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Abstract Articular cartilage is a unique substance that protects joints from damage and
wear. Many decades of research have led to detailed biphasic and triphasic models for the
intricate structure and behavior of cartilage. However, the models contain many assumptions
on boundary conditions, permeability, viscosity, model size, loading, etc., that complicate
the description of cartilage. For impact studies or biomimetic applications, cartilage can
be studied phenomenologically to reduce modeling complexity. This work reports experi-
mental results on the stress-relaxation of equine articular cartilage in unconfined loading.
The response is described by a fractional calculus viscoelastic model, which gives storage
and loss moduli as functions of frequency, rendering multiple advantages: (1) the fractional
calculus model is robust, meaning that fewer constants are needed to accurately capture a
wide spectrum of viscoelastic behavior compared to other viscoelastic models (e.g., Prony
series), (2) in the special case where the fractional derivative is 1/2, it is shown that there
is a straightforward time-domain representation, (3) the eigenvalue problem is simplified in
subsequent dynamic studies, and (4) cartilage stress-relaxation can be described with as few
as three constants, giving an advantage for large-scale dynamic studies that account for joint
motion or impact. Moreover, the resulting storage and loss moduli can quantify healthy,
damaged, or cultured cartilage, as well as artificial joints. The proposed characterization is
suited for high-level analysis of multiphase materials, where the separate contribution of
each phase is not desired. Potential uses of this analysis include biomimetic dampers and
bearings, or artificial joints where the effective stiffness and damping are fundamental pa-
rameters.
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Nomenclature
CERF Complementary error viscoelastic model
E(t) Time-dependent relaxation modulus
Ė(t) Time derivative of relaxation modulus
E′(ω) Storage modulus
E′′(ω) Loss modulus
E∗(ω) Complex modulus, E′(ω) + iE′′(ω)

erfc Complementary error function
i Imaginary unit
n Index
s Laplace variable
α Fractional derivative order
ε(t) Strain
ε̇(t) Strain rate
η Spring-pot time constant
Γ Gamma function
μ CERF model material constant, E/η

ω Frequency (rad/s)
σ(t) Stress

1 Introduction

Articular cartilage facilitates motion in joints while providing compressive load support.
The porous, biphasic (solid–fluid) structure of cartilage has been studied for many decades.
This has led to advances in constitutive modeling, artificial joint replacements, and the char-
acterization of osteoarthritis. Mechanical tests are performed to corroborate the prevailing
biphasic and triphasic (solid–fluid–ionic) models. A variety of experiments are used to test
cartilage. In stress-relaxation experiments, cartilage displays elastic and dissipative mecha-
nisms. These mechanisms are also central in viscoelastic materials, which are prevalent in
traditional mechanical systems. Interesting applications for biomimetic materials, based on
cartilage, arise from the study of biphasic materials. These include flexible mechanical bear-
ings in rotordynamic systems (Grybos 1991; Friswell 2007) and improved porous bearings
in industrial applications (Elsharkawy and Nassar 1996).

A great deal of cartilage research has focused on the interactions of the collagen ma-
trix and the lubricating synovial fluid that permeates the joint capsule (Charnley 1960;
McCutchen 1962; Ateshian 2009; Ateshian et al. 1997, 1998). The prevailing constitutive
theories account for the biphasic and triphasic properties of cartilage (Mow et al. 1980;
Lai et al. 1981; Armstrong et al. 1984; Lai et al. 1991). These models are physiologically
comprehensive; however, they do not typically match experimental results well. With an eye
toward biomimetics, the solid and fluid interactions of cartilage can be viewed holistically.
Therefore, the total response includes the solid and fluid phases and their interactions. These
interactions include frictional drag between the solid and fluid phases, compressibility of the
solid matrix, or other mechanisms. Mechanical systems with mechanisms for energy storage
and dissipation work well in this application. The models are phenomenological and based
on stress-relaxation experiments. Typically, phenomenological models use fewer parame-
ters, and they do not associate directly to a specific structure or location within the cartilage
body. Therefore, the cartilage behavior can be compared in a broad sense. This allows for
a straightforward and convenient comparison between samples for any number of metrics
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such as health, age, weight, use, breed, etc. Comparisons between joints can easily be made,
as well as between healthy and osteoarthritic cartilage. In addition, the phenomenological
model is applicable over a wide spectrum of relaxation behavior (Lakes 1998). This is par-
ticularly advantageous when compared to the small bandwidth captured by many biphasic
models.

