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Fractal mathematics using the Weierstrass-Mandelbrot (WM) function has spread to many
fields of science and engineering. One of these is the fractal characterization of rough sur-
faces, which has gained ample acceptance in the area of contact mechanics. That is, a single
mathematical expression (the WM function) contains characteristics that mimic the appear-
ance of roughness. Moreover, the “roughness” is “similar” across large dimension scales
ranging from macro to nano. The field of contact mechanics is largely divided into two
schools of thought: (1) the roughness of real surfaces is essentially random, for which sto-
chastic treatment is appropriate, and (2) surface roughness can be reduced to fractal math-
ematics using fractal parameters. Under certain mathematical constraints, the WM function
is either stochastic or deterministic. The latter has the appeal that it contains no random-
ness, so fractal mathematics may offer closed-form solutions. Spectral moments of rough
surfaces still apply to both approaches, as these represent physical metrology properties
of the surface standard deviation, slope, and curvature. In essence, spectral moments
provide a means of data reduction so that other physical processes can subsequently be
applied. It is well known, for example, that the contact model of rough surfaces, by Green-
wood and Williamson (GW), depends on parameters that are direct outcomes of these
moments. Despite the vast amount of publications on the WM function dedicated to surfaces,
two papers stand out as originators, where the others mostly rework their results. These two
papers, however, contain some omissions and approximations that may lead to gross errors
in the estimation of the spectral moments. The current work revisits these papers and adds
information, but departs in the mathematical treatment to derive exact expressions for the
said moments. Moreover, it is said that the WM function is nondifferential. That is also
revisited herein, as another approach to derive the spectral moments depends on such deriv-
atives. First, the complete mathematical treatment of the WM function is made, then the
spectral moments are derived to yield exact forms, and finally, examples are given where
the physical meanings of the approximate and exact moments are discussed and their
values are compared. Numerical procedures will be introduced for both, and the effective-
ness of the computational effort is discussed. One numerical procedure is particularly effec-
tive for any digitized signal, whether that originates from analytical functions (e.g., WM) or
real surface measurements. [DOI: 10.1115/1.4045452]
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1 Introduction—Theoretical Background
Often in tribology, surface roughness is characterized by the

spectral moments, m0, m2, and m4, which are measures of the vari-
ance, slop, and curvature, respectively. They are completely suffi-
cient to execute, for example, the Greenwood and Williamson
(GW) contact model [1] under elastic conditions and other
models under elastoplastic conditions. The work by McCool
[2,3], for example, provides a complete mathematical procedure
on how to convert two surfaces having two-dimensional orthotropic
roughness into a single surface having a composite roughness
described by a single set of m0, m2, and m4.
Evidently, however, these moments are not just specific to mod-

eling surface roughness in tribology, as they are central in the many
fields of science and engineering that fall generally into the category

of signal processing for which there is ample literature (see notably
the classical texts by Bendat and Piersol [4–6]). Nontribological
examples can range from the geomechanics of rough wall fracture
[7] to signal processing performed on the output from the pulsed
laser photoacoustic instrument monitoring crude oil in water [8],
or to the analysis performed in an optical telescope [9]. Because
of their general importance, the spectral moments are focal in this
work.
In that framework, the work by Majumdar and Tien [10] postu-

lates that the Weierstrass-Mandelbrot (WM) function can be “…
used to simulate deterministically rough surfaces which exhibit sta-
tistical resemblance to real surfaces.” They obtain spectral
moments using the power spectrum derived by Berry and Lewis
[11]. Hence, these two works are central herein. However,
because the spectral moments as given in Ref. [10] are derived
based on an “approximate” power spectrum that is given in
Ref. [11], they can only be considered as “approximations.”
Their moments will be compared against the exact moments,
which are derived herein.
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Following Ref. [10], the WM function is as follows:

z(x) = G(D−1)
∑n2
n=n1

cos(2πγnx)
γ(2−D)n

, 1 < D < 2, γ > 1 (1)

where n1 is finite, and n2→∞. The leading constant G is sometimes
referred to as the fractal roughness, D is a fractal dimension, and γ
determines the density of the spectrum and the progressive ampli-
tude change between the spectral modes. While both D and γ are
dimensionless, γn must possess units to offset the units of the vari-
able x. Since Eq. (1) uses x as a length coordinate, the SI units
inferred upon γn are cycles/m. In contrast, Berry and Lewis [11]
use time t as it is relevant to the topic of quantum physics. In
their representation1:

z(t) = G(D−1)
∑n2
n=n1

cos(γnt)
γ(2−D)n

1 < D < 2, γ > 1 (2)

where n1→−∞, and n2→∞. While a negative n1 may be related
to negative frequencies, the current work limits n1 to nonnegative
values pertaining to rough surfaces. Also discussed in Ref. [11] is
a phase that if made random, the WM function is stochastic,
but otherwise it is deterministic. Specifically, Ref. [11] uses a
zero phase for various examples and derivations, effectively ren-
dering Eq. (2) to be deterministic. The same is assumed in
the current work. In Eq. (2), γn must carry units of rad/s, so evi-
dently the units of γn depend on the context. Either representa-
tion, Eq. (1) or Eq. (2), can obviously be represented by a
single equation,

z(x) = G(D−1)
∑n2
n=n1

cos[(2π)qγnx]
γ(2−D)n

,

1 < D < 2, γ > 1; q = 0 or 1

(3)

