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Dynamic Sensitivities to Fractal
Machine Noises in a Mechanical
Face Seal
Mechanical face seals are wide spread in many applications of powered equipment and
turbomachinery. Often machine vibration and noise are unavoidable because of changing
conditions which can be persistent and forceful. In critical applications when seals fail, they
may have significant or even catastrophic consequences. To ensure the safety of such
machinery and its associated mechanical components, machine vibration and noise must
be diagnosed and quantified to keep the system’s response within certain limits. This
work focuses on the dynamics of a flexibly mounted stator mechanical face seal that is sub-
jected to combinations of broad-band noisy vibrations of the shaft and the housing. In
all previous work, the positions of the housing and the shaft have been considered
fixed. The current work relaxes that condition, augmenting the equations of motion to incor-
porate equipment’s noisy vibrations. Noises are expediently produced by the Weierstrass–
Mandelbrot (WM) fractal function. A numerical simulation ensues, and the time-domain
responses are subject to spectral analyses. Results show that under some design conditions,
the seal is largely insensitive to machine vibrations. However, under other conditions, the
seal response to exterior machine noise exhibits a rich spectral content that stems from
various transient phenomena that include intensified half-frequency whirl, near synchro-
nous response at steady-state, and super-synchronous higher harmonic oscillations
caused by face contact. [DOI: 10.1115/1.4056194]

Keywords: Weierstrass–Mandelbrot fractal function, mechanical face seals, dynamics,
machine noise and vibration, frequency response, rubbing contact, machine dynamics,
machinery and structural damage identification, machinery noise, mechanical signatures,
nonlinear vibration, random vibration, rotor dynamics

1 Introduction
Mechanical face seals are wide spread in many applications, such

as centrifugal compressors, submersible pumps, drill-bits for oil and
water exploration, hydrocarbon processing machinery, pulp plants
dryers, dry-gas seals in powered equipment and turbomachinery.
Mechanical face seals are complex systems, where dynamics, fluid-
film hydrodynamics, and thermoelastic effects are present and
coupled to each other. A successful seal design must be tolerant
for all these effects to co-exist. Over the last four decades, success-
ful models have incorporated such effects singularly or collectively,
including transient operations, but invariably they have all consid-
ered the surrounding to be pristine. Frequently, however, machines
in which seals operate are subject to autonomous vibration. The
seals inevitably respond to such vibration in manners that can be
quite substantial and perhaps even destructive.
Very few previous works consider equipment noise and vibra-

tions as they affect seals. Durham et al. [1] provide data from
field installations of electric submersible pumps. They conclude
that equipment vibration is inherent in seal design, manufacture,
and application. A large percentage of pump failures may be attrib-
uted to seals that are unable to withstand high vibration, ultimately
leading to motor and pump failures. Kim et al. [2] experimentally
study the squeal noise and vibration of a mechanical seal used in
an automotive water pump. The frequency spectra of both noise
and vibration signals are obtained for various speeds of the pump,
and waterfall plots for noise and vibration are constructed
showing a relation between the natural frequencies, excitation

frequencies, and squeal noise frequencies. Stefanko and Leishear
[3] experimentally show that a reduction of radial vibrations in
mechanical seals increases the life of the seals in centrifugal
pumps. Many testimonies, gathered from end-users and seals’ orig-
inal equipment manufacturers, describe the dire consequences that
machine vibration have upon seals’ survivability. Most of these tes-
timonies are hearsay of personal experiences; nevertheless, these
effects do exist and must be understood.
The objective here is, therefore, to extend computational means

to investigate the transient dynamic behavior of mechanical face
seals subject to machine vibration. The analysis herein augments
comprehensive models that have already been developed [4–37].
The said models included angular and axial modes of dynamic
response in transient and steady-state operations [29,31,35,38],
face transient warping, i.e., time-varying coning incorporated via
transient thermoelastic deformation [39,40], and rough surface
elasto-plastic contact of the seal faces [36]. All these effects had
been coupled in a comprehensive model that simulates start-up to
shut-down transient operation [41]. The theoretical models and
numerical techniques [4–9,11–14,19,20,23,24,26–31,33–38,41]
have been thoroughly verified through extensive experimentation
[10,15,17,18,21,22,25,26,28,32,42]. These theoretical models
provide the foundation for the current analysis. While in all of the
previous analyses the seal enclosure is assumed to be inertial,
here, that condition is relaxed. The current study expands the theo-
retical models, the computational means, and the diagnostics
markers that are typical in the dynamics of flexibly mounted
stator mechanical face seals, as they are affected by broad spectrum
machine vibration (noise).
Machine noise can be simulated in various ways (or options): (1)

by white noises using a random number generator, however, their
time derivatives, which are categorically necessary in this work,
are hard to come by (for reasons that are detailed in Ref. [43]),
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(2) by applying a collection of harmonics having random ampli-
tudes, phases, and frequencies within respective frequency ranges
of interest, in a process that resembles the method in Ref. [33],
only that all harmonics are to be applied simultaneously to form
time series of forcing harmonics, and (3) by a Weierstrass–
Mandelbrot (WM) fractal function along with its time derivatives
[44]. The availability of said derivatives (as discussed within)
makes the WM fractal function particularly useful in the solution
scheme. While the latter two options are successfully implemented
in this work, option (3), which is a subclass of option (2), is consid-
erably more convenient to implement numerically. That adaptation
to noise generation is novel, and it is detailed herein. The said seal
system serves as a dynamic testbed for executing this approach.
Because an analytical closed-form solution that accounts for all

of the effects is patently not feasible, the investigation herein
offers a comprehensive nonlinear numerical simulation for the tran-
sient response of a face seal that is subjected to its own forcing mis-
alignments, and now as well, machine vibration (noise). The
nonlinear nature of the problem is due to intermittent face (asperity)
contact, cavitation, and large axial and angular excursions. The
numerical procedure is outfitted with the most robust contact
model by Jackson and Green [45,46]. Another novel approach is
taken: for balanced mechanical seals, face roughness is largely unal-
tered by contact, whenever it ever happens. Correspondingly, a
time-invariant curve-fit is introduced to relate the contact force to
the film thickness by an explicit expression. That removes the
need to re-deploy the contact model at each time-step during
the simulation, which vastly reduces the computational effort. In
the end, simulation results are provided to assess the sensitivities
to noise of the most important seal performance outcomes, such
as the axial seal face excursion, the relative tilt between the stator
and the rotor, the minimum film thickness, and the leakage.