Coletti et al. (1972) and Parsons and Black (1977) have previously used spring and
damper models to characterize cartilage. However, these linear models did not match the
experimental results from creep tests. In particular, Coletti et al. determined that cartilage ex-
hibits nonlinear viscoelastic behavior dependent on strain. The work was performed around
the time that the biphasic models were developing. The biphasic models (Mow et al. 1980;
Lai et al. 1981; Armstrong et al. 1984; Lai et al. 1991; Mak 1986) began to dominate the
research landscape, even as Woo et al. (1980) (using Fung’s model (1967) for soft tissue)
reached favorable comparisons with the relaxation experiments of Mow (1977). Simon et
al. (1984) compared the spring and damper and biphasic models under stress-relaxation.
The work highlights the differences of the model theories. The spring and damper models
are advantageous on the macroscale; however, they cannot separate the contributions of the
solid and fluid phases.

More recent research from Wang (1997), Ehlers and Markert (2000, 2001), and Wilson
et al. (2004, 2005) uses various spring and damper representations to model the fibril part
of cartilage. The poroviscoelastic fibril reinforced model developed by Wilson et al. con-
siders the local morphology of collagen fibers and their apparent strong influence on stress
and strain (the springs are strain-dependent, or nonlinear). Wilson’s work compares favor-
ably to DiSilvestro and Suh’s (2001). Garcia et al. (2006) uses a similar model to Wilson’s
(2004, 2005) to describe the solid portion of the nonlinear biphasic model. Finally, Julkunen
et al. (2008) corroborates the work of Wilson et al. (2004, 2005) with a FEM study, find-
ing good agreement between the experiment and model in stress-relaxation applications.
These theories are the leading constitutive models for cartilage, and additional information
is available from Mow et al. (1993, 2005). The proposed fractional calculus model is not
a replacement for the aforementioned models, but rather a high-level characterization of
biphasic behavior that offers inherent advantages and utility in large system analysis. The
fractional model is proven as a capable viscoelastic model (Carpinteri and Mainardi 1997;
Mainardi and Spada 2011) and has many advantages in biomechanical applications and
biomimetics (Magin 2006). These typically include model succinctness and a certain com-
patibility with conventional calculus and integer-order differential equations that many en-
gineers and scientists are familiar with (West et al. 2003).

Stress-relaxation tests and mechanical models have been used in cartilage research for
many decades. The spring and dashpot models are simplifications of the actual biphasic be-
havior of cartilage; however, there is a need for such models (Argatov 2013). The utility of a
spring/dashpot model is apparent in larger-scale studies, e.g., when cartilage is incorporated
into an impact study. Here, phenomenological models may be better suited for analysis.
Argatov (2013) notes that the spring/dashpot, or viscoelastic, models are widely applica-
ble as they capture the behavioral characteristics of cartilage. A trade-off exists between
model complexity and the comprehensive description of phases and their interactions. In
certain applications (e.g., joint dynamics), the phenomenological models are better suited
for study. The recent paper by Tanaka et al. (2014) is one such example of the utility of the
phenomenological models. The authors use a standard linear solid to characterize relaxation
behavior of cartilage in multiple joints. The results show that the mechanical properties of
cartilage may be region-specific within the joint. The model proposed herein is applicable
to this type of study.
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Whereas the viscoelastic models are not masquerading as detailed models for car-
tilage, their utility lies in the inclusive description that they provide. Fractional calcu-
lus is already well established as a robust model for viscoelastic behavior (Bagley and
Torvik 1979, 1983, 1985, 1986; Rogers 1983; Koeller 1984; Torvik and Bagley 1984;
Koeller 1986; Bagley 1989). Moreover, it will be shown herein that a special case of the
fractional calculus model is capable of describing the stress-relaxation behavior of car-
tilage not only in the frequency domain, but also in the time-domain. This special case
occurs when the fractional derivative is one-half, α = 1/2, and results in the comple-
mentary error function (CERF) model (Szumski and Green 1991; Szumski 1993). There
are multiple benefits of the CERF model: (1) a succinct time-domain solution is readily
available for fitting experimental data (this is not the case for any other fractional cal-
culus derivative order), (2) with an expansion, the CERF model requires only a polyno-
mial fit in the time-domain, (3) the time and frequency domains are analytically linked
by the elastic–viscoelastic correspondence principle (whereas this is true of the fractional
calculus model for any derivative order, the time-domain representation of the CERF
makes this particularly useful), (4) the frequency-dependent storage and loss moduli are
obtained directly from time-domain stress-relaxation experiments, (5) the CERF model
uses few (as little as three) constants to robustly and accurately describe cartilage over
large time-spans or frequency decades, and (6) the CERF model is compact for use in
large-scale studies, where a biphasic material (e.g., cartilage) is only one component of
a much larger system. These advantages are important for biomimetic and impact stud-
ies, where the comprehensive models may be too intricate in the analysis. The cur-
rent study indicates that the CERF model is quite capable of describing cartilage relax-
ation. This model is developed herein, following a discussion of the experimental proce-
dures.