The switch q stipulates the meaning of units. To assess its
meaning, suppose that γn is replaced with γoγ

n. Suppose γo
carries units, namely, rad/s, cycles/m, etc., which appropriately
offset the units of x, the magnitude of γo is always |γo|= 1.
Hence, γ, being unitless itself, can serve as the common ratio
in the geometric progression of frequencies γn in the argument
of the harmonic term. However, because |γo|= 1, it is superfluous
to include it in equations, so it is omitted. But the units remain,
and they are imparted upon γn. So, if the units of x in Eq. (3) are
represented in either meters or seconds, then q= 1 imparts upon
γn the meaning of frequency f either in units of cycles/m or
Hz, while q= 0 imparts upon γn the meaning of angular fre-
quency ω in units of rad/m or rad/s (see footnote2). While that
may seem cumbersome or just semantics, careless mix-up of
units may greatly affect the calculation of the spectral
moments. Hence, the meaning of the units of γn may be per-
ceived by context. In addition, as the sum implies, the harmonic
term is modulated by amplitudes γ(D−2)n that decrease exponen-
tially with n. Before continuing, it should be noted that the
leading term of G(D−1) is constant and is intended to provide a
global scale of interest. Otherwise, it has no role in the mathemat-
ical behavior or characteristics of the WM function (e.g.,
Ref. [11] omits it entirely).
Two methods are recognized for the calculation of spectral

moments. One method is formulated in the spectral domain using
the autocorrelation of the surface profile or function, followed by
its power spectrum, and the other is formulated in the spatial or tem-
poral domains using derivatives of the said surface with respect to x.
A widespread notion about the WM function, however, presumes
that it is “nondifferential.” Because the spectral domain formulation

neither use nor involve derivatives of any kind, the spectral
moments are thence derived first in the spectral domain to yield
exact forms (which counter the previous work that hinges upon
an approximate form of the power spectrum, consequently render-
ing inexact and largely erroneous results). Then, venturing to under-
take derivatives of the WM function under the practical
requirement, and condition, where the WM function is truncated,
it is demonstrated that spectral moments obtained in the spatial or
temporal domains using said derivatives, indistinguishably match
the exact results obtained from the spectral domain formulation.
This finding may well dispel the sweeping notion that the WM is
nondifferential.
Also, in this work, numerical procedures are introduced along

with coding scripts used for corroboration of the said analyses.
The effectiveness of the computational efforts is likewise discussed.
One numerical procedure particularly stands out to optimally
process any digitized signal, whether that originates from analytical
functions (e.g., WM) or measurements of real surfaces.

2 Calculation of the Spectral Moments in the
Spectral Domain
The power spectrum method is propounded in the previous

studies [2,3,10]. Using the power spectrum P(ω) of the waveform
z(x) yields the kth spectral moment according to

mk =
∫∞
0
ωkP(ω)dω, k = 0, 2, 4 (4)

Note that for k= 0, Eq. (4) signifies Parseval’s theorem. For addi-
tional information, see Refs. [7–9,12].

2.1 Previous Work. The work by Majumdar and Tien [10]
faithfully adopts the work by Berry and Lewis [11]. Both studies
provide the foundation for this section (but there will be a departure,
as detailed in Sec. 2.2). The autocorrelation R(τ) of the WM func-
tion is

R(τ) = lim
L�∞

1
L

∫L
0
z(x)z(x + τ)dx =

G2(D−1)

2

∑∞
n=n1

cos[(2π)qγnτ]
γ(4−2D)n

(5)

For the sake of notation simplicity, in the forgoing of this section,
the switch q= 0 is implied. A distinction will be made appropriately
at the end of the derivation.
As stated by Berry and Lewis [11], the power spectrum is propor-

tional to the Fourier transform of the autocorrelation. Equation (17)
given in Ref. [11] is adopted by Majumdar and Tien [10] (see their
Eq. (4)). That equation gives the power spectrum for the WM func-
tion (adding herein the missing term, G2(D−1)/2)

P(ω) =
G2(D−1)

2

∑n2�∞

n=n1

δ(ω − γn)
γ(4−2D)n

(6)

where δ(*) is the Dirac-delta function. Note that in Ref. [11], the
implied switch is also q= 0. This is where Berry and Lewis [11]
approximate the discrete and exact power spectrum of Eq. (6) by
a continuous one,

�P(ω) =
G2(D−1)

2 ln γ
1

ω(5−2D)n (7)

Majumdar and Tien [10] then use this Eq. (7) in the above defi-
nition of Eq. (4), yielding the spectral moments as given by
Eqs. (6)–(8) in their work. Those are reworked herein and combined
into a single expression:

mk =
G2(D−1)(ω4

l ω
2D+k
h − ω4

hω
2D+k
l )

2 ln γ(2D + k − 4) ω4
hω

4
l

, k = 0, 2, 4 (8)

1The leading coefficient, G(D−1), is missing in Ref. [11], but it is added here for
completion. By assigning G=1, we comply identically with Ref. [11].

