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Abstract: This work uses the finite element technique to model the elastoplastic deformation of a
hemisphere contacting a rigid flat for various material properties typical of aluminium, bronze,
copper, titanium and malleable cast iron. Additionally, this work conducted parametric finite element
method (FEM) tests on a generic material in which the elastic modulus and Poisson’s ratio are varied
independently while the yield strength is held constant. A larger spectrum of material properties are
covered in this work than in most previous studies. The results from this work are compared with two
previously formulated elastoplastic models simulating the deformation of a hemisphere in contact
with a rigid flat. Both of the previously formulated models use carbon steel mechanical properties to
arrive at empirical formulations implied to pertain to various materials. While both models
considered several carbon steels with various yield strengths, they did not test materials with various
Poisson’s ratios or elastic moduli. The previously generated elastoplastic models give fairly good
predictions when compared with the FEM results for various material properties from the current
work, except that one model produces more accurate predictions overall, especially at large
deformations where other models neglect important trends due to decreases in hardness with
increasing deformation.

Keywords: asperity, Hertzian contact, hemispherical contact, contact mechanics, surface
deformation, elastoplastic contact

NOTATION

A area of contact
C critical yield stress coefficient
ey ratio of yield strength to elastic modulus

¼ Sy/E
E elastic modulus
H hardness
HG hardness geometric limit
K hardness factor
P contact force
R radius of hemispherical asperity
Sy yield strength

n Poisson’s ratio
o interference between the hemisphere and

the surface

Superscripts

0 equivalent
� dimensionless

Subscripts

c critical value at the onset of plastic
deformation

E elastic regime
P fully plastic regime
t transitional value from elastic to

elastoplastic behaviour

1 INTRODUCTION

Contact between a deformable hemisphere and a rigid
flat surface is commonplace in modelling many engi-
neering applications. On a macroscopic scale, a ball
bearing forced against the race of a bearing can be
approximated by a hemisphere in contact with a rigid
flat surface. On a microscopic scale, small asperities
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modelled as hemispheres dispersed across two surfaces
forced together constitute a similar form of contact
(although actual asperities may have shapes differing
greatly from this hemispherical approximation). The
contact area and pressure between two surfaces is
important on both scales. For the macroscopic scale,
unacceptable deformations on a ball bearing may be the
result of excessive load. For the microscopic scale,
contact area between asperities affects friction, wear and
conduction between two surfaces. General empirical
approximations for relating contact area and contact
force with hemisphere deformation are desired for
accurate solutions to many engineering problems.

Many previous models have been formulated, such as
the Zhao–Maletta–Chang [1] and Chang–Etsion–Bogy
(CEB) [2] models, but recent findings have proven them
to be inadequate [3, 4]. Thus these models will not be
considered in this work.

Recently, two independent studies by Jackson and
Green (JG) [3] and Kogut and Etsion (KE) [4] have
utilized the finite element method (FEM) to model
hemispherical contact with a rigid flat. Both models use
the Hertz solution [5] to non-dimensionalize their results
for interference, contact area and contact force (see the
Appendix), so that these non-dimensional values equal
unity at the onset of yielding. The models simulate
deformation of carbon steels to arrive at empirical
formulations for non-dimensional contact area and
contact force. The formulations imply that they are
applicable to all ductile materials, but the carbon steels
modelled to create them have fixed values of Poisson’s
ratio and modulus of elasticity. The present work
utilizes the FEM to conduct similar deformation tests
of a hemisphere in contact with a rigid flat, but it
considers material properties typical of five other unique
metals: aluminium, bronze, copper, titanium and malle-
able cast iron. Additionally, this work conducts para-
metric FEM tests on a generic material for which
Poisson’s ratio and the elastic modulus are indepen-
dently varied. Neither this work nor the JG model
created consider strain hardening in their analysis and,
although KE investigated strain hardening, their model
does not include it either. The objective of this work is to
compare the empirical formulations proposed by JG
and KE, as they apply to various sets of Poisson’s ratio

and elastic modulus typical of a wide variety of
materials, with the results of this FEM study.

