrmore,
crack, and the detection of transverse cracks in rotating shafts'BgSe 'F‘d'ca_‘mfs prove to_ be the most practical, in t_erms of |mple-
vibration monitoring, has been completed in the last 30 to ntation, in the detection of real cracks. Also, since the intro-

years. This work is an extension of a body of research focused @yction of a crack into a rotating system, on the most basic level,

a flexibly mounted rotofFMR) mechanical face seal systdi. results in a system with a stlffnes_s asymmetry, the analysis of
The dynamics of the FMR mechanical face seal system have b&Y§EMS containing an asymmetry is fundamental to the study of
extensively investigatef2—5]. In Ref.[2] the coupled dynamics th€ dynamics of cracked rotating systems. i _
of the seal and shaft is investigated including effects of shaft 1€ Primary effect of the presence of a crack in a rotating shaft
inertia and slenderness, fluid film, secondary seal, ﬂexib%clearly a local reductlon_ln stiffness. This _hlghly localized effect
mounted rotating element, and an axial offset of the rotor center @S not influence the stiffness of the regions of the rotor away
mass. The steady-state response was investigated by implemERf the cracked cross section. Regardless of the type of crack
ing a complex extended transfer-matrix method. In R8f.an model used for analygls, the effectlvg overall stiffness of the rotor
experimental correlation is investigated between the presencelof0 longer symmetric. The analysis of the response of a rotor
higher harmonic oscillations in the test rig system and seal fagéth designed-in asymmetry is therefore part of the fundamental
contact. The dynamics behavior of the FMR seal itself was invel3asis for the analysis of the dynamics of shafts containing a trans-
tigated in Refs[4] and[5]. Seal failure, diagnostics, control, andverse crack. _
eventual performance restoration are extensively discussed irf* free response of a two degree-of-freedom rotor with asym-
Refs.[6—10]. To achieve these goals it is imperative that failuré'etric moments of inertif11] shows a range of shaft speeds in
characteristics of seal and shaft are well differentiated. The inflihich the response is unstable. The appearance of a region of
ence of a crack in a seal-driving shatft is the concern of this worlastability near the first natural frequency is confirmed in Ref.
An uncracked shaft has constant stiffness, and thus constekél, as well as the X harmonic response in an analysis of a
displacement under a fixed load, regardless of the angle of rotigearly asymmetric shaft. In Ref13] the 2X resonance is also
tion. In a cracked shaft, the cracked portion of the cross sectionpigdicted at approximately one-half of the first natural frequency.
An intuitive explanation for the existence of a region of instability
Contributed by the International Gas Turbine Instit(@TI) of THE AMERICAN and a X harmonic response in shafts with dissimilar moments of
SOCIETY OF MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF  inertia is given in Ref[14]. Itis important to note that for rotating

ENGINEERING FORGAS TURBINES AND POWER Paper presented at the Intemna-qystems. the terms “natural frequency” and “whirl frequency” are
tional Gas Turbine and Aeroengine Congress and Exhibition, Atlanta, GA, Jun ' q y q y

16-19, 2003, Paper No. 2003-GT-38659. Manuscript received by IGTI, OctobayNONymous. Also, the term “critical speed” refers to a shaft
2002, final revision, March 2003. Associate Editor: H. R. Simmons. speed for which one or more of the natugahirl) frequencies of
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the system are equal to the shaft speed. Therefore the maxim
2X harmonic response occurs at shaft speeds that are appre
mately one-half of a critical speed, i.émcr. U

In Ref.[15] a practical “hinge model” is developed that repre
sents the crack as an additional flexibility in the direction perper 7
dicular to the crack edge, for positive displacements in that dire
tion. Similar displacement based breathing crack models ha
been utilized in Refd.12,13,16—1% In Ref.[20] the opening and (a)
closing of the crack is modeled as a step type function of the anc
of rotation only. Other similar step and 1/rev continuous function
of the angle of rotation have been used to model the breathi
behavior of the crack in Ref$16-18,21-28 wu Y

The complicated system models resulting from the inclusion L ®
a breathing crack model have been solved or approximated b Z
variety of methods. Analog computer simulatiofi?,15, Ritz 777
basis functions based on the asymmetric solufibl, and nu-
merical integration [13,17,18,20 have been used. Various X
transfer-matrix methods were employed as W&B,23,29. Flo- (b)
quet theory stability analysis is performed in Réfl,27,3Q, and
perturbation methods are utilized in Refg4,25. _ Fig. 1 (a) Cracked system; (b) global asymmetry crack model

The most significant result of the analysis of systems containing
breathing crack models that is relevant to this work is the fact that
the response characteristics due to a breathing crack model consist
of the primary response characteristics of an asymmetric system
plus some additional phenomena, in form of sub or higher har-
monics[20,21,24,25,30—34 The direction of the investigations over its entire length. This is referred to as a global asymmetry
into the response of rotating systems containing breathing crawfack model, which is the worst case in terms of the amplitude of
models tends to focus on theXland 2X harmonic responses the resulting response characteristi@uch an analysis is useful
[17,23-25,33,3} by itself since many rotor dynamic systems contain designed-in