2 The Model for the Analysis
This work fully builds upon all of the aforementioned analyses,

with Ref. [41] being the foundation, and hence, the modeling sec-
tions on face deformation caused by mechanical and thermal
effects, the kinematics, and the method of solution remain intact
(see details in Ref. [41]). However, significant expansions and
enhancements are made. Some of the changes stem from the
noises imparted by the rotor and housing mechanical vibrations.
Figure 1 shows the schematics of a mechanical seal. Parameters

are described in the nomenclature and elaborated in Ref. [41]. The
stator is the flexibly mounted (floating) face and it is supported by
circumferentially distributed springs, while the rotor is a face fixed
to the rotating shaft. A kinematical model is shown in Fig. 2, where
detailed model descriptions are given in Refs. [5–7,29,35,41], and
those remain intact. Briefly, the coordinate system XYZ is inertial,
while the rotating system xyz is where the angular position of the
stator is expressed using the Euler angles, the nutation γs, the

precession, ψ, and the spin, ϕ. The spin is reduced via the kinemat-
ical constraint that is imposed by the secondary seal and locking
devices [6,35]. The upcoming equations of motion (EOMs) use
the said angles (as expressed in Sec. 2.5).
Of importance here is the stator responses, γsI, to its own initial

misalignment and to the rotor runout, γsr. They are superimposed
vectorially to yield the total stator misalignment:

�γs = �γsI + �γsr (1)

The relative tilt between the seal faces is measured between the
total stator response given by Eq. (1) and the rotor runout γr. As
observed in a rotor-fixed coordinate system, that is:

�γ = �γs −�γr; |γ|= [γ2s + γ2r − 2γsγr cos (ψ −ψ r)]
1/2, ψ r(t)=

∫t
0
ψ̇ rdt

(2)

That relative tilt is needed for the calculation of the film thickness
h(r, θ, t), shown in Fig. 2. As implied, the film thickness, in general,
varies with the radial and circumferential coordinates, r and θ,
respectively, and the time, t, via the responses of the
degrees-of-freedom to forcing. The circumferential coordinate, θ,
is measured from a reference axis defined by the relative tilt
unit vector, γ̂=�γ/|γ|. Mathematically, h(r, θ, t) is expressed in
Sec. 2.4.

2.1 Asperity Contact and Thermoelastic Deformation. The
seal clearance at the sealing dam is typically the order of a micron or
even a submicron in modern applications. This is where asperity
contact compounded with face deformation would have significant
effects on performance. Seal leakage and wear (survivability) are

Fig. 1 Mechanical face seal schematics showing rotor and
housing random excitations (noises) Zh and Zr, respectively

Fig. 2 A kinematical model showing excitations Zh and Zr
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two competing design objectives that are strongly influenced by
asperity contact and face deformation.
For the lack of a better model at the time, the asperity contact

model used in Ref. [41] is based upon Chang et al.’s elasto-plastic
model [47], a model that is now obsolete [48]. The contact elasto-
plastic model adopted herein is that by Jackson–Green [45] being
the most robust and precise to date. The statistical accumulation
of all asperity effects is done according to Ref. [46]. Now, an addi-
tional departure from the approach in Ref. [41] is offered. An
off-line curve-fit is used for numerical expediency [36,49] express-
ing the local (nodal) contact pressure versus fluid-film thickness,
h(r, θ, t). The rationale for the approach and the procedure are sum-
marized in the Appendix. Hence,

pc(r, θ, t) = C1 exp [−C2h (r, θ, t)] (3)

where C1 and C2 are fit parameters specific to the seal faces rough-
ness and their material properties as given in Table 1. The procedure
outlined in the Appendix renders C1= 3.5 × 109 Pa, and C2= 2.8 ×
107 m−1. Hence, at any instant in time, and for any localized value
of h(r, θ, t), the localized contact pressure, pc(r, θ, t), is expediently
calculated by Eq. (3). Notably, that equation offers a continuous,
and a more realistic, transition from noncontacting to contacting
operation and vice versa (instead of a commonly used on-off
switch such as the Heaviside function).
Seal face coning, β= β(t), is affected by the time-dependent ther-

moelastic deformations. The coning is schematically shown in
Fig. 1 by the tapered sealing dam. Shaft rotation distributes the
heat generation about the seal surfaces, allowing the thermoelastic
deformations to be governed by a first-order ordinary differential
equation [41]:

τβ̇ + β = βref
href
�h(t)

( )
ωr(t)
ωref

( )2

+
Hf

(Hv)ref

[ ]
(4)

where τ is a thermal time constant (the smaller it is, the faster is the
coning response), and H is the heat generation caused by friction
and viscous effects. The reference coning, βref, and the time cons-
tant, τ, are obtained from an off-line transient finite element analysis
of heat transfer of the entire seal assembly for a reference film thick-
ness, href (see Table 1). The average film thickness, �h(t), and the
shaft speed, ωr(t), may be time-dependent, as they are in this
work. The first term on the right-hand side of Eq. (4) is caused by
the viscous heat generation, while the second term originates
from traction, i.e., the result of a friction coefficient, f, and the
contact pressure, pc. Both heat generation mechanisms are

Hf =
∫2π
0

∫ro
ri

fpc(r, θ, t)ωr(t)r
2drdθ

(Hv)ref =
∫2π
0

∫ro
ri

μω2
ref

href
r3drdθ

(5)

Clearly, Hf is effective only if contact occurs, and that the contact
pressure, pc, is meaningful compared to the fluid pressure. Incom-
pressible fluids commonly have a relatively high viscosity (see
the viscosity of water at 20 °C in Table 1), so that the reference
viscous heat generation, (Hv)ref, is orders of magnitude larger than
any friction-induced heat, Hf. Hence, the second term on the right-
hand side of Eq. (4) may judicially be neglected. That is not so for

gas-lubricated seals, where the viscosity of gas is relatively low
(about two orders of magnitude lower than water), and Hf may
become increasingly significant. Nevertheless, Eq. (5) represents
the temporal accumulation of all local (nodal) heat generations,
and those are calculated within the time integration scheme.
Equation (4) will be placed in the upcoming state-space formulation
to be time-integrated alongside with the equations of motion.