Both JG and KE modelled the frictionless contact of
an elastic–perfectly plastic hemisphere pressed against a
rigid flat by some specified distance known as the
interference (Fig. 1). The hemisphere is described as
elastic–perfectly plastic because at low interferences a
high-stress region starts to form below the contact
interface. Eventually the material yields in this high-
stress region and a plastic core forms. The plastic core is
surrounded by elastic material, which diminishes as the
hemisphere is subjected to larger interferences. At higher
interferences the plastic core expands in a three-
dimensional fashion to the surface, and also inwards
towards the centre of the hemisphere. The reason that
the plastic region expands is because the material in the
hemisphere that is flowing plastically can no longer
resist additional load. Therefore, any additional load is
carried by the surrounding elastic regions. At a value of
o� between six and ten the plastic core reaches the
surface near the edge of contact. Then there is an elastic
core below the contact area that is surrounded by
plastically deforming material. At a much higher load,
anywhere within 684o� 4 110 (depending on the
material properties), the plastic region covers the entire
contact area and occupies a large portion of the space in
the hemisphere. This is known as the fully plastic
regime. Through a large range of applied interferences
the hemisphere deformation is subject to fully elastic,
elastoplastic and fully plastic behaviours. JG and KE
calculated non-dimensional contact area and force for
an applied interference using the FEM. They then fitted
empirical formulations to the resulting non-dimensional
contact area and force as functions of non-dimensional
interference and material properties. Because of the
changing contact geometry and the transition from
elastic to plastic behaviour, the non-dimensional contact
area and force between a rigid flat and a hemisphere is
not linearly related to the non-dimensional interference.
While for the fully plastic regime KE assumed a fixed
ratio of hardness to yield strength, JG found that the
average contact pressure (i.e. ‘hardness’) varied with the
deformed contact geometry, a result consistent with that
obtained by Mesarovic and Fleck [6]. It should be noted
that the term hardness as used in this work relates to a

Fig. 1 Spherical contact model (a) before contact, (b) during mostly elastic deformation and (c) during
mostly plastic deformation
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deformable hemisphere in contact with a rigid flat unlike
typical hardness tests where the hemisphere is considered
rigid and the flat deformable. Other major differences
between the JG and KE models are as follows:

1. As mandated by mesh convergence the mesh used by
JG is at least an order of magnitude finer than that
used by KE (the mesh by JG is also used in this work).

2. The deformation in the JG model continues to more
than twice the deformation in the KE model.

3. The empirical formulations produced by the KE
model use a piecewise fit that contains discontinuities
at six times the critical interference, whereas the JG
fit is continuous throughout.

4. The KE model assumes a truncation model beyond
110 times the critical interference (see the Appendix,
equations (21) and (22) while the JG model does not.
[The truncation model has been used by various
researchers in the field (see, for example, references
[1, 2, 4] and [7]). It has been extracted perhaps
unsuitably from the work by Abbott and Firestone
[8] who never made any suggestions about load or
mean pressure; they simply assumed that progressive
wear would truncate the surface height distribution.
Hence, from this point forward the truncation model
will be referred to without attributing it to Abbott
and Firestone [8].]

5. The critical interference used by KE is based on a
fixed relationship between hardness and yield
strength (as if hardness is a material property), where
the critical interference derived by JG does not rely
on such a relationship at all. These differences are
now detailed mathematically.

The KE solution applies for non-dimensional inter-
ferences between o� ¼ 1 and o� ¼ 110. It assumes the
Hertz solution for o� < 1, and the truncation model for
o� > 110. KE formulated piecewise non-dimensional
contact area and contact force as follows: for 14o� 4 6