On the most basic level the introduction of a gaping crack r@ésymmetric componenis.
sults in a local system stiffness asymmetry that is time indepen-In Fig. 1(a) the cross section of an overhung massless shaft
dent in a rotating coordinate frame. The additional flexibility inwith an attached rotaofwhich is a reasonable representation of the
troduced to the system by the presence of the crack is determiriest rig system that is detailed in R€85]) is shown to include a
by methods such as finite element analysis or the Paris stréiansverse crack. Figurél) shows the same system including the
energy method21,30. The localization of the stiffness asymme-global asymmetry crack model, which is essentially an asymmet-
try is the key in this analysis. ric Euler-Bernoulli beam. Equations of motion for this system are

In Refs.[21,30,33,3%4 the overall stiffness properties for theirderived in a rotating frame to avoid time-dependent stiffness co-
two and three degree-of-freedom systems is determined by ceifficients. TheXY Z coordinate system rotates with the shaft, at
veniently placing the crack at the mid-span of the De-Laval rot@haft speedh, and is oriented such that tixeaxis is perpendicular
system. To arbitrarily place the crack at some location along th@ the crack edge. The relationship between the rotakngZ
shaft in the system model, it is convenient to utilize a discremoordinate system and the inertéaj, coordinate system is shown
representation of the system, such as a transfer-matrix mettindrig. 2. The equations of motion can be derived in the rotating
[29]. The presence of a gaping crack in the shaft of a rotatin§Y Z coordinate frame as detailed in R¢85], which is based
system tends to primarily affect thexisynchronous response, andupon the work in Ref[36]. For the no damping case we have
the 2X harmonics, which has a resonancejay, .

In summary, the introduction of a gaping crack model into an
existing system model has been shown to be a very effective
method of obtaining reasonably accurate results from analysis, yet
it avoids the inherent complexities of cracked shaft analysis due to
breathing behavior. A discrete representation of the system allows
the additional flexibility due to the crack to be placed arbitrarily
along the axis of the shaft of the system. The¢ Barmonic com-
ponent of the system response is clearly the most practically
implemented indicator for a monitoring and detection system.
This work utilizes a global asymmetry crack model in a continu-
ous representation of the system as well as a gaping crack model
in a discrete representation of the system using a unique extended
transfer-matrix formulatiofi2]. The theoretical analyses focus on
the prediction of the behavior of thex2component of the system
response. For each crack model, free and forced response charac-
teristics are investigated.

—= n

2 Global Asymmetry Crack Model

A shaft into which a transverse crack is introduced experiences
a reduction in stiffness which, depending on the relative dimen-
sions of the crack, can be quite small or quite large. As a first
approximation we consider a shaft whose entire cross section is-
represented by the remaining uncracked cross section. Thus the
resulting shaft is assumed to have an asymmetric cross section Fig. 2 Coordinate systems
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whereX, Y, yx, and yy are displacements and tilts about tie magnitude of each eigenvalue pair which yields forward or back-
andY axes, respectivelyn is the mass or the roton is the shaft ward whirl according to the analysis detailed in RE5]. The
speed] , andl; are the polar and transverse moments of inertia oélative whirl frequencies resulting from the analysig, are as-

the rotor, andk;; are stiffness elements, which are determined isigned the appropriate direction and the absolute whirl frequencies
the Appendix. Since in the tested system the mass of the shafwisire obtained from Eq6). Figures 3 show the whirl frequencies
significantly less than the mass of the rotor, it is neglected. Tl a function of shaft speed for simulated crack depths ranging
effects of internal energy dissipation in the free response analyism 0—-40% of the shaft diameter. Thex” symbols along the

are negligible. Therefore internal damping will be incorporatedorizontal axis of Fig. 3 indicate shaft speeds for which one or
into the equations of motion for the forthcoming forced responseore of the eigenvalues has a positive real part, i.e., shaft speeds
analysis. Equatioril) forms a system of coupled linear ordinaryfor which the response is unstable. This instability is solely due to
differential equations including gyroscopic effects, whifgis a an asymmetric cross section of a purely elastic straftall that
vector of generalized applied forces. internal damping has been neglected in this settisee also
Refs.[11,12,14). Two reference lines are also plotted in each of
the figures. The intersection of the=n line with the locus of

rl frequencies indicates shaft speeds which are equivalent to a

2.1 Undamped Free Response.The goal of the free re-
sponse analysis is to obtain the system eigenvalues, which are

natural, or Whi;l’ frequen_cies._ThEe hlorrr:ogerr:eous forrlnfof the Mhirl frequency, i.e., primary (X) critical speeds. The intersec-
trix equation of motion given in Eq1) has the general form o of the w=2n line with the locus of whirl frequencies indi-

c ¢ _ cates shaft speeds which are one-half of a whirl frequency, i.e.,
[M]{SH[C;'{S}#[K]{S} .{O}’_ o @ secondary (X) critical speeds.