2.2 Noise Excitation. This section contains key kinematical
changes viz-ả-viz the model in Ref. [41], which are caused by
rotor and housing random vibrations. These noises impose addi-
tional forcing mechanisms in the Reynolds equation, and the equa-
tions of motion, which are now being detailed.
Two forcing excitations are shown in Figs. 1 and 2. The machine

(i.e., housing) may have an axial vibration, Zh, along with an axial
vibration of the shaft (i.e., rotor), Zr, where both may occur synchro-
nously or asynchronously. The former applies when the shaft is
riding on bearings attached to the housing, which is the case consid-
ered here. A kinematical model is shown in Fig. 2, the fundamentals
of which are given in Refs. [5,7,29,35,41], and those remain intact.
While Zr affects directly the film thickness, Zh forces the stator
axially via many springs that are circumferentially distributed.
Only one of those springs is shown in Fig. 2, but effectively it rep-
resents all springs.
In addition to the said two axial noises, the shaft, due to its flex-

ibility, might contain a noisy (time-varying) runout:

�γr = [γr + δr(t)]γ̂r (6)

where δr(t) represents the noisy part of the rotor runout. In the
current model, however, the machine vibrations are assumed to
take place mainly in the axial direction. Nonetheless, because of
the physical coupling between the axial and the angular modes,
all modes experience noisy operation (as the results will show).
Hence, it is presumed that δr(t)= 0.

2.3 Noise Signal Modeling. As discussed in Sec. 1, the noises,
Zh and Zr, can be simulated in various ways. Here, the WM fractal
function offers a systematic approach to simulate broad spectrum
noises along with their analytic time derivatives [44]. As it is out-
lined below in Sec. 2.4, the time derivatives of the noise are categor-
ically needed in the current analysis, and they must be exact
outcomes of the noisy signal itself. The approach herein to noise
generation is novel, and it is now detailed.
The WM fractal noises can be deterministic (default) or random (if

random phases are added [50]). The noises herein for the housing (Zh)
and/or the rotor (Zr) are generated deterministically following [44]

Za(t) = Aa ·
∑n2
n=n1

g(D−2)n cos (gnt)

Ża(t) = −Aa ·
∑n2
n=n1

g(D−1)n sin (gnt)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

1 < D < 2; g > 1;

a = h or r (7)

where gn sets off a geometrically increasing series of frequencies.
The noise scale is Aa, taken here as 1% of the designed seal clearance,
Co (where Aa can either be different for Zh and Zr, or the same,

Table 1 Reference case

ri= 0.0355 m ro= rg= 0.0408 m γsi= 0.5 × 10−3 rad γr= 0.5 × 10−3 rad
KZs= 5 × 105 N/m DZs= 300 N s/m Fspring= 20 N m= 1 kg
βref= 5 × 10−6 rad href= 0.3 × 10−6 m ωref= 500–3000 rad/s β(0)= 0 rad
μ= 1.2 × 10−3 Pa⋅s R= 1.7 × 10−6 m Sy= 360 MPa Co= 10−6 m
E= 24.07 GPa σ= 10−7 m ψ= 6.167 η= 4.16 × 1011 asp./m2

pi= 100 kPa po= 500 kPa τ= 2 s B= 0.75
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i.e., Aa ≡A as implemented herein). The frequency range of interest is
earmarked between a low value (ωl) and a high value (ωh). Via ω↔
gn, these frequencies determine the summation limits n1 and n2 in
Eq. (7):

n1 = Floor[ln (ωl)/ ln (g)]

n2 = Floor[ln (ωh)/ ln (g)] + 1
(8)

where Floor[x] gives the greatest integer less than or equal to x; so, n1
is rounded down, while n2 is rounded up. For the frequency range of
interest (see Table 1), the low and high frequencies are, respectively,
set as ωl= 0.01× 500= 5 rad/s and ωh= 5× 3000= 15,000 rad/s.
Using also D= 1.75 and g= 1.25, these result in n1= 7 and n2=44.
There is a widespread notion about the WM function that pre-

sumes it to be “non-differential” (e.g., see Ref. [50]). Green [44]

Fig. 3 Noise versus time (a), its time derivative (b), and PSD (c)
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mathematically shows that that is indeed so only when the summa-
tion bounds in the WM function are let to approach infinity. That,
however, is practically (i.e., numerically) impossible to implement
nor is it physically necessary. As employed above, the bounds n1
and n2 are finite. Under these conditions, derivatives of the WM
function do exist. That is an important point that must be appreci-
ated because only temporal time derivatives are needed here,
regardless of whether the sums of the derivatives of the WM func-
tion converge. Stressing this point further, while series convergence
of Eq. (7), is principally important in Ref. [44] (because the inte-
grals of which are the actual final objectives there), that is inconse-
quential here because the need is just for temporal values. The
summation of Eq. (7) may thus be interpreted as being a “collec-
tion” or an “ensemble” that produces temporal values without
regards or need for it to be further integrated (as is the case in
Ref. [44]). In summary, the issue of the WM function differentiabil-
ity is moot in this work. Hence, the WM function itself and its deriv-
atives do produce temporal values for any finite n1 and n2, and their
convergence is of no significance.
Figure 3(a) shows a fractal noise, along with its time derivative in

Fig. 3(b), using the said fractal parameters in an arbitrary time span,
0–25 s. For the time derivative, the noise scale A is progressively
amplified within the series (summation) by gn, so its root mean
square (RMS= 2 × 10−4 m/s) is more than three orders of magni-
tude larger than that of the noise itself (RMS= 1.5 × 10−7 m). The
latter is designated as za, being the RMS value of the noise, and it
will be used to normalize transmissibilities which also serve as sen-
sitivities. The higher magnitudes of the noise derivatives may well
impress upon the ensuing dynamics via the fluid-film and support
damping properties.
Clearly, any desired noise characteristics can be generated by

simply altering the fractal parameters in Eq. (7). A smaller g pro-
duces a denser spectrum as it also determines the progressive ampli-
tude change between the spectral modes, while a larger fractal
dimension D produces a more jagged noise. While the WM
fractal function given by Eq. (7) is deterministic, a plausible way
to produce randomness in the noises’ amplitudes is to add
random phases as discussed in Ref. [50], however, the spectral
content remains unaltered. There are five parameters that construct
the WM function in Eq. (7) such that a great number of noise pat-
terns can be generated by altering any one, or any number of those.
In the forgoing, Zh and Zr along with their time derivatives are
deemed available by way of Eqs. (7) and (8) and is shown in
Fig. 3 (the power spectral density (PSD), shown in Fig. 3(c), will
be discussed in Sec. 2.6).
It is also recognized that if the noise scale, A, is set identically to

zero (A= 0), the functions in Eq. (7) are nullified. Operation in the
absence of any noise is referred to as a “pristine operation,” and that
is put to use in Sec. 2.5.