P�
KE ¼ 1:03 o�ð Þ1:425

A�
KE ¼ 0:93 o�ð Þ1:136

P

ASy

� �
KE

¼ 1:19 o�ð Þ0:289

ð1Þ

and, for 64o� 4 110,

P�
KE ¼ 1:40 o�ð Þ1:263

A�
KE ¼ 0:94 o�ð Þ1:146

P

ASy

� �
KE

¼ 1:61 o�ð Þ0:117

ð2Þ

In equation (1) note that at o� ¼ 1 the model is
disjointed from the Hertz solution; the force is over-

estimated by 3 per cent while the area is underestimated
by 7 per cent. Note also that equations (1) and (2) are
disjointed at o� ¼ 6. Beyond o� ¼ 110 the contact
hemisphere is assumed to be well into the fully plastic
regime, and at this point the truncation model is
assumed, where equation (2) does not asymptotically
approach the truncation model, it merely intersects with
it.

The JG model finds that contact area increases
beyond the truncation model for interferences in the
fully plastic regime. JG formulated nondimensional
contact area for o�51:9 as

A� ¼ o� o�

1:9

� �B

ð3Þ

where

B ¼ 0:14 expð23eyÞ ð4Þ

ey ¼
Sy

E0 ð5Þ

A geometric limit to hardness as explained in detail by
JG is calculated to be

HG

Sy
¼ 2:84 1� exp � 0:82

a

R

� ��0:7
� �� �

ð6aÞ

where a is the radius of the contact patch of the
deformed hemisphere and R is the nominal radius of the
hemisphere. Here the hardness changes as a function of
a/R, or with the evolving geometry of contact. The trend
may be explained by the progression schematically
shown in Fig. 2. As the interference increases and the
contact geometry changes, the limiting ratio HG/Sy of
average pressure to yield strength must change from
Tabor’s predicted value of three to a theoretical value of
one when a¼R. It should be noted that equation (6a) is
only valid for 0 < a=R4 0:412, where

a

R
¼ pCey

2
o� o�

o�
t

� �B
" #1=2

ð6bÞ

and is derived from equation (3) in the paper by JG.
Caution should thus be taken when using equation (6a)
outside this range. This range is acceptable for many
applications, particularly tribological applications where

Fig. 2 Diagram of progression of change in hardness with
geometry
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deformations above this range are either unlikely or
unacceptable. By substituting equation (6b) into equa-
tion (6a) Jackson and Green found that

HG

Sy
¼ 2:84 1� exp � 0:82

pCey
2

ffiffiffiffiffiffi
o�

p o�

1:9

� �B=2
 !�0:7

0
@

1
A

2
4

3
5

ð6cÞ

where HG is the hardness geometric limit and C is the
critical yield stress coefficient [equation (13)]. Equation
(6c) incorporates the effect that the deformed geometry
has on hardness, which is defined as average contact
pressure. JG found that the ratio HG/Sy for fully plastic
yielding approaches 2.84. Using equation (6c), the JG
model calculates the non-dimensional contact force for
o�51:9 as

P� ¼ exp �1

4
o�ð Þ5=12

� �� �
o�ð Þ3=2

þ 4HG

CSy
1� exp � 1

25
o�ð Þ5=9

� �� �
o� ð7Þ

For o� < 1:9, the JG model assumes the Hertz solution.
Theoretically the Hertz solution is valid only up to
o� ¼ 1. However, the FEM results obtained by JG find
that the Hertz solution can be extended to o� < 1:9
without a noticeable sacrifice in accuracy. This is
probably due to the fact that, although plastic deforma-
tion does form at o� ¼ 1 and beyond, it is small enough
and contained in a predominantly elastic region. The JG
formulation for non-dimensional contact area and
contact force provides continuous functions throughout
the entire range of deformation, 04o� 4 250.

2 PROCEDURE

The validity of the empirical formulations for contact
with an elastoplastic hemisphere presented by the KE
and the JG models is tested by conducting the FEM of
hemispherical contact with varied material properties.
Two sets of tests were conducted using an FEM similar
to that used by JG (who detailed the numerical
procedure and convergence of the FEM). The first test
generated contact area and contact force data for five
hypothetical metals with Poisson’s ratios, yield strengths
and elastic modulus typical of aluminium, bronze,
copper, titanium and malleable cast iron (see Table 1
for material properties). Non-dimensional interferences
between o� ¼ 5 and o� ¼ 250 were used to generate data
in both the elastoplastic and the fully plastic regimes,
except for ‘aluminium’ at o� ¼ 250 and ‘malleable cast
iron’ above o� ¼ 10 because of difficulties in obtaining
solution convergence at these interferences.