2Terminology-wise, when x is a length coordinate and ω= 2πf= 2π/λ, then ω is the
angular wavenumber, f is the wavenumber, and λ is the wavelength (along x).
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As explained in Ref. [10], the angular frequencies of low and
high, ωl and ωh, are respectively connected to the values of n1
and n2 and to the practical considerations of the largest and smallest
scales of interest. For a given γ, these are

ωl = 2πfl, fl = γn1

ωh = 2πfh, fh = γn2
(9)

It is immediately apparent from Eqs. (8) and (9) that for a given
set of G, D, and γ, the spectral moments shall yield very different
values for mk depending just on how n1 and n2 are assigned. It is
also apparent (and noted in Ref. [10]) that for the common case
where ωl≪ωh, m0 is dominated by ωl (and thus by n1), while m2

and m4 are dominated by ωh (and thus by n2). That behavior shall
be realized in Secs. 2.2 and 3–5 as well. It is emphasized that Eq.
(8) is not an exact representation of the spectral moments,
because it is based on an “approximation” of the spectral power,
particularly Eq. (7). In fact, Eq. (8) renders results that are utterly
different from the exact answers, sometimes by orders of magni-
tude, as it is demonstrated later.

2.2 The Exact Derivation of the Spectral Moments.
The approximation of the power spectrum that is discussed
earlier (and given by Eq. (7)) is in fact not needed for the exact
derivation of the spectral moments. Substituting Eq. (6) in
Eq. (4) gives

mk =
∫∞
0
ωkP(ω)dω =

G2(D−1)

2

∑n2
n=n1

∫∞
0

ωkδ(ω − γn)
γ(4−2D)n

dω, k = 0, 2, 4

(10)

after swapping the summation and the integration. While in Eq. (6)
n2→∞, the following is valid for any n2, finite or not. The next
step is to use the sifting property of the Dirac-delta function,
which, for a continuous function f (t), is as follows:

∫∞
0
f (t)δ(t − a)dt = f (a), a ≥ 0

Thus, it is readily apparent that for the switch q= 0 (i.e., γn has
the meaning of angular frequency in rad/m), Eq. (10) reduces to

mk =
G2(D−1)

2

∑n2
n=n1

(γn)k

γ(4−2D)n
=
G2(D−1)

2

∑n2
n=n1

γ(k+2D−4)n, k = 0, 2, 4

(11)

Including now the switch q, we have

mk =
G2(D−1)

2

∑n2
n=n1

[(2π)qγn]k

γ(4−2D)n
=
G2(D−1)

2
(2π)qk

∑n2
n=n1

γ(k+2D−4)n,

k = 0, 2, 4; q = 0 or 1

(12)

These are the exact spectral moments for the Weierstrass fractal
function. Note that while Eq. (12) is free of x, or the signal length,
it originates with Eq. (5), so Eq. (12) is derived essentially for a
signal length, L→∞. That equation is straightforwardly calculated
and is offered analytically once G, D, γ, n1, and n2 are set. The
next line of code implements Eq. (12) using a MATHEMATICA func-
tion, e.g., for q= 1 (i.e., γ n has the meaning of linear frequency in
cycles/m)

m[k ]: = (G∧(2*D− 2)/2)*(2*Pi)∧k*Sum[g∧((k + 2*D− 4)*n),

{n, n1, n2}] (13)

where g is conveniently used in coding to represent γ (that code is
afterward used to produce results in Table 1). Clearly for k= 0,
the sum in Eq. (12) converges to a finite value for m0.
However, when k= 2 or 4, the sums for both m2 and m4 diverge
to infinity when n2→∞. For the same practical reasons discussed
earlier, n2 must be truncated so that n2= finite. Under such condi-
tions, again m0 converges, but m2 and m4 render finite values that
monotonically and hastily increase with n2. The section of results
(particularly Table 1) shall exemplify these conclusions. Finally
and most importantly, the exact form of Eq. (12) (by way of
Eq. (13)) lends authenticity to the upcoming result that under a
certain condition, and contrary to the common notion, the WM
function does possess spatial or temporal derivatives.

Table 1 Spectral moments and error analyses (g≡ γ; delx≡ δx), for G=1, n1=0, fl=1 Hz, and q=1

Parameters Eq. (13), Eq. (17), or Eq. (A1) Eq. (8), same as in Ref. [10]

Input nfft n2 fh (kHz) delx (µm) m0 m2 m4 CPU m0 m2 m4

g=D= 1.15 10 50 1.083 976 2.364 3.45Ε+ 03 2.71E+ 10 115 0.093 1.48E+ 02 1.02E+ 09
g=D= 1.15 15 74 31.02 30.5 2.364 1.02E+ 04 6.07E+ 13 262 0.093 4.40E+ 02 2.28E+ 12
g=D= 1.15 20 99 1021.1 0.954 2.364 3.01Ε+ 04 1.88E+ 17 586 0.093 1.29E+ 03 7.06E+ 15
g=D= 1.5 10 17 0.985 976 1.499 5.83E+ 04 1.06E+ 12 19 0.196 7.63E+ 03 9.75E+ 10
g=D= 1.5 15 26 37.88 30.5 1.500 2.24E+ 06 6.02E+ 16 37 0.196 2.93E+ 05 5.54E+ 15
g=D= 1.5 20 34 970.7 0.954 1.500 5.75E+ 07 1.01E+ 21 84 0.196 7.52E+ 06 9.33E+ 19
g=D= 1.85 10 11 0.869 976 2.643 3.02E+ 06 6.50E+ 13 9 1.356 1.08E+ 06 1.48E+ 13
g=D= 1.85 15 17 34.8 30.5 2.860 1.60E+ 09 5.54E+ 19 21 1.493 5.72E+ 08 1.26E+ 19
g=D= 1.85 20 23 1396.2 0.954 2.932 8.51E+ 11 4.73E+ 25 53 1.539 3.04E+ 11 1.07E+ 25