2.4 The Effects of Housing and Rotor Vibration. The film
thickness, h, shown in Fig. 2, is a function of position and time
[5,7,29,41], where now it is modified to include the rotor axial
noise, Zr(t):

h(r, θ, t) = Co + [Z(t) − Zr(t)] + γ(t)r cos (θ) + β(t)(r − ri) (9)

The spatial and time derivatives, with the latter including the
shaft axial noise derivative, Żr(t), are

∂h(r, θ, t)
∂θ

= −γ(t)r sin (θ)

∂h(r, θ, t)
∂t

≡ ḣ(r, θ, t) = [Ż(t) − Żr(t)] + γ̇(t)r cos (θ) + β̇(t)(r − ri)

(10)

Note that β̇(t) is taken from Eq. (4). The film thickness is needed
for the solution of the Reynolds equation for incompressible fluids
[7,41]:

�∇ · h3 �∇pf
12μ

−
1
2
ωrh�iθ

[ ]
=
∂h
∂t

(11)

The unknown is the fluid-film pressure, pf= pf(r, θ, t), reigning
in the sealing dam (see Fig. 1). This equation is subject to initial
and boundary conditions, where the latter can also be time-
dependent (see details in Ref. [41]). Clearly, the fluid-film pressure,
pf (r, θ, t), depends upon h(r, θ, t), and thus upon the noise, Zr(t), by
way of Eq. (9), while ∂h(r, θ, t)/∂t depends also upon the noise time
derivative, Żr(t), by way of Eq. (10). Likewise, by way of Eqs. (9)
and (10), the solution depends on the instantaneous values of
γ(t), β(t), γ̇(t), and β̇(t) that are governed by Eqs. (1), (2), and
(4). The solution of Eq. (11) for p= pf(r, θ, t) is presented in closed-
form by Green and Etsion [5,7]:

ps(r, θ, t) = pi − (pi − po)
h2o

h2i − h2o

hi
h

( )2

− 1

[ ]

pd(r, θ, t) = −6μ ωr
∂h
∂θ

+ 2
∂h
∂t

( )
(ro − r)(r − ri)
(hi + ho)h2

pf (r, θ, t) = ps(r, θ, t) + pd(r, θ, t)

(12)

where ωr=ωr(t) is the time-dependent shaft speed. Cavitation,
which adds to the nonlinearity of the problem, is handled by the
half-Sommerfeld boundary condition. Pressures from potential
asperity contact, pc, are available from Eq. (3). The sealing dam
is meshed to have 11 nodes in the radial direction and 37 nodes
in the circumferential direction. Both pressures, pf(r, θ, t) and
pc(r, θ, t), are added together at every node and integrated by
numerical quadrature over the sealing dam area to yield film
tilting moments and axial force:

Mfx =
∫2π
0

∫ro
ri

[ pf (r, θ, t) + pc(r, θ, t)] r2 sin θdrdθ

Mfy = −
∫2π
0

∫ro
ri

[ pf (r, θ, t) + pc(r, θ, t)] r2 cos θdrdθ

Ffz =
∫2π
0

∫ro
ri

[ pf (r, θ, t) + pc(r, θ, t)] rdrdθ

(13)

Additional applied moments and force that act upon the flexibly
mounted stator are given by Eq. (21) in Ref. [41]. These are now
augmented to include the housing noise and its derivative,
Zh(t) and Żh(t):

Msx = −Ks(γs − γsi cosψ ) − Dsγ̇s
Msy = −Ksγsi sinψ − Dsψ̇γs

FsZ = −KZs(Z − Zh) − DZs(Ż − Żh)

(14)

Note that Ks and Ds are the support angular stiffness and
damping coefficients, while KZs and DZs are their corresponding
axial counterparts. These are either obtained from experimentation
[10,42] or estimated by finite element analyses (FEA) [12,13]. This
is where the housing noise and its derivative, Zh(t) and Żh(t), add
forcing to the systems’ dynamics.

2.5 Numerical Integration in Time of the Equations
of Motion. The EOM and the time-dependent coning (of Eq. (4))

Journal of Vibration and Acoustics JUNE 2023, Vol. 145 / 031001-5



are cast in a state-space form, as given by Eq. (26) in Ref. [41]:

∂
∂t

Ż
Z
γ̇s
γs
ψ̇
ψ
β

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

(FsZ + FfZ − Fcls)/m
Ż
(Msx +Mfx)/I + ψ̇2γs
γ̇s
[(Msy +Mfy)/I − 2ψ̇ γ̇s]/γs
ψ̇
{βref [(href/h)(ψ̇ r/ωref )2] − β}/τ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15)

Fcls is the net closing force resulting from the circumferential
springs, the balance radius, rb, by way of the hydraulic balance
ratio, B (as given in Table 1), and the inner and outer pressures as
shown in Fig. 1 (see more details in Ref. [41]). The initial conditions
are

Z(0) = −0.65Co, γs(0) = γr

Ż(0) = γ̇s(0) = ψ(0) = ψ̇(0) = β(0) = 0
(16)

The EOMs are integrated in time simultaneously by an efficient
multistep ordinary differential equation solver [51]. The EOM in
Eq. (15) is expressed in a rotating frame xyz using the Euler
angles of nutation, γs, precession, ψ, and spin, ϕ, which, as indi-
cated, is reduced by the kinematical constraint imposed by the anti-
rotation pins [6,35]. That frame choice follows more closely the
whirl of the stator, and thus the numerical time integration is consid-
erably more CPU expedient and efficient. The sealed pressure and
shaft speed are ramped-up to simulate machine start-up to
steady-state (or reference values) as detailed in Ref. [41]. The
same sample seal is chosen here as well with parameters given in
Table 1. However, two changes are made: (1) a span of shaft
speed cases, ranging within 500–3000 rad/s in increments of
250 rad/s, is each simulated, and (2) each simulation is allowed to
complete at least 104 cycles to gather sufficient datasets needed
for a robust spectral analysis.
The EOMs cast here have a rather small-sized state-space set

expressed in Eq. (15). That is because for an incompressible film,
the Reynolds equation has a closed-from solution for the fluid-film
pressure as given by (12). When a seal is purposed to operate in a
compressible medium (e.g., dry-gas), a different form of the Rey-
nolds equation needs to simultaneously be solved numerically
alongside with the EOM because closed-form solutions are not
available for the pressure field, which is also time-dependent and
hereditary. The unknown time-dependent nodal pressures add enor-
mously to the size of state-space set, and thus to the computational
effort, as done in Refs. [29–31,33,34]. The noise generation,
however, and all the forthcoming principles and tools associated
with the sensitivity to noise quantification remain intact and
applicable.
The numerical simulation produces time series data for the

degrees-of-freedom, Z, γs, and ψ, and for the minimum film thick-
ness, hmin, as well as other important parameters, e.g., flow
(leakage), Q, and coning, β. Because this work is interested in the
net transient responses caused by machine noises about steady-state
operation, each case is simulated twice: (1) once without any noise,
Zh= Zr= 0, (i.e., by setting A= 0 in Eq. (7)) and hence, the results
(the time signals) which are evidently identical to those in Ref. [41]
are referred to as “pristine signals,” and (2) with noises generated by
Eq. (7), i.e., Zh ≠ 0, Zr ≠ 0, the results (the time signals) of which
are called “total noisy signals.” The targets herein are the differ-
ences between the two solutions, i.e., the “net noisy signals,”
which are obtained by

Δ(t) ≜ Net noisy signal(t) = Total noisy signal(t)

− Pristine signal(t) (17)

That approach is needed because responses to initial conditions
alone do not provide equivalent solutions about steady-state for
the reason that the system is highly nonlinear. More so, the pristine

signal may contain frequencies that are intrinsic responses of the
system, where indeed in the seal investigated herein (with data in
Table 1), and because of the forcing misalignments, γsi and γr, the
pristine signal is oscillatory as it will be seen later. To truly
obtain the net sensitivity to noise, those intrinsic responses have
to be removed to eliminate bias. So, in the foregoing, the analysis
pertains to the net signal as given by Eq. (17) for all
degrees-of-freedom and the parameters of interest.