The second set of tests generated non-dimensional
contact area and contact force data for a generic
material in which the elastic modulus and Poisson’s
ratio were independently varied with the yield strength
held constant at Sy¼ 200MPa. Firstly, Poisson’s ratio
was varied between 0.28 and 0.36 with the elastic
modulus held constant at 200GPa. Then, the elastic
modulus was varied between 160 and 240GPa with
Poisson’s ratio held constant at 0.32. The non-dimen-
sional interference was set at o� ¼ 20, 80 and 250 for
each test iteration.

The FEM used in this work is similar to that used by
JG. The mesh consists of a minimum of 11 100 elements
and may increase depending on the expected region of
contact. The contact region is meshed by 100 contact
elements. The non-dimensional area is calculated by
finding the number of elements that form the radius of a
contact patch. Some small error exists due to the
resolution of a single contact element. The error due
to contact patch resolution measuring the contact radius
ranges from as much as 1.9 per cent for ‘cast iron’ at
o� ¼ 2 to as little as 0.8 per cent for ‘bronze’ at
o� ¼ 250.

3 NUMERICAL RESULTS

The relative difference between the models and the FEM
conducted in this study is referred to as the percentage
error and calculated as

Percentage error ¼ 100
model� FEM

FEM

� �

For the first test modelling the deformation of five
hypothetical materials the average error for the JG
formulations is 3.10 per cent for non-dimensional
contact area and 4.49 per cent for non-dimensional
contact force. The average error for the KE model is
5.26 per cent for non-dimensional contact area and 7.34
per cent for the non-dimensional contact force. It should
be noted that the KE model assumes the truncation

Table 1 Material properties

Sy E
Material n (GPa) (GPa)

Aluminium 7075-T6* 0.33 0.505 72
Bronze SAE 40* 0.33 0.125 93
Copper UNS C15500* 0.34 0.124 115
Titanium IMI 834* 0.31 0.925 120
Malleable cast iron typical{ 0.25 0.250 170
Carbon steel{ 0.32 0.210 200

*matweb.com.
{ From reference [9].
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model above o� ¼ 110. The truncation model is used
when calculating the average errors for the KE model at
o� ¼ 250. The higher average error associated with the
KE model’s prediction of non-dimensional contact force
is mostly due to the large error associated with
truncation model values assumed at o� ¼ 250 (see the
Appendix, equations (21) and (22)).

The second set of tests is conducted by first
independently varying Poisson’s ratio and then inde-
pendently varying the elastic modulus for a generic
material and was run using non-dimensional interfer-
ences of o� ¼ 20, 80 and 250. For this test, the KE
model has a slightly lower average error for non-
dimensional contact area than the JG model, and the JG
model has a slightly lower average error for non-
dimensional contact force than the KE model. Both
models have average errors below 3.0 per cent for
contact area and contact force.

Tests performed by holding Poisson’s ratio constant
at 0.32 and varying the elastic modulus also yield small
errors for the JG and KE formulations. Again, the KE
model has slightly lower average error for non-dimen-
sional contact area, and the JG model produces a
slightly lower average error for non-dimensional contact
force. Neither model has an average error greater than
3.3 per cent for either non-dimensional contact force or
non-dimensional contact area.