D= 1.5
g= 1.15 10 50 1.083 976 3.830 1.64E+ 05 2.90E+ 12 119 0.569 2.43E+ 04 3.76E+ 11
g= 1.5 10 17 0.985 976 1.499 5.83Ε+ 04 1.06E+ 12 19 0.196 7.63E+ 03 9.75E+ 10
g= 1.85 10 11 0.869 976 1.088 3.73E+ 04 6.07E+ 11 7 0.129 4.43E+ 03 4.41E+ 10
g= 3.0 10 6 0.729 976 0.750 2.16E+ 04 3.14E+ 11 4 0.072 2.08E+ 03 1.46E+ 10
g= 3.0 20 13 1594 0.954 0.750 4.72E+ 07 3.28E+ 21 31 0.072 4.56E+ 06 1.53E+ 20
g= 1.5

D= 1.15 10 17 0.985 976 1.004 1.21E+ 03 9.86E+ 09 16 0.032 4.93E+ 01 2.82E+ 08
D= 1.5 10 17 0.985 976 1.499 5.83Ε+ 04 1.06E+ 12 19 0.196 7.63E+ 03 9.75E+ 10
D= 1.85 10 17 0.985 976 3.877 4.86E+ 06 1.20E+ 14 18 2.069 2.03E+ 06 3.57E+ 13
D= 1.85 20 34 970.74 0.954 4.304 5.97E+ 11 1.42E+ 25 89 2.33 2.49E+ 11 4.25E+ 24

Maximum error 0.12% 0.03% 0.00% 96.82% 95.93% 97.14%
Minimum error 0% 0% 0.00% 46.63% 58.37% 70.16%
Average error 0.06% 0.00% 0.00% 80.25% 83.69% 88.96%

Standard deviation
error

0.04% 0.01% 0.00% 19.02% 12.55% 8.31%
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3 Nondifferentiability When n2→∞
Noted in Ref. [11] that the Weierstrass function “although contin-

uous everywhere is differentiable nowhere.” Similar statements can
be found elsewhere, e.g., in Ref. [10]. Also stated in Ref. [11] is that
for the restrictions on γ and D, the series for z(t) converges, but the
series for dz(t)/dt does not (staying true to the use of time in
Ref. [11]). Such statements may deter the use of derivatives of
the WM function. However, it is clear that for each fixed finite
value of n2, the function z(x) is differentiable, simply because it is
a sum of finitely many terms (n2− (n1−1) to be precise), each of
which is differentiable. It is only for n2→∞ that the WM function
is not differentiable. To understand that, derivatives of the WM
function, Eq. (3), are taken. Hence,

z(x) = GD−1
∑n2
n=n1

γ(D−2)n cos[(2π)qγnx]

z′(x) = −GD−1
∑n2
n=n1

(2π)qγ(D−1)n sin[(2π)qγnx]

z′′(x) = −GD−1
∑n2
n=n1

(2π)2qγnD cos[(2π)qγnx]

(14)

Regardless of the switch q, as the harmonic functions can only
vary between +/−1, they are being multiplied by varying coeffi-
cients, γ(D−2)n, γ(D−1)n, and γnD. Under the restrictions of n≥ 0,
1 <D< 2, and γ> 1, clearly the first coefficient diminishes with
n, while the other two coefficients exponentially increase with n
and rather hastily (graphs of the coefficients as functions of n
shall reveal that straightforwardly). Hence, z(x) converges to a
certain value by letting n2 take on a sufficiently large value,
which obviously includes n2→∞. Conversely, z′(x) and z′′(x) do
not converge under the same conditions. The larger the n2 value,
the larger are both z′(x) and z′′(x), at any given x.
However, convergence and differentiability are two different

mathematical concepts. Nondifferentiability of the Weierstrass
function has intrigued many, starting with Reimann in 1861, as dis-
cussed by Ullrich [13]. Perhaps a decisive proof of nondifferentia-
bility of the Weierstrass function is given by Hardy [14] (see also
Johnsen [15]). In essence, when n2→∞ is the derivative about
any x0,

lim
x�x0

z(x) − z(x0)
x − x0

= lim
Δx�0

Δz
Δx

(15)

does not exist, as it has no limit, which can be explained physically.
The terms in the sum of z(x), being a self-affine function, tend end-
lessly smaller, even smaller than any small Δz over any small Δx.
That is, z(x) perpetually and successively is being disturbed by
the “fractal roughness,” so there is never a convergent tangent line.