where[M], [C], and[K] are inertia, “damping’(i.e., Coriolis and  when operating at a secondary critical speed, thecBmpo-
gyroscopic effects and stiffness matrices, a8} is the general- nent of the response of the system is occurring at a natural fre-
ized vector of displacements. The system is conveniently efuency of the system, and will therefore exhibit a resonance be-
pressed in a state-variable form by defining the followiAgand havior. It is at these % critical speeds that theX2 response is
[B] matrices: expected to be maximum. Comparing the predicted shaft speeds at
~[K] [0] [0] —[K] which the X resonance occurs for variou§ crack depths clearly

} ) 3) shows a decrease in the natural frequencies of the system due to
[0] [M] —-[K] —[C]

the presence of the crack. This change in the system natural fre-
The system expressed in state-variable form is then given by

[A]=

quency is due to the reduction in system stiffness resulting from
the crack. The predicted®resonance shaft speeds for the global
{'“S}:[A]—l[B]{"S} (4) asymmetry crack model are given in Table 1.

2.2 Damped Forced Response.The gravity forced re-
onse of the system model containing the global asymmetry
crack model is fundamentally important when considering crack

Where{é} is the state vector of the displacements and tilts anscb
their first derivatives, which is given by

{§}={X Y ye vy X Y Yy T (5) detection. The resultingXharmonic response is the most reliable
) o . and widely used indicator of crack existence.
For this state vector form the state matrix is formed By~ [ B]. Energy dissipation effects are included in this analysis in order

The eigenvalues and eigenvectors, or whirl frequencies afiflobserve the influence of the introduction and propogation of the
mode shapes, are then obtained, corresponding to the state vegi@lated crack on the magnitude of the system respons& at 2
expressed in the rotatingY Zframe. For monitoring purposes theresonance shaft speeds. The equivalent viscous damping coeffi-
absolute whirl frequencies are of interest since the monitoringents are incorporated into the matrix equation of motion by de-

system is typically fixed in the inerti@n{ coordinate frame. The fining a new damping matri,C], according to
absolute whirl frequenciesy, i.e., the eigenvalues expressed in T

the inertialé7¢ frame, can be obtained from [C]=[C]+[D], @)

w=wotN, ®)  where [C] is the matrix which contains the Coriolis and gyro-
wherew, is the relative whirl frequency, amdlis the shaft speed. scopic effects, and theD] matrix contains the equivalent viscous
Since the state matrifA] Y[B], is 8x8, four conjugate pairs of damping coefficients. The damping matf] is given by
eigenvalues are obtained. The eigenvalues are purely imaginary d 4
since damping or dissipation effects are neglected in this free 11y 0 0 12y

response analysis. 0 dyy dpy 0
In rotordynamics, the sign of the frequency is meaningful due [D]= % X ' ®)
to the fact that shaft whirl can occur with a negative sense, op- 0 dip  dop, 0
posing the direction of shaft rotation, or a positive sense, in the
direction of shaft rotation. The proper sign can be assigned to the _dl2v 0 0 d22¥
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Fig. 3 Global asymmetry model free response at various crack depth values: (a) uncracked; (b) 20%; (c) 30%; (d) 40%

where dj; =d;j, =Ceq = %E(kij +kj.)/o. Here average stiff- frame, can be represented by a vector that is rotating with a nega-
v J X tive sense in the&XY Z frame. Therefore the forcing function re-

n lements ar @t andd;;  ar I Itisn - .
ess elements are used so ttiat andd;; are equal. Itis eces: sulting from gravity has the form

sary to construct the complex equations of motion in the following
analysis. The equation of motion, including internal damping, has Fo=mge ™, (10)
the form
. .~ . wherem is the mass of the rotog is the gravitational acceleration
[MI{SH+[CI{S}+[KI{S}={F}. (9) andnis the shaft speed. The vector of forces that is now included

. . . . ' in the right-hand side of the equations of motidy. (1)] is then
The equations of motion are derived in the shaft-fixed Z %iven, in the rotating( Y Z coordinate frame, by

coordinate frame. The direction along which gravity acts, which
a stationary vector along thiaxis of the inertialé{ coordinate mgcog nt)

—mgsin(nt)
{F}= 0 . (11)
Table 1 2 X resonance shaft speeds—global asymmetry model 0

f . . . .
ee response The equations of motion are then combined by defining the fol-

% cracked Shaft sped(z) lowing complex variables for the displacemegnand tilt ¢:
0 70.62 — ;
10 67.04 p=XHIY, (12)
20 60.55 .
30 52.29 b= yx+iyy. (13)
40 43.01