The mechanical properties of cartilage are determined in many ways. The techniques
developed by Mow et al. (1980), Eisenfeld et al. (1978), and Mow and Mansour (1977)
using confined compression are prevalent today. These techniques include a rigid cylindrical
chamber that prevents fluid from flowing in the horizontal direction. Confined compression
requires special loading routines to allow fluid to travel in the vertical direction. Figure 1(a)
shows how a pseudo-relaxation experiment is performed in a confined compression. The
hydrated sample is forced in the vertical direction into a porous indenter. The tests require
a ramp displacement loading (approximately 2 s) to allow fluid to permeate the indenter or
punch (Fig. 1(b)). However, a ramp is not a common phenomenological load for cartilage,
and a “true” stress-relaxation experiment cannot be performed in confined compression.
This is because the confining chamber creates super high stresses (hydrostatic pressure) in
the cartilage plugs when an instantaneous displacement is attempted. The confining chamber
restrains cartilage along the walls, which introduces a 3D stress field on the cartilage plug.

In the unconfined case, a super fast (practically instantaneous) displacement can be phys-
ically imposed on the cartilage sample, as shown in Fig. 1(d). This is a classical relaxation
case to a step strain. Precisely such a test is needed to directly extract the storage and loss
moduli via the Boltzmann superposition principle (discussed herein). Hence, unconfined
compression offers multiple advantages over the confined compression used in prior stud-
ies (Mow et al. 1980; Eisenfeld et al. 1978; Mow and Mansour 1977). With an eye toward
biomimetics, unconfined compression offers clarity to the characterization of multiphase
composites. It can be postulated that unconfined compression is likely to dictate a lower
bound for biphasic material properties, whereas confined compression produces an upper
bound.
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Fig. 1 Comparison of experimental setups for measuring cartilage

2 Materials and methods

In this study, articular cartilage samples are harvested from the right stifle joints of horses
that are euthanized for other reasons. Equine samples are used for multiple reasons: the
cartilage surfaces are large and allow for “macroscale” analysis, the joints carry large loads
(meaning that there are typically higher stresses within the joints), and the availability of
samples is suitable. In addition, equine and human articular cartilage have similar structural
features and collagen organization (Malda et al. 2012).

After euthanasia, intact joints are removed from the horses. The joints remain sealed in
their native joint capsule until they are needed for analysis. The cartilage is harvested by
dissection of the surrounding tissue and resized with an industrial bandsaw. The cartilage
surface is hydrated with a saline solution (0.9 %) to prevent drying.

The medial condyle of the right rear stifle is used for study. The stifle joint is mechani-
cally analogous to the human knee, and the condyle contains an area of thick and relatively
flat cartilage (approximately 1.5–3 mm thick). After bulk harvesting and resizing of the
condyle, a 10-mm-diameter plug is created with a hollow punch. The punch is driven into
the sample with an arbor press, depicted in Fig. 2. With the punch embedded in the carti-
lage and subchrondral bone, the surrounding cartilage is removed with a rotary device. The
punch has an access hole to allow for hydration of the sample. After the plug is created, it
is immersed in saline. The average time from the beginning of dissection to immersion is
less than 20 min. The joint capsule is open for approximately 10 min during the process.
Previous research highlights the importance of minimizing the exposure time of cartilage to
open-air (Smyth et al. 2014).
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Fig. 2 Schematic of the 10 mm
plug creation process