4 Differentiability When n2=Finite
Of course, letting n2→∞ is a theoretical case that implies that

scales are reduced endlessly, smaller than atomic, quarks, or even
Planck scales. Obviously, for practical cases, n2= finite. Not only
that is a physical requirement but it is also a computational require-
ment, as functions summed to infinity cannot be accommodated
computationally. Hence, Eqs. (1)–(3) are truncated at some finite
n2. When that happens, the “fractal roughness” seizes at some
scale as dictated by n2, and expressions for derivatives do exist.
That can be understood rather simply by observing that any
single term, n, in the Weierstrass function has a well-defined
finite derivative. That thought can be extended to two terms by
letting n2= n1+ 1, so that their sum shall also have well-defined
finite derivatives. Hence, for any n2= n1+Δn, where Δn is finite,
there shall be well-defined first, second, and higher finite deriva-
tives. Under these conditions, the derivatives in Eqs. (14) are deter-
ministically exact.

Theoretically, n1 and n2 can take on any finite integer values, with
only the trivial restriction that n1 < n2. However, it is well docu-
mented in Ref. [10] that n1 and n2 are related to the largest and
smallest (finest) scales of the problem at hand. The signal z(x)
would, respectively, appear “smooth” or “rough” depending on
how “small” or how “large” are n1 and n2. Their selection is detailed
in following sections. Herein, it is assumed that 0≤ n1, where spe-
cifically all results reported later are carried out with n1= 0.

4.1 Exact Calculation of the Spectral Moments in the
Spatial Domain (n2=Finite). The exact representation of
the WM function and its derivatives allows us to exactly calculate
the spectral moments over the spatial range x∈ [0, xmax]. The spec-
tral moments for a continuous waveform are calculated using a con-
tinuous (integral) form of their definitions:

m0 =
1

xmax

∫xmax

0
[z(x)]2dx

m2 =
1

xmax

∫xmax

0
[z′(x)]2dx

m4 =
1

xmax

∫xmax

0
[z′′(x)]2dx

(16)

While those integrations may seem cumbersome, a symbolic
package such as MATHEMATICA can render exact solutions (and
values) reasonably quickly, using the following script:

L=20*xmax;

z[x ]:=G∧(D−1)*

Sum[Cos[(2*Pi)∧q*(g∧n)*(x)]/g∧(n*(2−D)),{n,n1,n2}]
//Expand;

avg= (1/L)*Integrate[z[x+L0]//Expand, x,0,L];

m0= (1/L)*Integrate[(z[x+L0]−avg)2//Expand, x,0,L];

m2= (1/L)*Integrate[D[z[x+L0], x]2//Expand, x,0,L];

m4= (1/L)*Integrate[D[z[x+L0], x,2]2//Expand, x,0,L]

(17)

It is particularly stressed that the two MATHEMATICA operators
D[z[x],x] and D[z[x],x,2] produce analytically exact first and
second derivatives of z(x) with respect to x, respectively. These
match identically the derivatives in Eqs. (14). Then, note that an
(arbitrary) shift L0 is added to the script to optionally remove a
certain transient characteristic of z(x) near x= 0+. Suppose first
that there is no shift, i.e., L0= 0 as Eqs. (14) imply. In the region
where x is “small,” the value of γnx is small too, and the frequency
altering effect upon the cosine function is likewise small. Hence,
when L0= 0, the signal z(x= 0) starts at a relatively high value of

z(0)=GD−1
∑n2
n=n1

γ(D−2)n

Then, z(x= 0+) decays rather slowly before the full fractal beha-
vior ensues. The decay slows yet with smaller γ. That transient
behavior is evident in Fig. 1, which shows the WM function for
G= 1, D= 1.5, n1= 0, and n2= 26, in the range 0≤ x≤ 20, for
three values of for γ= {1.15, 1.5, 1.85}. The insets magnify the
signal behavior, in the range 0≤ x≤ 1 m, i.e., near x= 0+. It is
also evident that if γ is also small, then γnx stays small longer yet,
and the transient appears more like a single-frequency harmonic
function (see especially the case for γ= 1.15). Had the calculation
of the spectral moments been restricted to a signal in that limited
range of 0≤ x≤ 1, wrong results would have emerged because the
transient behavior would dominate over a significant portion of
that limited range, 0≤ x≤ 1.
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Fig. 1 The WM function for γ= {1.15, 1.5, 1.85}, D=1.5, G=1, q=1, L0=0, and magnifica-
tions at x∈ [0, 1]
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Hence, two methods are proposed to mitigate that effect: (1) the
information from the WM function can be taken to start at some
(arbitrary shift) L0 and onward, i.e., L0< x, or (2) a sufficiently
large signal range can be assigned so that the transient behavior
about x= 0+ is allowed to completely decay, and its overall effect
is diminished when Eqs. (16) are calculated by the code in
Eq. (17). Recall also that Eq. (12) is derived for a signal length,
L→∞, so for equitable comparison L has to be sufficiently large.
In the current work, only the latter method is used, where all
results herein are reported for L0= 0, while ensuring a large
enough L= 20xmax for γ= 1.5 and above, and up to L= 60xmax

for a smaller γ, e.g., γ= 1.15. In all cases herein, xmax= 1 m. It
should be noted that this transient behavior, shown in Fig. 1, is
not specific just to the aforementioned parameters—this behavior
is prevalent in all cases summarized in Table 1, which will be dis-
cussed later in detail.
It is interesting to note in Fig. 1 for three cases of D= 1.5, a