2.6 Spectral Analysis and Sensitivity to Noise. The spectral
analysis adheres to the procedure outlined in Appendix B in
Ref. [42]. The following is a brief summary of that procedure.
Suppose that the output signal, x= x(t), is the time response to an
input noisy excitation, y= y(t). Next, X=X(ω) and Y(ω) are calcu-
lated by (fast) Fourier transforms for both signals.
While for the fractal noise of Eq. (7), there is a closed-form

expression for the power spectrum density (see Ref. [44]), a numer-
ical PSD is nevertheless used for all signals to maintain an unbiased
numerical uniformity. That PSD is shown in Fig. 3(c) for the said
fractal noise. The fractal density, g, being the geometric common
ratio, is clearly seen to separate the peaked frequencies (see the
n2 – n1+ 1= 38 peaks in Fig. 3(c) located equidistantly on a loga-
rithmic scale). Also visibly, the PSD largely fades outside the
range of ωl and ωh, as it should. Complementing to the issue of dif-
ferentiability, it is obvious that adding a term to the WM fractal
function, where the new n2→ n2+ 1, just adds another frequency,
expanding the frequency range by making ωh larger. A similar
role can be conferred upon n1 to affect ωl.
The signals, which are sampled according to the Nyquist folding

frequency, are analyzed in blocks of time such that there are at least
m= 100 blocks, where X(ω) and Y(ω) are being averaged over
all blocks. That reduces the statistical error by a factor of at least
m1/2= 10. Welch’s method of overlapping windowing is executed
to yet double the number of averages. After averaging, the power
spectral densities are

px(ω) =
2δh
N

|X(ω)|2 ; py(ω) =
2δh
N

|Y(ω)|2 (18)

where N= 2nfft is the number points in each block, nfft is an integer
(having a value of 10 or higher), and δh is the time interval between
sampled points. The cross spectral density function is

pyx(ω) =
2δh
N

Y∗(ω) · X(ω) (19)

where Y*(ω) is the conjugate of Y(ω). All power spectra are addi-
tionally processed by the novel G-Exp filter in Ref. [43] to moderate
spectral clatter. The transmissibility is defined as the ratio of output/
input:

α(ω) =
|pyx(ω)|
py(ω)

(20)

The coherence function is also calculated based on px, py, and pyx
(see Ref. [42]), and it is verified to be close to unity (1) to ensure
causality between output and input. Of interest here are the trans-
missibilities of the various parameters as calculated by Eq. (20),
and these are reported below.
To add a perspective, the transmissibility expressed by Eq. (20)

represents also the sensitivity of any given parameter to noise.
That is because the input signal is always the noise, i.e., y(t)≡
noise (as applied by Eq. (7)) having an RMS, za, where the
output signals are (one at a time) the parameters under investigation,
i.e., x(t)≡Δ(t) (as calculated by Eq. (17)). Because both are differ-
entially small, the transmissibility expressed by Eq. (20) is, in kind,
a first derivative representation of the output with respect to the
input. A detailed sensitivity analysis is performed by Dayan et al.
[27] on a mechanical seal where indeed the sensitivity is mathemat-
ically expressed as a first derivative of an output parameter with
respect to a variation in input. Therefore, the transmissibilities
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that will be discussed and analyzed below may also represent the
sensitivities of the parameters to noise.

3 Results and Discussion
All results below are given in a nondimensional form. The time-

domain transient results are shown in Fig. 4 for three specific shaft
speeds, with corresponding frequency-domain transmissibilities
shown in Fig. 5. Waterfall plots are shown in Fig. 6 for 3D repre-
sentations of the net transmissibilities with respect to the shaft
speed. The important parameters of coning (face warping) and
leakage are lastly shown in Fig. 6 as well. Figure 7 shows waterfall
plots for the same parameters as those in Fig. 6, only that the pristine
responses have not been removed; hence, the plots in Fig. 7 repre-
sent the total transmissibilities.

Figure 4 shows the nondimensional transient responses versus
normalized time (i.e., revolutions) for three shaft speed cases of
ωref= 750 (top), 1500 (middle), and 3000 rad/s (bottom). While
information is available for all degrees-of-freedom, coning, flow,
etc., only the most significant nondimensional parameters are
shown. These are the relative tilts between stator and rotor,
γro/Co, and the minimum film thicknesses, hmin/Co. These two
parameters are of prime importance in mechanical face seal opera-
tion as they determine the flowrates (leakages) and the likelihood of
face contact—the larger these are, the larger the leakages and the
likelihood of faces wear. In Fig. 4, the total noisy responses are
shown to be larger than and surrounding, the pristine responses.
Whereas in all analyses, at least 104 cycles have been simulated,
but the plots show the (nondimensional) time signals only in a
reduced range of up to 103 cycles. Past the start-up and initial tran-
sients, the periodic nature of all responses to noises forcing is also

Fig. 4 Transients of nondimensional output parameters versus nondimensional time (revolutions) at three shaft speeds ωref=
750 (a), 1500 (b), and 3000 rad/s (c). Noisy transients are shown about the pristine signals with zommed-in ranges in insets. The
net noisy signals are shown in the top-left insets for the highest shaft speed.
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apparent, indicating that the signals settle to stable steady-state sta-
tionary forms. The signals past 103 cycles are gathered to provide
sufficient data for robust signal processing (yet not shown).
In each case in Fig. 4, an inset is also shown at the transition from

ramp-up to steady-state operation. Those insets show the oscillatory
nature of the pristine signals (as discussed in Sec. 2.6). The wide
bands are nothing other than the same pristine signals crammed
together when shown on a larger scale. Turning to the physics, it
is obvious that at the lower speed of 750 rad/s, the nondimensional
relative misalignment, γ·ro/Co, is very small, and the minimum film
thickness, hmin, approaches the designed clearance, Co. That is

nearly an ideal state of operation. At that lower speed, the hydrody-
namic effect and the inertial forces and moments are relatively
small. Still the noisy response is quite apparent in the relative mis-
alignment, which will also be evident in the transmissibilities shown
in Fig. 5.
Still in Fig. 4, it is apparent that with the increase of the shaft

speed, the nondimensional relative misalignments, γro/Co, and
the nondimensional minimum film thickness, hmin/Co, increase
too. That is anticipated as the hydrodynamic and inertial effects
increase with shaft speed. While the speed only doubled with
each case in Fig. 4, the relative misalignments responses are