The cartilage plugs are placed in a UMT CETR tribometer. The tribometer imposes
a nearly instantaneous (within approximately 30 ms) displacement on the cartilage sur-
face, while tracking the force generated in the cartilage matrix. By design, this is a stress-
relaxation experiment. The tribometer holds a 12-mm rigid aluminum cylinder attached to
a load cell, as shown in Fig. 3. Initially, the cylinder contacts the cartilage surface with a
preload of 0.5 N. The preload ensures that the cylinder makes complete contact with the car-
tilage surface. In effect, the preload is flattening out any curvature in the cartilage. At time
t = 0, a practically instantaneous downward displacement is imposed on the cartilage, and
the resulting force is measured. After approximately 180 s of measurement, the rigid cylin-
der is withdrawn from the surface. The cartilage is allowed two minutes to recover between
tests, and the procedure is repeated. Testing indicated that the recovery time was sufficient
(where additional time did not change the results). The typical test includes four runs at a
lower strain, followed by four runs at a higher strain. The tribometer samples at 1000 Hz,
which yields approximately 180,000 data points for each run.

Typically, displacements of 0.25 mm and 0.35 mm are imposed on the cartilage matrix.
The cartilage thickness is measured after the relaxation experiment because the thickness
measurement is destructive to the sample. Therefore, a priori strains cannot be determined,
but the displacements of 0.25 mm and 0.35 mm are designed to strain the cartilage matrix
from 5–15 %. The bulk of the relaxation behavior has occurred within 180 s, and the steady-
state (rubbery modulus) information can be extrapolated with the proposed model if needed.
The thickness of the cartilage samples is determined with needle probe techniques. A hy-
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Fig. 3 CETR UMT3 tribometer
fitted with a 12-mm rigid indenter

podermic needle is attached to the tribometer and travels through the cartilage plug. The
locations of first contact, surface puncture, and contact with subchondral bone are clearly
shown in the resulting force/displacement graphs. Each test yields a thickness measurement.
Multiple measurements are averaged to give a mean thickness, which determines the strain
in each sample. The strain is needed to calculate the modulus (discussed herein).

The stress-relaxation experiment is particularly useful because it contains a wide spec-
trum of storage and loss properties. Gurtin and Sternberg (1962) developed a constitutive
law relating stress, strain and the relaxation modulus using Boltzmann’s superposition prin-
ciple. The viscoelastic model is time-dependent and retains memory of the material and
loading history:

σ(t) = ε(0)E(t) +
∫ t

0
ε̇(τ )E(t − τ) dτ, (1)

where σ(t) is the stress, ε(t) is the strain, and E(t) is the relaxation modulus. Typically, σ(t)

and ε(t) are either set or measured during experimentation, whereas E(t) is obtained from
a fixed strain input ε = εstep such that E(t) = σ(t)/εstep. The parameters of stress, strain,
and elastic modulus in Eq. (1) are time-dependent. It should be noted that Eq. (1) describes
a linear relationship between the strain history and the current stress. Transforming Eq. (1)
into the Laplace domain allows for simple treatment of the convolution integral:

σ(s) = sE(s)ε(s). (2)

Equation (2) is similar to Hooke’s law in the Laplace domain (for the uniaxial case). This
provides the foundation for the elastic–viscoelastic correspondence principle.

To transfer between the Laplace and frequency domains, the Laplace parameter s in
Eq. (2) is replaced with iω, where i is defined as

√−1, and ω is the frequency in rad/s.
Hence, applying s → iω, Eq. (2) becomes

σ(ω) = (iω)E(ω)ε(ω)
�= E∗(ω)ε(ω). (3)

E∗(ω) is defined as the complex modulus E∗(ω) = (iω)E(ω) and has two components,
a real and an imaginary:

E∗(ω) = E′(ω) + iE′′(ω). (4)
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Fig. 4 Physical representation of
Prony series and fractional model

The real component (E′) is known as the storage modulus, whereas the imaginary compo-
nent (E′′) is the loss modulus. Both measures describe the dynamic behavior (frequency
dependency) of the material, in this case the cartilage. The correspondence principle is pow-
erful because one constitutive formulation determines the amount of energy retained (stored)
or lost (loss). Stress–strain constitutive equations must be formed that accurately model the
experimental data. One such powerful formulation is the fractional calculus model.