“global” harmonic behavior is apparent, which is disturbed by
“local” higher frequencies, as γ increases.
Next, it should be noted that when n1 and n2 are finite, the

numerical computation of the WM function over a finite domain
is likely to have small nonzero averages. That average is
removed from the calculation of m0, i.e., the spectral moment,
m0, is the statistical second central moment (the other spectral
moments are not affected by that average, as it is mathematically
removed by differentiation).
As discussed previously, the spectral moments can be calculated

by the power spectrum. It shall be seen, however, that the moments
as reported in Ref. [10] depend on the selection of low and high
cutoff frequencies. While those frequencies are claimed in
Ref. [10] to be related to n1 and n2, the execution of the code in
Eq. (17) is free from such a frequency association or selection
(i.e., any n1 and n2 can be used). However, for equitable comparison
between the various methods, this work shall also adopt the said
association as given in Ref. [10].
Conceptually, there is nothing that prohibits the execution of the

script in Eq. (17). The sums imply the accumulation of terms,
having the general forms of Asin(ax)sin(bx) and Bcos(cx)cos(dx),
which can be integrated exactly by MATHEMATICA (even though
that can be a slightly tedious task). While the execution of Eq.
(17) is CPU intensive, it is not memory demanding. It is simply a
matter of time to let MATHEMATICA finish the computation. On a
PC with an 8th generation Intel I7 8650U at 1.9 GHz, the calcula-
tion of Eq. (17) can take a few seconds to a few minutes, depending
on the discretization and howmany terms, Δn= n2− n1, are retained
in the sum. Numerical quadrature (Simpson, Gaussian, Romberg,
etc.) is another alternative that may expedite the calculation some-
what, but that offers only marginal gains because convergence must
be enforced (this is a known and crucial issue when numerical quad-
rature is used for highly oscillatory functions). For a reference case
of G= 1, D= 1.5, g= 1.5, n1= 0, and n2= 26, the CPU time is
37 seconds to produce all three spectral moments exactly using
the script in Eq. (17). Much larger CPU times are needed for
larger discretizations that are necessary as γ decreases.
The calculation of the spectral moments can be greatly expedited

(by orders of magnitude) using the upcoming numerical procedure,
but that is at the cost of computer memory. If computer memory is
available in abundance, then the following (Sec. 4.2) is the recom-
mended procedure.

4.2 Expedient Calculation of the Spectral Moments in the
Spatial Domain (n2=Finite). Suppose that z(x) is digitized in the
following way: (1) a vector xi is generated to contain N equidistant
values of the coordinate x and (2) then z(xi), z′(xi), and z′′(xi) are cal-
culated by using Eq. (14). That is, the WM and its derivatives are
calculated by the exact formulae at locations xi. (This is distin-
guished from using numerical derivative calculations, say by
finite differences as suggested in Ref. [3], which are not used in
this work at all.) The spectral moments expressed in Eq. (16) can

be equivalently obtained in the spatial domain by

m0 =
1
N

∑N
i=1

(z)2i (18)

m2 =
1
N

∑N
i=1

( dz
dx

)2
i

(19)

m4 =
1
N

∑N
i=1

( d2z
dx2

)2
i

(20)

It is again emphasized that this procedure is still considered exact
because the derivatives are calculated using the exact forms given
by Eqs. (14). However, values may slightly differ numerically
from the procedure laid out in Eq. (17) by tiny round-off errors.
From a practical point of view, the results are considered to be
identical.
Hence, the WM function is equidistantly discretized over the

spatial range x∈ [0, xmax]. The values of n1 and n2 must be selected
to match the problem at hand. As detailed in Ref. [10], they are,
respectively, related to the largest scale (say, xmax) and the finest res-
olution (i.e., the highest frequency) capability of the measuring
equipment. Correspondingly3

n1 = Floor[ ln(1/xmax)/ ln γ + 0.5]

n2 = Floor[ ln(1/δx)/ ln γ + 0.5]
(21)

While the input parameter xmax is independent, the resolution δx
depends on the number of discretization points, nx=N. A parameter
nfft4 is used to decide the magnitude of nx according to

nx = 2nfft + 1; δx = xmax/(nx − 1) (22)

It is the δx value that is used in Eq. (21) to calculate n2.
The Appendix provides a MATHEMATICA script annotated with

comments. That script completely calculates all three spectral
moments. The advantage in that script is that the time-consuming
integrations are bypassed, and summations are used instead, as
implied by Eqs. (18)–(20). But more so, it is recognized that the
sum of squared elements in a vector (e.g., Eq. (18)) is entirely equiv-
alent to the execution of the dot product of that vector with itself.
Hence, Eqs. (18)–(20) are completely executed by these pseudo
commands:

m0 = z · z/N
m2 = z′ · z′/N
m4 = z′′ · z′′/N

(23)

It should be noted that dot products are highly optimized in
modern computer languages, and they can be easily parallelized
using multiple cores and threads. MATHEMATICA has both direct
access and extensions of the Basic Linear Algebra Subroutines
library, which provides a significant performance boost.
On the said computer, even when xi has over 20 million digitized

points, the said MATHEMATICA script renders all three spectral
moments in just a few seconds. Clearly, this procedure is memory
intensive. Computer memory of 16 GB is found mostly sufficient
to execute the procedure for up to nfft= 20 in some cases. Unlike
the procedure outlined earlier in Eq. (17), which is restricted to an
analytical function, the procedure outlined in Eq. (23) is valid for
any digitized signal, whether it originates from an analytical func-
tion or from the experimental data (for the latter, procedures to cal-
culate derivatives are of course needed).