The resulting complex equations of motion are
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To solve this system of equations, solutions of the followin& *%%F
forms are chosen for the displacementand tilt ¢: 8 ool
p=Ae"+Be ", (16) £
. . 0.004 -
¢=Ce"+De ", a7)
whereA, B, C, andD are arbitrary complex numbers. These so 0.002
lutions are substituted into Eqél4) and (15) and the complex

coefficientsA, B, C, and D are determined. Recalling that the
displacement and tilt in the rotatingY Z coordinate frame are
given by Egs.(16) and(17), the displacement and tilt y in the (b)
inertial coordinate frame are obtained according to

Shaft Speed, n {(Hz)

Fig. 4 Global asymmetry model forced tilt 2 X response: (a)
u=peint (18) Low-speed range; (b) high-speed range

y=ge, (19)

The displacement and tilt expressed in the inertial coordinglg the predicted circular 2 tilt responses. It is clear that for an

frame are of interest since the experimental data provided by thitrary shaft speed, the amplitude of th¥ 2esponse is pre-
monitoring system is also obtained in the inertial coordinate framgcteq to increase as the crack depth increases.

(according to Ref[35]). From Eqs.(16)—(19) it is clear that the  The magnitudes of theXcomponent of the response plotted in
displacement and tilt in the inertial coordinate frame will have thpig. 4(a) are significantly smaller than those plotted in Figo)4

form The range of shaft speeds shown in Figh)&ontains X resonant
u=Ae2} B, (20) speeds for each crack depth.
. As predicted, the X resonant speeds decrease as the crack
y=Ce?2"+D. (21) depth increases. TheX2resonance shaft speeds predicted based

. . . on this global asymmetry crack model forced response analysis
The presence of theX2harmonic is evident in Eq#20) and (21). are given in Table 2. These predicte 2esonance shaft speeds

'zr?(ehmagnltydes of coefﬂueglﬁsgnd(; ?][e the m?gﬁutu dqesl of the agree with the X resonance shaft speeds predicted in the global
armonic response, in the inertial frame, of the displaceme, ymmetry model free response analysis, which are given in Table
and t'.lt' respectively. I_Equatlor(QQ) and(2D) predict dl_splacement 1. Since the 0% simulated crack depth results in a system with
and tilt responses which have circular shapes, having ragihof symmetric stiffness properties, noX2resonance is predicted for

and|C|, and are offset b8 andD. It is important to note that due the forced res : AR :
. ponse analysis. Damping is light, thus numerically
to the form of the assumed solutiofEgs. (16) and (17)], the Tables 1 and 2 provide similan@results.

resulting solutiongEgs. (20) and (21)] are limited to predicting
only circular orbit shapes of theX2component.

Figures 4 show the predicted magnitude of thett response,
based on the global asymmetry crack model, as a function of shﬁft Local Asymmetry Crack Model
speed, for two speed ranges, and crack depths varying from 0 tdPerhaps the most important effect of the presence of a trans-
40% of the shaft diameter. The magnitudes plotted show the radérse crack in a rotating shaft is the highly localized flexibility
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Table 2 2 X resonance shaft speeds—global asymmetry model Y
forced response

P1 - Axial Tension P4
% cracked Shaft spee(z) P2 - TransversseOShear
o P3 - Transverse Shear

10 67.04 P4 - Bending Moment

20 60.55 P5 - Bending Moment

30 5229 P6 - Torsion

40 43.01

that is introduced. To locally represent the stiffness properties of
cracked cross section in an otherwise uncracked shatft, it is nect
sary to determine the additional flexibility due to the presence ¢
the crack, and incorporate this flexibility into a discrete represer
tation of the system. In this study a transfer-matrix method wa ax
employed to accomplish this desired localizing effect. Figure ! _\—
shows the cracked system represented by three lumped stiffn
elements] F4], [F¢acd, @and[F5], and one lumped inertia ele- a
ment[P]. Since the mass of the shaft is significantly less than th
mass of the rotor, the mass of the shaft is neglected.

The purpose of this section is to present the analytical portic k
of the analysis of the cracked system including a local asymmet
crack model using the complex extended transfer-matrix methc
[2,37] for free and forced response analyses, along with releva
results. As previously, damping effects will be incorporated intc
the forced response analysis.

h/2

h/2

3.1 Crack Flexibility. The localized additional flexibility
can be represented by a lumped parameter element. A section ¢
shaft containing a crack of depthis shown, under general load- (b)
ing, in Fig. 6a). Figure Gb) shows the cross section of the shaffig 6 Local crack model:  (a) shaft section containing a crack;
section in Fig. 6a) at the location of the transverse crack. Thep) crack cross section
generalized displacement in thei direction is obtained by uti-
lizing Castigliano’s theoreri21,30}:

2
+

u-=ifaJ(Y)dY (22) 1-2[ [
TP o ‘ Ja)=—¢ HEI Ki

whereP; is the generalized force associated with andJ(Y),
according to Tada, Paris, and Irwi@7], is the strain energy den- +(1+v)
sity function given by

; (23)

wherev is Poisson’s ratioE is Young’s Modulus, and,,; is the
crack stress intensity factor for modedue to P;. The stress
intensity factors for a unit width strip containing a crack of depth
« are evaluated according to