To draw a comparison between the fractional calculus model and more common vis-
coelastic models, spring and dashpot systems are considered. Spring and dashpot systems
contain both elastic and dissipative mechanisms simultaneously (Gurtin and Sternberg 1962;
Szumski and Green 1991; Miller and Green 1997), which make them appropriate for mod-
eling viscoelastic substances. There are many configurations of spring and damper systems,
including the Maxwell, Kelvin–Voigt, and Prony series models. The Prony series (Fig. 4(a))
is particularly adept in stress-relaxation. However, it often requires many elements to ad-
equately model the rapid relaxation seen in cartilage. The fractional calculus model has
similarities with the Prony series, but the fractional model significantly reduces the number
of elements and thus terms needed to characterize viscoelastic behavior. The model replaces
the dashpot of each Maxwell element with a fractional “spring-pot,” as seen in Fig. 4(b).
The spring-pot interpolates between spring and dashpot behavior; in fact, the spring-pot is
physically represented as ladder structure of springs and dashpots (Schiessel and Blumen
1993, 1995; Schiessel et al. 1995). Adjusting the constants of the ladder’s “rungs” yields
any fractional derivative α between 0 and 1. This gives the fractional model great flexibility.
A spring-pot is mathematically described as

σsp = η
dαεsp

dtα
, (5)

where α is a rational number between 0 and 1, and η is a material parameter similar to a
damping coefficient. The parameter η takes on nonstandard units that are similar to viscosity,
Pa sα . The interpolative nature of the spring-pot element is clear: if α = 0, then the element
becomes a spring, and if α = 1, then the element becomes a common viscous dashpot. For
any α between 0 and 1, the element has both spring and dashpot behavior, as described by
the hierarchical analogue (or ladder model) (Schiessel and Blumen 1993, 1995; Schiessel
et al. 1995). The virtual increase in mathematical complexity of the fractional model is
mitigated by significantly reducing the total terms that are needed to describe the stress/strain
relationship. In comparison to the Prony series, fractional models typically require many
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fewer elements to obtain a similar quality of fit (e.g., in the current study, the fractional
model uses 1/4 of the elements of the Prony series). Applying fractional calculus to stress-
relaxation, the relaxation modulus can be found in the frequency domain (detailed in the
Appendix):

E(ω) = E0

iω
+

∞∑
n=1

En(iω)α

[(iω)α + En

ηn
]
(

1

iω

)
. (6)

In the time-domain, the fractional relaxation modulus is (Bagley 1989; Kisela 2009)

E(t) = E0 +
∞∑

n=1

EnEα

(
−En

ηn

tαn

)
, (7)

where Eα is the Mittag–Leffler function (Erdelyi et al. 1955),

Eα,β(z) =
∞∑

k=0

zk

Γ (αk + β)
, (8)

and Γ is the gamma function, Γ (x) = (x − 1)!.
Whereas the above expression provides a formal time-domain representation, practi-

cally the fractional model is difficult to fit in the time-domain because of convergence
issues. To be practical in modeling, a finite number of terms must be used in the sum-
mation in Eq. (8). If the parameter (η) is very small, then k must be very large, and
convergence issues arise. Typically, the fractional model is fit in the frequency domain
to circumvent the Mittag–Leffler function; however, the work of Podlubny (1998) pro-
poses a Matlab procedure for the Mittag–Leffler function to be fit in the time-domain.
The Mittag–Leffler function is avoided altogether in the special case where α = 1/2. In
this case, the Mittag–Leffler function reduces, and the fractional derivative model effec-
tively becomes a complementary error function model (CERF) (Szumski and Green 1991;
Szumski 1993) (detailed also in the Appendix). The complementary error function model
is a robust and convenient model for viscoelasticity. It has the advantage of offering a con-
cise time-domain solution in the form of the complementary error function multiplied by an
exponential function given by

E(t) = E0 +
∞∑

n=1

Ene
(μn

√
t)2

erfc (μn

√
t), (9)

where En and μn are material properties, and

μn = En

ηn

. (10)