3In Mathematica’s syntax, the function Floor[x+ 0.5] rounds to the nearest integer
of x.

4The use of nfft in the form of Eq. (22) allows the execution of fast Fourier trans-
forms, which is set for execution in subsequent works. Otherwise, that choice is as
good as any.
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Consider again the case listed above of G= 1, D= 1.5, g= 1.5,
n1 = 0, n2= 26, and nx= 655,361. On the said computer, the CPU
time to execute all three terms in Eq. (23) is only 2 s, i.e., it is 17
times faster than the previous procedure of Eq. (17). In some
cases, the speed-up is more than 60-fold. In all cases that are
reported in Table 1, the final results calculated from Eqs. (13),
(17), and (23) are practically indistinguishable (the difference is
caused by merely numerical round-off errors).
By not recognizing the dot product character when programming

Eqs. (18)–(20) (i.e., squaring each element in the sums individually,
then totaling (summing) up and dividing byN to average), the calcu-
lations may require much greater CPU times. That mitigates the
effectiveness and the advantage of the discretization (or digitization).
That increase in CPU time happens only when nfft is rather large (nfft
= 20 is very large in that regard). For lower values of nfft, pro-
gramming Eqs. (18)–(20) as they appear has shown to still provide
significant CPU time savings compared with the procedure in Eq.
(17), but it is never better than using the dot product as outlined in
Eq. (23). It should be noted that MATHEMATICA (as executed herein)
is used in its normal interpreted mode, so execution is relatively
slow. Had this been implemented in a compiled language (e.g.,
FORTRAN, C++, etc.), execution times would be much faster (likely
near zero or indistinguishably from zero CPU times in most cases).
In this work, the emphasis is on data reduction of rough surfaces,

which particularly have fractal roughness. This is for the purpose of
contact mechanics modeling (e.g., applying the venerable GW
model [1]). However, the aforementioned numerical concepts and
procedures apply equally well to the processing of any digitized
signal that does not necessarily originate from a fractal function
(e.g., real surface measurements).

5 Results
Starting with the most important conclusion, Eqs. (12), (16),

(18)–(20), and (23) all produce identical spectral moments, when
implemented by Eqs. (13), (17), and (A1), respectively. As these
equations are founded on different mathematical concepts, they
imply that the WM function does possess finite derivatives when
n2 is finite. The equations provided by Majumdar and Tien [10]
for the same (i.e., Eq. (8)) exhibit enormous errors, and they are
untrustworthy. The details are as follows.
First it is noted that the “fractal roughness,” G, appearing in

Eqs. (1)–(3), is just a constant that provides a global scale for the
WM function. Otherwise, it has no role (and perhaps that is the
reason Berry and Lewis [11] ignore it altogether). Therefore, it is
assigned here the value of unity, G= 1. Any other G value would
have just scaled equally all spectral moments, but not the relative
standing between them. Second, for all cases studied here, q= 1,
n1= 0, making fl= 1 cycles/m (or Hz), and ωl= 2π rad/m (or rad/
s). The signal length is xmax= 1 m. The parameter nfft takes on
values of {10, 15, 20} to provide respectively signals of different
resolution scales according to Eq. (22) of δx= {976, 30.5, 0.954}
μm, which are spread over different orders of magnitude. These
values of δx, along with the parameter γ allow the calculation of
n2 according to Eq. (21) and then the calculation of ωh and fh
according to Eq. (9). All these parameters are given in Table 1
along with the outcome of the calculations.
The values of D and γ are clearly independent (and physically

they have different meaning). But they are of the same order of
magnitude. Hence, for the first batch of comparisons, these are
made to equal each other (to reduce the number of comparisons),
and for the second batch, they are made different from each
other. To cut in the amount of numerical data reporting, the follow-
ing is an error analysis in Eqs. (12), (16), (18)–(20), and (23). The
relative errors are defined according to

error = abs(valueEq.(13) − valueanother Eq.)/valueEq.(13)

Indeed, the results from Eq. (13) are regarded exact, where all
other results are compared relatively to those of Eq. (13). The

other equations that are compared with are Eqs. (8), (17), (23),
and (A1). A global summary of all errors is also given in Table 1.
First, errors from Eqs. (17) and (A1) are analyzed. As given in