Fig. 5 Transmissibilities of cases in Fig. 4 versus frequency ratio, ω/ωref, at three shaft speeds ωref=750 (a), 1500 (b), and
3000 rad/s (c). Unfiltered signals are shown in dashed lines, and G-Exp filtered signals are shown in solid lines.
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visibly much more than doubled (as envisaged from a nonlinear
system). Also the minimum film thickness has increased, having
a large increase from 750 to 1500 rad/s, and then a more moderate
increase at 3000 rad/s. The relative tilt sees a much more dramatic
increase with shaft speed. Clearly, at higher shaft speeds, the seal
faces open up, having larger relative tilts, leading to increased
leakages and perhaps even face contact (as discussed below).
For the highest shaft speed of 3000 rad/s, the net signals as

obtained by Eq. (17) are also shown in other insets (at top-left
corners). Similar behaviors are witnessed at other speeds. While
limited statistical information can be extracted in the time-domain,
e.g., the mean is verified to be zero obviously, the RMS (or the stan-
dard deviation) can be contrasted against the noise RMS; the spec-
tral content, however, has to be obtained through a spectral analysis
as outlined in Sec. 2.6. That is presented in Fig. 5, which shows on
log–log scales the transmissibilities (i.e., the sensitivities) for the
said parameters using Eq. (20). Some prominent peaks are also
emphasized by the dots on top.
A quantity (“term”) that is commonly used in rotordynamics is

nX= n(ω/ωref), where n is an integer multiplier of the frequency
ratio between the response and the shaft rotational speed. In all
plots, the unfiltered noisy signal is shown in dashed lines, while
filtered signals processed by the G-Exp filter as developed in
Ref. [43] are shown by solid lines using filter parameters of
βG-Eexp= 4 and L= 3. While the venerable Savitzy-Golay smooth-
ing filter [52] has also been tried, it is the G-Exp filter that consis-
tently produces superior results (similar to the outcomes in

Ref. [43]) because the G-Exp can perpetually be tuned, while
the Savitzky-Golay filter family is based on fixed-coefficients
polynomials.
It is obvious that for all cases, the transients are consistently

strong at sub-synchronous frequencies producing rich spectra,
with the strongest responses occurring near the half-frequency
whirl (or ω/ωref= 1/2, aka X/2), which is expected from the hydro-
dynamic effect [5,8,29,42]. Noticeable are also elevated responses
about the synchronous speed, ω/ωref= 1 (i.e., at 1X, which is also
expected) especially at the higher speed of 3000 rad/s. At precisely
1X, for all shaft speeds, the sensitivity to noise is reduced because
the steady-state pristine response at that frequency is dominant
anyway, where added noise does not produce relatively a mean-
ingful contribution. Interestingly, even as the noises are generated
only in the axial directions, because of the effective coupling
between the axial and angular modes, the latter have much more
powerful transmissibilities. The magnitudes of all transmissibili-
ties increase with shaft speed, and quite considerably in the
angular mode (i.e., in the nondimensional relative misalignments,
γro/Co).
While the effects of the half-frequency whirl (X/2) is clearly

evident by the strong peaks present at ω/ωref= 1/2, peaks are also
prevalent at ω/ωref= n/2 (n being an integer multiplier). Peaks are
also visible at super-synchronous frequencies being particularly
prevalent at 1.5X, 2X, etc., and even more so at a higher shaft
speed of 3000 rad/s. That behavior is a known attribute of seal
faces rubbing in contact [15,36] as triggered by the noises.

Fig. 6 Waterfall plots of parameters of net transmissibilities for the full range of shaft speeds, ωref= 500–3000 rad/s
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The process that produces Figs. 4 and 5 is repeated for other shaft
speeds, ωref, ranging from 500 to 3000 rad/s in increments of
250 rad/s. Figure 6 shows 3D waterfall plots of the normalized
transmissibilities as calculated by Eq. (20) for the said parameters
in that shaft speed range. That figure shows as an output of the trans-
missibility sensitivities to noise at various normalized response fre-
quencies, ω/ωref. In addition to transmissibilities of the
nondimensional relative misalignments, Δγro/Co, and the nondi-
mensional minimum film thickness, Δhmin/Co, also the transmissi-
bilities for the axial degree-of-freedom, ΔZ/za, and the nutation
angle, Δγsro/za, are provided (where Δ corresponds to the net
value obtained by Eq. (17)). There are meaningful transmissibility
peaks at sub- and super-synchronous speeds. The strongest sensitiv-
ity is at and about the half-frequency whirl (X/2) or (ω/ωref= 1/2).
Peaks at super-synchronous frequencies develop and prevail at
shaft speeds of 2000 rad/s and become larger with the increase of
shaft speeds.
The discoveries above underpin the outcomes for coning and

flow transmissibilities also shown in Fig. 6. First, it is evident that
coning sensitivities are increased at lower shaft speeds where the
dynamic sensitivities (i.e., the responses of the other parameters)
are relatively small. Large heat generation occurs at the smaller
film thicknesses and vice versa. At the largest dynamic responses
that cause larger film thicknesses, the flow, Q, is likewise large
(see Fig. 6, paying attention to the scale). Large flows cool the
seal surfaces and reduce the heat generation. Both compounded
reduce coning sensitivities at the larger shaft speeds. The flow

itself is normalized by the radial flow, Qo, under ideal (and pristine)
conditions having a designed and uniform film thickness, Co,
throughout. Hence, Qo = πC3

o(ro + ri)(po − pi)/[12μ(ro − ri)]. The
actual temporal flow, Q(t), is proportional to the temporal film
thickness to the third power (Co+ Z )3, to the relative tilt to the
second power, γ2, and to the coning, β. The flow is, therefore, mag-
nified more intensely with the increase of all those three parameters,
Z, γ, and β (as they are evident in Fig. 6). It is also apparent that the
largest flow (leakage) sensitivities to noise occur correspondingly at
X/2 (i.e., at half-frequency whirl) and predominantly again at shaft
rotational speeds above 2000 rad/s.
The role of the “pristine” operation is understood from analyz-

ing Fig. 7. That figure shows the results of corresponding analyses,
with all of the steps indicated above performed identically, with
only one exception: instead of using Eq. (17), the “pristine
signal” is not removed from the total noisy signal. So while
Fig. 6 represents net transmissibilities, the transmissibilities in
Fig. 7 are considered absolute. It is immediately apparent that
the 1X component (that is largely absent in the net transmissibili-
ties in Fig. 6) dominates, as expected, because the 1X component
signifies the persistent steady-state oscillatory response, as shown
in the insets of Fig. 4. The 1X components are sufficiently large to
be on par with the other large responses (of course, that depends
on the parameters in Table 1). Figures 6 and 7 substantiate the
need for “pristine” models (i.e., analyses such as in Ref. [41]) to
evaluate the steady-state performances with and without noise
excitation.