7 o
/////u Kni=o'i\/7'raFn(F), (24)
/4 whereo; are the stresses due to the Idgdat the crackF,(a/h)
are appropriate intensity functions, ahds the total strip length
(see Fig. @)).
(a) The additional flexibility due to the crack for a unit width strip
can be written as
& @
. o Cij:mfo J(Y)dy (25)
¢ oo ' ~ TT7 M which, after integration along the crack edge, becomes
N | 2
(9 (43
Cii= J(y)dy. 26
T [ [F2] NG « 1= 3PP, J_JO (Y) (26)
[Ferack]
The current analysis is not concerned with torsion or axial dis-
(b) placement, hence only,,, Css, Ca4, Css, Csq, andcss are re-
Fig. 5 Local asymmetry crack model quired. These elements are then given by
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whereb=Db/R, X=X/R, Y=Y/R, a=al/R, andh=h/R. The Dimensionless Flexibilty
corresponding intensity functions are given by Fig. 7 Dimensionless crack flexibilities
a ta 1/2
le(ﬁ = r;ﬁC) [.932+.199 1 sin(Bc))*]/cod Be),
[
(32)
a tan(B.) | a {Z}i={ux 6y My =Vx —uy 6x My Vy}T, (38)
Fivl == .752+.202 —
h Be h
+ .37(1—sin(ﬁc))3}/ cog Be), (33) Whereu, 6, M, andV are the complex magnitudes of the displace-
ment, tilt, moment, and shear force, respectively.
o a\? The Field Matrix. The state vector at the left of statian
all W o 1.122-.56 h +.08 h {Z}}, is related to the state vector at the right of statiend,

{Z)R |, by the field matri F;]:

o]

a 1/2
S

. (g _ tarwar’z 35) {ZH=[FNZI .. (39)
I h Bc ’
mTa . .
Be= (%) (36) The field matrix[F;] has the form
The additional flexibilities due to the presence of the crack may
therefore be obtained by numerically integrating E@S)—(31). " 12 K "
Dimensionless flexibilities can be obtained according to 1 2_IIEI 6_IIEI 0 0 O 0
_ 7ER _ 7ER | 12
Co=Cop - C33=C3— -+
(1-17) (1-1%) Ot g om0 00
_ TER® TER® co 1 I 00 O O
Caa= C44(1_ ) Cy5= C45ﬁ (37) 0 0 0 1 0 0 0 0
[Fi]= |2 L (40)
TER® 0 0 O o 11 - L
Ceg= 055— 2El 6EI
= i
where the overbar indicates the nondimensional value. These di- 0 0 0 0 01 El  2EI
mensionless flexibilities are plotted in Fig. 7, for crack depths up
to 50% of the shaft diameter. These local flexibilities may now be 1 I
introduced appropriately into the discrete representation of the 0 1
system. - "

3.2 Transfer Matrix. The transfer-matrix method is a
lumped parameter method in which inertial properties of the sy; h
tem are lumped into point matrices, and stiffness properties of t
system are represented by lumped field matr{@sboth relate
state vectors at the two ends of a shaft element. The state vector &he Crack Matrix. The crack is represented by a field matrix
stationi, expressed in the rotatingY Z coordinate frame, is de- which contains the additional flexibilities introduced by the pres-
fined as ence of the crack. The crack field matfik ] has the form

erel; is the length of the fieldE is Young’s modulus, antlis
area moment of inertia of the field cross section.
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L 0 0 -cp O O O 7 where the elements; are determined in Eq$27)—(36). Notably,
in an uncracked shafg=0, ¢;;=0, and[F ¢ aad =[1].
0 1 cygq O 0 O cgg O
00 1 0 00 0 0 The Point Matrix. The state vector at the right of the lumped
mass at station, {Z}R, is related to the state vector at the left of
[Fernod = 0 0 1 0 0 0 0 the lumped mass at staticbn{Z}iL, by the point matriX P;]:
erac 0 0 O 0 1 0 O Caz|’
0 0 cgy O 0 1 c55 O R L
Z\R=[P,{Z}". 42
o0 0 o0 00 1 o {Z}7=[PiK{Z}; (42)
L0 O O 0 00 0 1]
(41) The solution is sought in the rotating framXY Z, thus
|
r 1 0 O 0 0 0 (O
0 0 O 0 0 0 O
0 n*(l,—l)—lo§ 1 0 0 inwg(2l,—1,) 0 0
m(w3+n?) 0 0 1 -—2inwgm 0 0 0
[Pi]= 0 0 00 1 0 o o (43)
0 0 0 0 0 1 0 O
0 inwg(2l,—1,) 0 0 0 n(l,—l)—lwj 1 0
2inwem 0 0 0 m(wi+n?) 0 0 1

wherem is the rotor massl,; andl, are the transverse and polarwhereU;; are elements of the overall transfer maffix].

mass moments of inertia, resp

is the relative whirl frequencysee Eqs(1) and(6)).