Table 1, the maximum error between all the m0 values is 0.12%,
the minimum is 0%, the average is 0.06%, and the standard devia-
tion is 0.04%. These are indeed very small errors. The spectral
moments m2 and m4 show even smaller errors. It is concluded
that Eqs. (12), (16), (18)–(20), and (23), as implemented in Eqs.
(13), (17), and (A1), practically render identical results. So, it is suf-
ficient to use only the results from Eq. (13) as it originates from an
exact derivation anyway.
The nearly identical values in Eqs. (12), (16), (18)–(20), and (23)

reaffirm that the WM does have finite derivatives when n2= finite,
because otherwise such close matches would not have been possi-
ble. Moreover, the moment m0, as it appears in Eqs. (16), (18),
and (23) in the spatial domain, is free from any derivatives.
Hence, the values calculated by these equations are undisputed.
Yet, all these render values that agree with Eq. (12), which stems
from a spectral approach. These observations reinforce the analyses
and methods presented in this work.
Now a comparison between Eqs. (8) and (13) shows that errors in

the spectral moments as derived in Ref. [10] are huge, rendering
those untrustworthy. As given in Table 1, the maximum error
between all the mk values is about 96%; the minimum ranges
from 46% to 70%, the average is greater than 80%, and the standard
deviation ranges from 8% to 19%. The reason for such enormous
errors is that the spectral moments produced in Ref. [10] are
based on an approximated power spectrum derived in Ref. [11].
That raises the question of whether the power-law approximated
spectrum of Eq. (7) can be regarded as a true representation of
the actual spectrum, Eq. (6).
Within each group where D and γ have the same values, it is

easily seen that m0 converges with an increase in n2 (practically
all having nearly the same values), while m2 and m4 clearly
diverge rather hastily with an increase in n2 or a decrease in the res-
olution δx. This is consistent with the discussion and predictions
given above in the mathematical derivation sections. This, of
course, prompts the question, and the challenge of how (if not
whether) these moments can be used in the calculation of the param-
eters necessary for the GW model [1].
The CPU times shown in Table 1 pertain only to Eq. (17), but the

CPU time to calculate the other equations is zero for Eqs. (13) and
(8), as these are analytical and have closed-form equations. The
CPU time is negligible for Eq. (A1), when computer memory is suf-
ficiently available. As nfft or n2 becomes larger, the CPU time
grows larger. Still these are reasonably small, where a few
minutes of CPU time at most will eventually calculate the spectral
model even for very large nfft or n2 parameters.

6 Conclusions
The upside of the GW model is that only three spectral

moments are needed to execute it. That is also the downside of
the GW model, as only a few parameters are available to work
with. To estimate the spectral moments reliably, the surface
roughness needs to undergo a massive data reduction with very
little room for error. In that regard, the current work produces
exact equations for the calculation of spectral moments for WM
fractal function. Spectral moments stemming from previous
works, e.g., Ref. [10], are shown to contain enormous errors.
These are caused by the approximated (i.e., inexact) power spec-
trum given in Ref. [11].
The derivation of the spectral moments in the spectral domain

and in the spatial or temporal domain is entirely disjointed mathe-
matically. That is, in the former, the spectral moments derived are
independent of, and thus relieved from, any derivatives of the
WM function. Yet, the very same spectral moments, specifically
those calculated in the spatial domain that do depend on such deriv-
atives, produce practically identical results. That supports the fact
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that derivatives for the WM fractal function do exist when n2=
finite.
While most of the work is dedicated to the analytical treatment of

the WM function, the numerical procedures presented herein can be
easily tweaked to suit other functions or digitized data stemming
from real surface measurements. In particular, the dot products as
suggested by Eq. (23), and implemented in Eq. (A1), have proven
to deliver substantial computational savings while maintaining
fidelity.

Appendix
The script below, in Eq. (A1), is annotated with MATHEMATICA

(* comments *). It provides a complete procedure to calculate all
spectral moments based on Eq. (23). The advantage here is that
the integrations are bypassed, and dot products are used instead
of summations as implied by Eqs. (18)–(20). Hence, the MATHEMA-

TICA code is as follows:

nfft = 10;

nx = 2∧nfft + 1; delx = L/(nx − 1);

(* digitize the signal, start at L0, go to L + L0, in increments of delx *)

x0 = Table[x, {x, L0, LL + L0, delx}]; (* vector containing the delx-spaced, x-coord.*)

N0 = Length[x0];

ravg = Total[z[x]/.x − > x0]/N0; (*sub. x0 into WM func., Eq. (17), calc. the average *)

r = z[x]− ravg; (*remove the average from the WM function, Eq. (17) *)

tmp = r/.x − > x0; (*digitize r; and assign it to a temporary vector tmp *)

m0 = tmp.tmp/N0; (*dot-product, averaged; this is the zeroth spectral moment *)

rd = D[z[x], x]; (*1st derivative of z[x]; the derivative is exact! See Eq. (14) *)

tmp = rd/.x − > x0; (*1st derivative digitized; assign to tmp *)

m2 = tmp.tmp/N0; (*dot-product, averaged; the second spectral moment *)

rdd = D[rd, x]; (*2nd derivative of z[x]; the derivative is exact! See Eq. (14) *)

tmp = rdd/.x − > x0; (*2nd derivative digitized; assign to tmp *)

m4 = tmp.tmp/N0; (*dot-product, averaged; the fourth spectral moment *)

(A1)
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