The complementary error function decays at a faster rate than the exponential increases, giv-
ing an overall relaxation behavior. The importance of the CERF model is its time-domain
representation. Models with time-domain representations have utility in fitting noisy exper-
imental data. The CERF model combines the advantages of the spring and damper models
(simple mathematics) with the advantages of the fractional model. This is a very powerful
formulation, which robustly models cartilage with as few as three constants: E0, E1, and
μ1 (i.e., only one term (n = 1) in the summation Eq. (9)). Here, μn has nonstandard, but
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straightforward, units of s−1/2. Certain definitions such as a fractional time constant can be
used to define a dimensionless relaxation curve, but the CERF model is simple enough to
justify the units of μn. The complementary error function can be computed by most engi-
neering software packages. However, the main advantage of Eq. (9) is that it can be further
reduced with an expansion given by Abramowitz and Stegun (1972):

erfc(x) = (
a1y + a2y

2 + a3y
3 + a4y

4 + a5y
5
)
e−x2

, (11)

y = 1

1 + px
, (12)

where

p = 0.3275911, a1 = 0.254829592, a2 = −0.284496736,

a3 = 1.421413741, a4 = −1.453152027, a5 = 1.061405429.

The maximum error of this expansion is 1.5 × 10−7. The advantage of using Eq. (11) to
represent the erfc(·) in Eq. (9) is that the exponentials cancel out as x = μ

√
t . The result is

a simple polynomial expression:

E(t) = E0 +
∞∑

n=1

En

(
a1y + a2y

2 + a3y
3 + a4y

4 + a5y
5
)
, (13)

y = 1

1 + μp
√

t
. (14)

Fitting the time-domain relaxation modulus using Eq. (13) is straightforward. Only a
simple least-squares algorithm is needed to determine the parameters of En and μn for
n = 1,2,3, . . . , n. The CERF model is suitable for any general viscoelastic behavior and is
not specifically a biphasic model; however, it is capable of capturing the relaxation behavior
of biphasic materials very well.

The time-domain is important for performing experiments and qualitative understanding
of stress-relaxation, but the frequency domain is fundamental to a dynamic analysis. How-
ever, transferring the quite noisy raw experimental signal from the time to the frequency
domain (using a fast Fourier transform or other techniques) is challenging, even with fil-
tering and smoothing algorithms (Smyth 2013). The CERF model does not require such a
manipulation since there are convenient formulations in both the time and frequency do-
mains. Once the parameters En and μn are obtained from the time-domain fit, the analytic
form of the CERF is readily available in the frequency domain (see the Appendix):

E(ω) = E0

iω
+

∞∑
n=1

En(iω)1/2

[(iω)1/2 + En

ηn
]
(

1

iω

)
. (15)

The storage and loss moduli are given as a function of frequency ω:

E′ = E0 +
∞∑

n=1

En

[ (√
2ω
2

)
μn + ω

μ2
n + μn

√
2ω + ω

]
, (16)
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Table 1 Comparison data for CERF and Prony series (n = 1)

CERF Prony

E0 (MPa) 1.409 0.774

E1 (MPa) 0.549 0.677

μ2
1 or λ1 (1/s) μ2

1 = 0.8649 × 10−2 λ1 = 0.410 × 10−1

E′′ =
∞∑

n=1

En

[ (√
2ω
2

)
μn

μ2
n + μn

√
2ω + ω

]
. (17)

3 Results

The CERF model (n = 1, Eq. (13)) is fit to the relaxation behavior, which is pronounced in
the initial time of the experiment (Fig. 5(a)). In addition, the Prony series model (Eq. (18),
n = 1) is also shown in Fig. 5(a) as a comparison to the CERF model (see Table 1 for fit
parameters).