4 DISCUSSION

Figures 3 and 4 show the errors from tests conducted on
various hypothetical materials. Generally, comparing
the JG and KE models with the FEM results from this
study reveals small errors for most tests. Nearly all
results fall below 10 per cent error, and most results fall
below 5 per cent error. There is a general trend for the
errors of both the JG and the KE formulations to
decrease with higher non-dimensional contact interfer-
ence (except for the fully plastic case for the KE model
in which the truncation model value is assumed). This is
probably due to the increased accuracy of the FEM at
higher interferences because the relative uncertainties of
nodal position are higher at lower displacements. The
JG formulations have an average error about 2 per cent
less than the KE average error for both non-dimensional
contact area and non-dimensional contact force. Part of
this reduced error may be attributed to the higher
number of degrees of freedom incorporated into the JG
curve fit, the finer mesh used in the JG FEM than the
KE FEM, and the similarity between the JG mesh and
the mesh used in this model. Additionally, the JG model
incorporates the changing hardness of the deforming
hemisphere into its non-dimensional contact force
formulations while the KE model assumes that the ratio
of hardness to yield strength is fixed. For some

Fig. 3 Error of non-dimensional area as a function of non-dimensional interference between current FEM
and values from JG and KE models
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materials, e.g. ‘aluminium’ or ‘titanium’, the errors in
the truncation model are significant (above 20 per cent)
at large interferences. In Figs 3 and 4 it can be seen that
generally the open symbols of JG are closer to zero than
the full symbols of KE.

Errors for both models are even lower for the
parametric tests which varied Poisson’s ratio and elastic
modulus independently for a generic material
ðSy ¼ 200MPaÞ. Figures 5 and 6 show the errors for
non-dimensional contact area and contact force when
varying Poisson’s ratio and holding the elastic modulus
constant. The FEM conducted in the current work
shows that the non-dimensional contact area increases
with increasing Poisson’s ratio at a non-dimensional
interference of o� ¼ 250. The FEM results also show a
dependence of the normalized load P�, on Poisson’s
ratio (Fig. 7). At small interferences of o� ¼ 20 and
o� ¼ 80 the dependence of P� on n is weak, however, at
interferences of o� ¼ 250, P� decreases with increasing
n. The JG model captures these trends while the KE
model assumes that there is no dependence between P�

and n, although the errors of the KE model are still less
than the JG model at some values of o� and n.

Finally, Fig. 8 shows the error of the JG and the KE
models when Poisson’s ratio is held constant at 0.32,
and the elastic modulus is varied. The FEM results from
this study indicate that non-dimensional contact area

decreases slightly with increased elastic modulus, and
non-dimensional contact force increases with increased
elastic modulus. These trends are captured by the JG
model but not by the KE model, although again there
are some values of o� and E for which the KE model has
smaller error.

5 CONCLUSION

This work presents the results of elastic–perfectly plastic
hemispherical contact for a variety of material proper-
ties. These results are compared with the empirical
formulations by JG and KE. Both the JG and the KE
studies created formulations dependent on material
properties without testing their models on materials
with varied Poisson’s ratio and elastic modulus. This
work verifies these formulations against an FEM that
did test varied material properties. Both sets of
formulations show small relative errors compared with
the FEM results of this test. These low errors offer an
acceptable range of uncertainty for most engineering
applications. The KE formulations are each segmented
into two regions, with a discontinuity at each intersec-
tion, while the JG formulations are continuous. This
may be advantageous when these equations need to be

Fig. 4 Error of non-dimensional force as a function of non-dimensional interference between current FEM
and values from JG and KE models
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Fig. 5 Error of non-dimensional area as a function of Poisson’s ratio between current FEM and values from
JG and KE models

Fig. 6 Error of non-dimensional force as a function of Poisson’s ratio between current FEM and values from
JG and KE models
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Fig. 7 Error of non-dimensional area as a function of elastic modulus between current FEM and values from
JG and KE models

Fig. 8 Error of non-dimensional force as a function of elastic modulus between current FEM and values
from JG and KE models
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integrated, such as using the Greenwood–Williamson
[10] integrals. For its continuity the JG formulation is
somewhat more complex compared with the KE
formulation. Overall, however, the JG model has a
slightly smaller error than the KE model when
compared with the current FEM results. This work
finds that at large interferences the errors in the
truncation model postulated by KE are significant
(above 20 per cent).
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APPENDIX