Fig. 7 Waterfall plots of the absolute transmissibilities for the full range of shaft speeds, ωref=500–3000 rad/s
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It is concluded that the investigated seal, with the parameters
listed in Table 1, is less sensitive to noisy excitation at shaft
speeds lower than 2000 rad/s, as no appreciable adverse influences
are detected in the waterfall plots. At speeds higher than 2000 rad/s,
design changes might be necessary to offset detrimental sensitivities
to machine vibration. That is manifested by the increased leakages
and recurrent faces contacts, both of which signpost seal failure.
Such a sensitivity analysis has to be conducted on a case-by-case
basis for each seal having similar or additional operational objec-
tives. The outcomes and conclusions are likely to be greatly influ-
enced by the respective parameters. Also, it is important to
mention that the current tools as developed herein are completely
applicable to gas-lubricated seal. However, the only analytical com-
ponent that needs to be replaced is the use of the appropriate Rey-
nolds equation (for compressible fluids), and that is a significantly
more complicated solution process that requires intricate analytical
and numerical procedures [29–31,33,34,53].

4 Conclusion
The objective herein is to provide the theory behind the numeri-

cal tools and procedures to investigate the effects that machine
vibration imposes upon mechanical face seal transients. Seals sen-
sitivities to noisy machinery are commonly witnessed (diagnosed)
in field operation, where noise is a persistent cause for seal dete-
rioration and failure. This is the first time that modeling tools
enable to quantify such sensitivities. The analysis builds upon and
augments existing comprehensive models that have been developed
for “pristine” operation. The noise is generated by a novel use of the
Weierstrass–Mandelbrot fractal function. That allows for the exact
implementation (calculations) of the noise time derivatives, as they
are explicitly needed in the analysis. A unique method is also intro-
duced to calculate the faces contact pressure as a continuous func-
tion of the film thickness accounting for surfaces roughness. For this
highly nonlinear system, the analysis focuses upon the resultant
response about an equilibrium state. It is clearly evident that at
about the half-frequency whirl, X/2, and the synchronous speed,
1X, there are expected strong sensitivities to machine noise.
Machine noises, however, result in rich dynamic sensitivities at
other sub-synchronous and super-synchronous speeds. The nX har-
monic components have increased sensitivities with the increase of
shaft speeds. These harmonics are attributed to the hydrodynamic
effects, steady-state responses to forcing misalignments, and
rubbing contact of the seal faces. While the former cause excessive
leakage, the latter are utterly detrimental to seal survivability. The
results herein are specific to the sample seal analyzed. Other seal
designs are likely to possess dynamic attributes that are similar,
along with additional attributes that are specific to a dedicated
design or an application. The tools developed herein will have to
be employed for every seal design on a case-by-case basis. While
the sample seal used in the current work is specific for an incom-
pressible fluid (water at 20 °C), the tools developed herein are
equally applicable for gas-lubricated mechanical seals, only that
the compressible form of the Reynolds equation needs to be used
instead. The implementation of the Weierstrass–Mandelbrot
fractal function for noise generation can be implemented to model
any noisy dynamical system.
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Nomenclature
f = coefficient of friction, Eq. (5)
g = fractal density parameter
h = local film thickness, Table 1
m = stator mass, Table 1
n = index of summation
p = pressure
r = radial coordinate, Table 1 and Figs. 1 and 2
t = time
B = balance ratio, Table 1
C = centerline varying clearance, Co + Z
D = fractal dimension
F = force, Table 1
H = power (heat generation)
I = transverse moment of inertia
M = moment
Q = flow
Z = stator absolute axial degree-of-freedom, Figs. 1 and 2
za = root mean square of noise
Aa = fractal noise scale
Co = design clearance, Table 1
DZs = support axial damping coefficient, Table 1
KZs = support axial stiffness coefficient, Table 1
Zh = axial housing vibration, Figs. 1 and 2
Zr = axial rotor (shaft) vibration, Figs. 1 and 2
β = face coning, Table 1
γ = relative misalignment, �γ = �γs–�γr
γo = relative misalignment caused by rotor runout alone
γr = rotor runout, Table 1 and Fig. 1
γs = stator nutation, Fig. 1
γsi = stator initial misalignment
γsI = steady-state stator response due to γsi alone
γsr = steady-state stator response due to γr alone
Δ = difference between noisy and pristine signals, Eq. (17)
θ = angular coordinate
μ = viscosity, Table 1
τ = thermal time constant, Table 1
ψ = precession
ω = frequency or interference in the Appendix

ωref = shaft angular velocity at steady-state, Table 1

Subscripts

a = housing or rotor
c = contact
g = gyration radius
i = at inner radius

min = minimum film thickness
o = at outer radius
r = rotor

ref = reference value
s = stator or flexible support

Appendix: The Contact Pressure Between Seal Faces
Jackson and Green [46] extend a finite element study of flattening

elasto-plastic hemispherical contact to rough surfaces contact and
show that hardness is a function of not only the material properties
but also of the deformation [45]. The approach in Ref. [46] adopts
the stochastic conversion of two rough surfaces into one composite
rough surface that is brought into contact with a rigid flat surface
adhering to the principles of the Greenwood and Williamson
model [54,55]. Accordingly, the interference between each asperity
and the contacting rigid flat is ω= z− d, where d is the general
surface separation distance. Hence, if h(r, θ, t) is the local temporal
film thickness between the seal faces, then d= h− ys. That is
depicted in Fig. 8, where ys= 4m2/(πm4)

1/2, and m2 and m4 are the
second and fourth spectral moments [43,54] of the composite
surface roughness [55].
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The spectral moments m0, m2, and m4, which are calculated in
either the spatial or the spectral domains (see Refs. [43,44]),
allow the calculation according to Refs. [54,56] of the surface
heights RMS, σ, the asperity composite radius of curvature, R,
and the areal asperity density, η (as they are given in Table 1). Com-
mensurate with the Greenwood−Williamson model, it is assumed
that the asperity heights obey a Gaussian distribution function
given by