The Overall Transfer Matrix. The overall transfer matrix for

this system|[U], is constructed
[UI=[PI[F;

The state at the SUppPORtZ} s ppor 1S then related to the state a
the right of the lumped mag¥}? by the following: [

{Z}T: [U]{Z}support-
Undamped Free ResponseApplying the clamped-free bound-

ary conditions, which are no

boundary and no shear or moment at the end of the shaft, to the
overall transfer matrix expression given in E¢5) leads to the

following relations:

ectivelys the shaft speed, ana By solving the standard eigenvalue problem for E&f), four
complex-conjugate pairs of eigenvalues result. The problem of
assigning whirl directions to each of the four frequency magni-
tudes is identical to the previous discussion. To obtain the mode
shape for a given eigenvalue, which is essentially the displace-
ment and tilt portion of the state vector at the end of the shaft, it
#iS convenient to label the>44 matrices in Eqs(46) and (47) as
Freq and [Switch], respectively. From Eq(47), the shear and
moment portion of the state vector at the support is given by

according to

][Fcrack][Fl]- (44)

(45)
My Ux R
A . _VX . -1 0Y
displacement or tilt at the support My =[ Switch] “uy (48)
VY 0X

support 1

Substituting this expression fgMy —Vy MXVY}lupponinto Eq.

Ugs Ugs Uzz Ugg My (46) results in
Ugz Uy Uy Ug —Vy Uy R 0
U u U u M
ALl | Ve [Frediswitchi~{ ¥ } — 0 (49)
Ugzs Ugs Ugy Ugg Y7 support Uy 0
M, 0) R Ox ) | 0
N —Vy 0 For each frequency magnitude, given by the four pairs of eigen-
=[Fredy Yol - (46)  values, Eq(49) forms a linearly dependent system of equations.
v 0 Solving this eigenvalue problem results in the corresponding
Y7 support 1 mode shape, i.e., the vectry 6y uy 6y}T. Once the eigenvalues
Uiz Uy Uz Ug M and corresponding eigenvectors, or mode shapes, are determined,
U U U U B Y whirl directions are also assigngdee previous discussipro
23 Foa M1 V28 Vx each frequency, and the true natural frequencies are plotted versus
U53 U54 U57 U58 MX shaft speed.
U U U U Vy support Figure 8 shows the whirl frequencies as a function of shaft
63 T4 Mer e speed for crack depths ranging from 0 to 40% of the shaft diam-
My uy ) R eter. The “X” symbols along the horizontal axis indicate shaft
R —Vy Oy speeds for which one or more of the eigenvalues has a positive
=[ Switch] M =\ _u ,  (47) real part, i.e., shaft speeds for which the response is unstable. As
X Y previously, two reference lines indicating critical speeds anH “2
Vy support Ox J 4 resonance” shaft speeds are also included in each figure. From
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Fig. 8 Local asymmetry model free response at various crack values: (a) uncracked; (b) 20%; (c) 30%; (d) 40%

this analysis, shaft speeds at which the 2sponse is maximum Damped Forced ResponseTo account for a forcing function
can be predicted for various crack depths. Table 3 gives the pie-the transfer-matrix method described above, the state vector
dicted 2X resonance shaft speeds based on the local asymmetnd field and point matrices are extended to19and 9<9, re-
crack model. The decrease in th¥ Pesonance shaft speeds indi-spectively, similar to Ref{2]. Likewise, the point matrix for this
cates the decrease in the natural frequencies of the system resotial asymmetry model forced response analysis will be modified
ing from the increased flexibility introduced by the presence of thte include damping effects.

crack. This free response analysis of the system containing thelThe state vector for stationnow has the form

local asymmetry crack model indicates that a decrease in natural

frequencies, which may be observed as a decrease in primary and _ _ _ T

secondary critical speeds, is a characteristic of the system re- {Zhi={ux by My =Vx —uy 6x Mx Vy 1}%. (50)

sponse that can be directly attributed to the presence of a trans-
verse crack. The field matrices, including the crack matrix, are identical to

those given in Egs(40) and (41) with an additional row and
column of zeros, except for eleme(rﬁl,g)), which is one unit. The

damped forced response point maffi?;] contains damping ef-

Table 3 2 X resonance shaft speeds—Ilocal asymmetry model L
fects, and is given by

free response

% cracked Shaft sped@Hz) [Pi] {0}
- i ~
0 70.62 [Pi ={ }JF[P-]. (51)
10 70.34 | {0} 1 I
20 69.24
30 66.97 . . L . ~ .
40 62.44 where[ P;] is the 8<8 point matrix given in Eq(43), and[P;] is

the 9x9 matrix given by

Journal of Engineering for Gas Turbines and Power APRIL 2005, Vol. 127 / 433

Downloaded From: http://gastur binespower .asmedigitalcollection.asme.or g/ on 12/18/2013 Terms of Use: http://asme.or g/terms