Although the Hertz solution is formulated for contact
between two hemispheres, an equivalent modulus of
elasticity and radius can be calculated to apply to
contact between a hemisphere and a rigid flat [5]. The
Hertz theory of elastic contact calculates the contact

area and contact force during fully elastic contact:

AE ¼ pRo ð8Þ
PE ¼ 4

3
E0 ffiffiffiffi

R
p

ðoÞ3=2 ð9Þ

where AE is the circular contact area, PE is the total
contact load and o is the interference. E 0, the equivalent
elastic modulus, and R, the equivalent radius, are
calculated as

1

E0 ¼
1� n22
E1

þ 1� n22
E2

ð10Þ

1

R
¼ 1

R1
þ 1

R2
ð11Þ

where E1, n1,R1,E2, n2 and R2 are the elastic moduli,
Poisson’s ratios and radii of hemispheres 1 and 2
respectively. The Hertz solution approximates the
contact hemisphere as a parabolic curve with the radius
of curvature at the tip of the parabola equal to the
radius of the contact hemisphere. It also assumes that
the deformation (interference) of the contact hemisphere
is much less than the radius of the hemisphere, and that
no friction is present between the hemisphere and rigid
flat.

The Hertz solution can be used to non-dimensionalize
contact area and contact force outside the truly elastic
regime by obtaining the interference at the inception of
yielding. JG calculated interference at the onset of
plastic yielding using the von Mises yield criterion as

oc ¼
CpSy

2E0

� �2

R ð12Þ

where oc is the critical interference, R is the contact
hemisphere radius, E0 is the equivalent elastic modulus,
Sy is the yield strength and C is a function given in the
JG study as

C ¼ 1:295 expð0:736nÞ ð13Þ

The critical contact area at yielding, Ac, was found by
JG by substituting the critical interference [equation
(12)] into the Hertz solution for contact area [equation
(8)]:

Ac ¼ p3
CSyR

2E0

� �2

ð14Þ

The critical contact force Pc was found by JG by
substituting the critical interference [equation (12)] into
the Hertz solution for contact force:

Pc ¼
4

3

R

E0

� �2
CpSy

2

� �3

ð15Þ
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KE used a critical interference given by CEB:

oc ¼
pKH
2E0

� �2

R ð16Þ

Here a fixed ratio of hardness H to yield strength Sy is
assumed, H¼ 2.8Sy, which results in the factor K, given
as

K ¼ 0:454þ 0:41n ð17Þ

The critical area and critical force are found by
substituting the critical interference into the Hertz
solution. Equations (12) and (13) produce almost
identical numerical results.

With the calculation of critical values, both JG and
KE non-dimensionalized their interference, contact
force and contact area as

o� ¼ o
oc

ð18Þ

P� ¼ P

Pc
ð19Þ

A� ¼ A

Ac
ð20Þ

where o�, P� and A� are the non-dimensional para-
meters of interference, contact force and contact area
respectively. Values of o�, P� and A� equal to unity
represent the onset of plastic deformation.

At large deformations, the contact hemisphere enters
the fully plastic regime. The fully plastic regime was
characterized by Johnson [11] as a state where the plastic
strains are large compared with the elastic strains, which
can be correlated to when the entire contact surface
deforms plastically. Tabor [12] gave a similar definition
and also provided a relationship of hardness to yield
strength of H&3Sy. Within the fully plastic regions, if
strain hardening is small, the material will flow
plastically at a constant stress, while conserving volume.
The truncation model assumes that under fully plastic
conditions the contact area of a hemisphere can be
approximated by the truncation of the rigid sphere
geometry by the rigid flat. The result is approximated as

AP ¼ 2pRo ð21Þ

The contact force on the hemisphere can be calculated
as the contact area multiplied by the average pressure,
which in the fully plastic regime is the hardness. The
fully plastic contact force is given as

PP ¼ 2pRoH ð22Þ

where H¼ 2.8Sy, as previously stated. However, it was
found by JG that this result is unsubstantiated. Green-
wood and Tripp [7] also independently modelled fully
plastic contact between hemispheres using a similar
truncation method.
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