ϕ(z/σ) =
1���
2π

√ σ

σs

( )
exp −0.5

σ

σs

( )2 z

σ

( )2[ ]
,

σ2s = σ2 −
3.717 × 10−4

η2R2
(21)

The following critical interference, ωc, denotes the interference
where asperity yielding first occurs, and that is calculated using
the von Mises yield criterion [45]:

ωc =
πCSy
2E

( )2

R (22)

Virtually all mechanical face seals have dissimilar materials for
the stator and the rotor, possessing distinct Poisson ratios, ν, and
yield strengths, Sy. Green [57] teaches that the product CSy in
Eq. (22) is chosen according to CSy=min(C(ν1)Sy1, C(ν2)Sy2) for

surfaces 1 and 2 to account for disparate material properties. The
Poisson ratio constant, C(ν), is calculated for each surface according
to Refs. [45,57] as C(ν)= 1.295exp(0.736ν), and E = [E1/(1 − ν21) +
E2/(1 − ν22)]

−1 is the equivalent elastic modulus for the composite
surface that is in contact with the rigid flat. Using this critical inter-
ference, the critical contact force at the onset of yielding is

�Fcy =
4
3

R

E

( )2 1
2
πCSy

( )3

(23)

where the over-bar denotes quantities provided for single-asperity
contact. The plasticity index, ψ, quantifies the propensity of plastic-
ity to occur during asperity deformation. The index, defined in
Ref. [55], is augmented to utilize the yield strength (instead of the
hardness):

ψ =
2E

������
σs/R

√
1.639πSy

(24)

For the parameters defined in Table 1, the plasticity index is ψ=
6.2. Because ψ> 1, the faces asperities are likely to deform plasti-
cally upon contact. As shown by Jackson and Green [45], the
contact force is commensurate to the Hertzian model for deforma-
tions in the range of 0≤ω≤ 1.9ωc, while for 1.9ωc <ω, an elasto-
plastic contact force prevails. Hence,

�F(ω) =

�Fcy
ω

ωc

( )3/2

↔ 0 ≤ ω

ωc

( )
≤ 1.9

�Fcy exp −
1
4

ω

ωc

( )5/12
( )[ ]

ω

ωc

( )3/2

+
4HG

CSy
1 − exp −

1
25

ω

ωc

( )5/9
( )[ ]

ω

ωc

( ){ }
↔ 1.9 <

ω

ωc

( )
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(25)

where an updated value is taken from Ref. [58] for the ratio between
hardness and yield strength:

HG

Sy
= 2.84 − 0.92 1 − cos π

a

R

( )[ ]
(26)

along with

a

R
=
πCSy
2E

��������������
1.9

ω

ωc

( )1+B
√

and B = 0.14 exp (23Sy/E) (27)

Equation (26) indicates that the hardnessHG depends on both, the
material and surface properties, along with the deformation magni-
tude indicated by the radius of contact, a. When the rigid flat and
composite rough surfaces are separated by a distance d= h− ys,
any asperity whose height exceeds d contacts the rigid flat.
Thus, the contribution of all asperities of height z towards the

contact force at (r, θ) is

F̃(z, r, θ) = NAn�F(z − d)ϕ(z) (28)

where An is the nominal contact area. Thus, the total contact force at
a prescribed surface separation distance is found by summing the
contribution of all asperities whose height exceeds the surface
separation distance. This summation is achieved by integrating
Eq. (28) over the entire vertical contact range (i.e., all asperity
heights above d):

F(r, θ) = ηAn

∫∞
d

�F(z − d)ϕ(z)dz (29)

Rather than evaluate the nominal contact area An at every time-
step during the simulations, Eq. (29) is redefined to calculate the

Fig. 8 Contact between a rigid flat and a composite rough surface
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average contact pressure, pc(r, θ)=F(r, θ)/An:

pc(r, θ) = η

∫∞
d

�F(z − d)ϕ(z)dz (30)

Note that the resulting contact pressure is quasi-static because
asperity inertial effects and hysteresis from loading-unloading are
neglected. Thus, the contact force only depends on the instanta-
neous clearance between the approaching surfaces. In general, the
film thickness, h(r, θ, t), between the approaching surfaces is a func-
tion of both surface location and time because h(r, θ, t) depends on
the degrees-of-freedom. However, the composite surface roughness
is independent of those, as it is assumed of being homogenous, iso-
tropic, and stationary. Hence, a quasi-static contact law permits the
contact pressure to be curve-fit versus the local surface film thick-
ness, h(r, θ, t). This approach radically reduces computation time
when solving the system equations of motion because the numerical
integration of Eq. (30) is performed once rather than at every nodal
point (r, θ) at every time-step in the simulation. Here, an exponen-
tial curve-fit is performed on the contact pressure pc versus the film
thickness, h [49]:

pc(r, θ) = C1 exp [−C2h(r, θ)] (31)

That fit is presumed valid for any time, t. This expression
depends only on the surface and material properties. Specifically,
for the parameters stated in Table 1, a curve-fit yields the constants
C1= 3.5 × 109 Pa and C2= 2.8 × 107 m−1. The contact pressure
versus clearance relationship of Eq. (31) is shown in Fig. 9 along
with the numerically integrated results from Eq. (30). Figure 9
clearly indicates agreement between the numerical integration and
the exponential curve-fit. Several general observations are made
from that figure. First, the contact pressure increases exponentially
as the surfaces draw closer, because more asperities interact. For the
Gaussian asperity height distribution considered here, the contact
pressure decreases by almost an entire order of magnitude for
each additional σ of surface separation distance. Clearly at any
h > 4σ, the contact pressure is virtually nil indicating noncontacting
operation. At about h≈ 3σ contact initiates, while at any h< 2σ it
would be considered heavy (even severe) contact that would
destroy the seal rather quickly. Because mechanical seals are force-
balanced, if and when contact ever occurs, that would normally be
at about h≈ 3σ. Further investigation in Ref. [59] shows that the
contact pressure decreases significantly as the plasticity index
increases, consequently necessitating a robust elasto-plastic such
as given in the foregoing. In summary, the explicit contact pressure

expression given in Eq. (31) is replicated in Eq. (3) to be used in the
numerical time integration method as conducted in this study.
Equation (31) offers a contact pressure that varies continuously as
a function of the film thickness and is not handled by an on-off
Heaviside function [49,60,61] (which is an inaccurate simplification
commonly employed in the field of rotor–stator rub).
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