0 0 0 O

0 0 0 O

iodip, —ilwdy, 0 0
iodyy, —ilwdz, 0 0
[P]=| © 0 0 0
0 0 0 O

0 0 0 O

0 0 0 O

L0 0o 00

where dijq=ceqj =Ekijq/w, and g is the acceleration due to
q

gravity. This matrix contains the influence of internal dampin
and the forcing function. The overall transfer matrix is obtained

by combining these 29 field and point matrices as in Eqg4)

and (45). Applying the clamped-free boundary conditions, which
are no displacement or tilt at the support boundary and no shearSBr
moment at the end of the shaft, results in the following relatiormn’

for the forced response:

My Usg 0) ¢
Ugz Uy Usr Ugg| | —Vy . Ugl J O
U7z Uzs Uzz Ugg Mx Uz o
Ugs Ugs Ugy Ugg Vv support Uss 0/
(53)
Uiz Uiy Ugz Ugg My uy ) R
Uas Uz Uy Ugg| | —Vy ) by
Uss Uss Us; Usg| | Mx ~Uy
UGS U64 U67 U68 VY support 0X 1
(54)

The vector{My —Vyx My Vy}T in Eq. (53) is obtained as the so-

lution of a linearly independent system of equations. This solution

0 0 0 O 0 7
0 0 0 O 0
0 0 0 O 0
0 0 0 0 mg
0 0 00 0| (52)
0 0 0 O 0
lwdi,  —iwdy 0 0 0
iwdyy, —iewd;; 0 0 —img
0 0 00 0]

It is desired to observe the results in a stationary coordinate frame.
The transformation from the rotatingY Z coordinate frame to the
thertial &énl coordinate frame is given by

u=pe'n, (62)
the displacement of the rotor expressed in the stationary coor-

ate frame is

‘)ei2nt:|.

1 . . . .
u= 5[(qu'uxi+'uYr+uYi)+(uXr+'uXi+'uquY.
(63)

Similarly, the tilt of the rotor expressed in the stationary coordi-
nate frame is

y=3[(0x —i 0 +i0y +0y)+(0x +i0, +iby —0y)e'>"].
(64)

It is clear from Eqs(63) and(64) that the constant radial force of
gravity acting on the cracked system results in>a Rarmonic
response which is predicted by this analysis to have a circular
shape. The predictedX2 circular tilt response has a radius of
%|(0Xr—ﬂyi)+i(axi+0yr)| and is offset according té[(exr+ 0Yi)
i(exi— HY,)]- The magnitude of the 2 tilt response is plotted

is substituted into Eq.54) and the forced response vecto@S & function of shaft speed in Fig. 9, shown separately for two

{uy By Uy 6y} T is obtained. Each element of the state vector is
complex number. The displacement in tlendY directions, for
example, are of the form

Uy=Uyx +ily, (55)

uY=uYr+iuYi, (56)

where ther andi subscripts denote real and imaginary compd

nents, respectively. The displacement in ¥hand directions,X
andY, will be given by

X=Rduye"], (57)
Y=Rd uye]. (58)
So, taking the real part of each,
X=uy, cognt)— Uy, sin(nt), (59)
Y=uy, coint)—uYi sin(nt). (60)

|8W- and high-speed ranges, and for crack depths varying from 0
{0 40% of the shaft diameter. It is clear that for an arbitrary shaft
speed, the amplitude of thex2esponse is predicted to increase as
the crack depth increases. The range of shaft speeds shown con-
tains 2X resonant speeds for each crack defffig. 9Ab)). As
previously, the X resonant speeds decrease as the crack depth
increases. TheX resonance shaft speeds predicted based on this
local asymmetry crack model forced response analysis are given
in Table 4. Since the 0% crack depth results in a system with
symmetric stiffness properties, noXZresonance is predicted for
the forced response analysis. Damping is liglgpical damping
ratios are less than 1%, as experimentally fo(88]), thus nu-
merically Tables 3 and 4 provide similaiX2results.

The amplitude of the X response at each2resonant speed is
shown to increase in magnitude as the crack depth increases. The
shaft speeds at which theX2peaks occur decrease due to the
reduced stiffness, which changes the system natural frequencies,
resulting from the presence of the crack. The increased amplitude
of the 2X component of the system response is due to the in-
creased asymmetry as the crack depth increases. This forced re-
sponse analysis of the system containing the local asymmetry
crack model indicates that an increase in the amplitude of ¥e 2

Recalling that the point and field matrices were derived in theymponent of the system response, as well as a decrease in the

rotating coordinate fram&Y Z

p=X+iY=(uxr+iuyr)cos(nt)—(uxi+iuYi)sin(nt). (61)
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shaft speed at which thex2component of the response is maxi-
mum, are characteristics of the system response that may be di-
rectly attributed to the presence of a transverse shaft crack.
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4  Conclusions

Two theoretical analyses have been presented to identify char-
acteristics of the system response that may be directly attributed to
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Fig. 10 Asymmetric shaft cross section

the system response include an increase in magnitude for increas-
ing crack depth as well as a decrease in the shaft speed at which
the 2X harmonic component of the system response is maximum.
The presence of a transverse shaft crack has also been shown to
induce an unstable response for some shaft speeds. The detection
of changes in the magnitude of th&armonic component of the
system response becomes much more difficult for shaft speeds
which are greater thanX resonance speeds. Frequency-sweep
tests, which pass throughX2resonance shaft speeds, would pro-
vide the most useful information; however, observation of the
magnitude of the X component could also provide crack diag-
nostic information.

