Journal of Tribology. Received July 18, 2019; Accepted manuscript posted November 02, 2019. doi:10.1115/1.4045452 Copyright © 2019 by ASME

Exact Spectral Moments and Differentiability of the Weierstrass-Mandelbrot Fractal Function ³

Itzhak Green GWW School of Mechanical Engineering Georgia Institute of Technology itzhak.green@me.gatech.edu

The Mathematica code can

be obtained from the author upon request.

- (* This code is provided by the author, I. Green, to complement the subject paper. You may use the code freely. *)
- (* Exercise any or all of the cases listed in Table 1 in
- the said paper. This code will reproduce all of the results in there. *)
- (* Missing from this code is the implementation of the spectral moments as found
- in Ref.[10] because they produce results that are grossly in error. *)
- (* The errors are caused by the approximated power spectrum,
- sometimes dubbed as "the continuous power spectrum density," as derive in Ref. [11].
 - That spectrum had been used in Ref. [10] and, since then, in many other papers. The errors sometimes approach 100%! These errors put the "approximated/continuous power spectrum," and the so-called "power law," in question. *)

:	DD = 1.5
:	g = 1.5
:	G = 1.
:	q = 1

-----: n2 = 17

The EXACT Spectral Moments according to the IG paper (it is implied that LL->Infinity); These are entirely analytical, so there is NO CPU time consumed, at all!

$$----$$
: sm0 = m[0] = 1.49899

- ----: sm2 = m[2] = 58305.4
- -----: $sm4 = m[4] = 1.05914 \times 10^{12}$
- ----: avg = 0.000191778

Spectral Moments by Differentiation (the results are exact for this signal length, LL); This method does consume CPU time! The larger n2, the larger the CPU time! -----: m0 = 1.4997 -----: m2 = 58 305.9 -----: m4 = 1.05914 × 10¹²

Relative difference between differentiation method and exact solution (the larger LL, the smaller the difference):

reldiff0=Abs[sm0-m0]/sm0 = 0.000475682
reldiff2=Abs[sm2-m2]/sm2 = 9.27914 × 10⁻⁶
reldiff4=Abs[sm4-m4]/sm4 = 1.47918 × 10⁻⁶

The EXACT Spectral Moments according to the IG paper (it is implied that LL->Infinity); These are entirely analytical, so there is NO CPU time consumed, at all! -----: sm0 = m[0] = 1.49997-----: $sm2 = m[2] = 2.24293 \times 10^{6}$ -----: $sm4 = m[4] = 6.01752 \times 10^{16}$

----: avg = 0.00019178

Spectral Moments by Differentiation (the results are exact for this signal length, LL); This method does consume CPU time! The larger n2, the larger the CPU time! -----: m0 = 1.50069 -----: m2 = 2.24293 × 10⁶ -----: m4 = 6.01752 × 10¹⁶

Relative difference between differentiation method and exact solution (the larger LL, the smaller the difference):

reldiff0=Abs[sm0-m0]/sm0 = 0.000475374 reldiff2=Abs[sm2-m2]/sm2 = 2.14607 × 10⁻⁷ reldiff4=Abs[sm4-m4]/sm4 = 5.12095 × 10⁻⁸

6 |

The EXACT Spectral Moments according to the IG paper (it is implied that LL->Infinity); These are entirely analytical, so there is NO CPU time consumed, at all! -----: sm0 = m[0] = 1.5-----: $sm2 = m[2] = 5.74849 \times 10^7$ -----: $sm4 = m[4] = 1.013 \times 10^{21}$

----: avg = 0.00019178

Spectral Moments by Differentiation (the results are exact for this signal length, LL); This method does consume CPU time! The larger n2, the larger the CPU time! -----: m0 = 1.50071 -----: m2 = 5.74849 × 10⁷ -----: m4 = 1.013 × 10²¹ -----: cpu[seconds] = t1 - t0 = 89

Relative difference between differentiation method and exact solution (the larger LL, the smaller the difference):

reldiff0=Abs[sm0-m0]/sm0 = 0.000475365
reldiff2=Abs[sm2-m2]/sm2 = 8.47025 × 10⁻⁹
reldiff4=Abs[sm4-m4]/sm4 = 5.39462 × 10⁻⁹