This research utilizes a method to account for a shaft crack in
the transfer-matrix method. By employing these transfer matrices,
coupled systems that include shafts, seals, bearings, etc., can be
systematically analyzed in a modular fashi@aj.
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Appendix: Asymmetric Stiffness

The stiffness elements relate the displacement and tilt at the end
of the shaft to the applied forces or moments in end Y
directions. The stiffness relationships for a cantilever Euler-
Bernoulli beam are obtained from general beam theory as

the presence of a transverse crack in the shaft of the test ri
system. Both the global and local asymmetry crack model an.sml@t’gIJ
ses qualitatively predict response characteristics which have been
experimentally observed in the response of a system containing a

gaping crack.

Fx} _ ki, ~ka, [ X ] (A1)

M Y - k21‘( k22‘( Yy

l Fy] . Kig,  Kia, | Y ] (A2)
MX kZlX k22X Yx l

The behavior of the  harmonic component of the system 3 )
response is an effective target observation for a monitoring sy¥bere ki =12E1x /1%, Kip =Ko =6EIx /1%, kpp =4EIx/I,
tem. The predicted behaviors of th& Zarmonic component of kllY:12EIY/I3, klzyszlY:GElYllz, andk22Y=4EIY/I.

Table 4 2 X resonance shaft speeds—local asymmetry model

forced response

% cracked

Shaft spegthz)

0
10 70.34
20 69.24
30 66.97
40 62.44

Journal of Engineering for Gas Turbines and Power

The area moments of inertig,are calculated about théandY
axes. For the uncracked case, ¥andY axes are also the neutral
axes of bending.

The asymmetric stiffness relationships are obtained by calculat-
ing the appropriate asymmetric area moments of inertia and prop-
erly substituting them into the stiffness coefficiekfsabove.

The cross section of the shaft at the location of the crack, which
is shown in Fig. 10, has asymmetric area moments of inertia about
the neutral axes of bending which are parallel toXrendY axes.

To find the area moments of inertia about the neutral axes of
bending, the parallel axis theorem was utilized.
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The area moments of inertia about tkeandY axes,IAX andfy,
are defined as
Iy = J Y2dA= f Y2dxdy, (A3)
A A

TY:f xsz:fxdedY, (A4)
A A

where A is the uncracked area of the cross section. The cross-

coupled area moments of inertig,y andlyy, are zero since the

[9] Zou, M., Dayan, J., and Green, I., 2000, “Feasibility of Contact Elimination of
a Mechanical Face Seal Through Clearance Adjustment,” ASME J. Eng. Gas
Turbines Powerl22 pp. 478—-484.

[10] Dayan, J., Zou, M., and Green, |., 1999, “Contact Elimination in Mechanical
Face Seals Using Active Control,” iRroceedings of the IEEE 7th Mediterra-
nean Conference on Control and Automation (MVED38). 618—619, June.

[11] Tondl, A., 1965,Some Problems in Rotor DynamjdSzechoslovakian Acad-
emy of Sciences, Chapman & Hall, London.

[12] Henry, T. A., and Okah-Avae, B. E., 1976, “Vibrations in Cracked Shafts,” in
Conference on Vibrations in Rotating Machinepp. 15-19.

[13] Murray, D. B., and McCraith, J. R., 1984, “Vibrational Method for the Detec-

tion of Cracks in Rotating Shafts,” ifFirst Parsons International Turbine

Conferencepp. 229-236.

X axis is an axis of symmetry. After integrating over the un-[14 Rao. J. S., 1991Rotor Dynamics2nd edition, Wiley, New York.

cracked area, the following equations fgrandly result:

4
~ @
Ix=—""2 (r—a)(r?—4ra+2a?)+2ra—a?
r—a
+résin i —] |, (A5)
~ wrt (r—a)2Y)® 1
|Y:T+ — 1 2 Y(ZYZ—I’Z)\/I’Z—Y2
Y
+r4sin”?t T) , (AB)

where r is the shaft radius,a is the crack depth, and’
= /a(2r—a) for convenience.

The following expressions for the area of the cross secton,
and the distance from thX axis to the centroid of the cross

section,X, can be obtained
r2

w
+ —

> (D

a
A=(r—a) 2ra—a2+rzsin’l(l— -

The moments of inertia about the parallel centroidal akg®nd
Iy, are then obtained according to the parallel axis theorem as

(A9)

2ar—a?)%?

(A8)

Ilex,

ly=1y—AX2. (A10)
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