EProny(t) = E0 +
∞∑

n=1

Ene
−λnt . (18)

The Prony model is fit in a similar least-squares manner and contains the same number of
constants as the CERF. When n = 1, the Prony series is known as the standard linear solid
(Smyth 2013). Clearly, the standard linear model is unable to capture the relaxation in the
first 100 s of decay, rendering it of little use in the current study. The relaxation behavior
is captured well with the CERF model (n = 1, which is the CERF equivalent to a standard
linear solid). Only minor deviation between the fit and the actual data is seen in both scales
in Fig. 5. The deviation between the model and experimental data corresponds to the highest
frequency information. For horses (and humans), frequency ranges greater than 4–5 Hz are
not accessed during even the most strenuous exercises. Therefore, it is less important to
capture this corresponding region of the relaxation data, i.e., from t = 0 s to t = 200 ms.
The CERF robustly models the important decades of relaxation behavior (shown in Fig. 5(b)
using a semi-log scale), which makes its utility apparent for biological materials. The CERF
model is powerful in that only three parameters, E0, E1, and μ1 (corresponding to n = 1), are
needed to robustly fit the bulk relaxation behavior. In applications where biphasic materials
are integrated into larger system dynamics, this compact model has great utility.

The frequency domain allows for study of cartilage as a function of gait. The elastic–
viscoelastic correspondence principle transfers time-dependent information to the Laplace
and frequency domains without loss of generality. Therefore, stress-relaxation experiments
give directly the storage and loss moduli as functions of frequency ω. A comparison of the
CERF and Prony series models (n = 1) in the frequency domain is shown in Fig. 6 for the
storage and loss modulus. The two models have significant differences over many frequency
decades. Considering the storage modulus (Fig. 6(a)), the CERF and Prony models display
large differences, particularly at low frequencies. Likewise, the loss modulus (Fig. 6(b)) has
major differences (nearly an order of magnitude in the physiological range), indicating that
the two models are fundamentally different. Based on the relaxation seen in Fig. 5, the CERF
describes the frequency behavior of cartilage more accurately.
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Fig. 5 Example fit of CERF to
stress-relaxation experiment of
cartilage plug immersed in saline

Analysis in the frequency domain shows that cartilage has strong frequency characteris-
tics. Common gaits for cartilage are in the viscoelastic transition region, which is between
the higher frequencies giving the glassy region (4 Hz) and the lower frequencies giving the
rubbery region (0.25 Hz). Cartilage adjusts to a stimulus by storing and dissipating differ-
ent amounts of energy, depending on the frequency of perturbation. This is potentially an
important characteristic of biphasic materials. The adaptive nature of cartilage is well suited
for bioinspired designs of bearings and dampers.

The thickness of the cartilage plugs is not known a priori. This complicates the analysis
as the testing procedure imposed a predetermined displacement on the cartilage sample.
The strain is determined by the thickness of the sample. Therefore, results obtained from
the relaxation experiments are inherently over a range of strains. Attempts were made to
limit the strains to 5–15 %; however, there are a few cases where 15 % is exceeded. Each
measurement is fit with Eq. (9) to determine the parameters E0, E1, and μ1. An example
fit of the CERF (n = 1) to actual cartilage relaxation data is shown in Fig. 5. When t = 0,
the glassy modulus is obtained (Eglassy = E0 + E1), and as t → ∞, the rubbery modulus
is found (Erubbery = E0). These quantities are reported in the vertical columns of Table 2.
Student’s t test is used to provide upper and lower bounds for the respective moduli. It is
difficult to generalize all of the samples as one conglomerate; however, this is provided as an
estimate of the glassy and rubbery moduli. The combined results represent a range of likely
cartilage behavior, and each sample is said to have certain strain-dependent properties. More
exhaustive testing and additional data should be used to corroborate this finding. The large
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Fig. 6 Comparison of the CERF
and Prony models in the
frequency domain

standard deviation and error seen in Table 2 is likely due to a relatively small sample size
and large variability in samples due to age, breed, use, etc.

Large variations are expected in biological samples. Each cartilage explant is unique,
which increases the difficulty of drawing meaningful conclusions from the data. Genetics,
weight, age, diet, gender, and use can influence the mechanical properties of cartilage. The
model parameters obtained from experiments are expected to have large variations. How-
ever, a prevailing trend is that the transition period of cartilage coincides with the physi-
ological range of exercise. At lower frequencies, cartilage dissipates more energy than at
higher frequencies, where additional elasticity is available in the joints. The transition range
of cartilage occurs in the middle of the common frequencies of motion (0.25–4 Hz). It is
possible that the adaptive nature of cartilage is biologically designed for this purpose.

4 Discussion

A simple model that describes the behavior of cartilage is proposed. Under the specified
loading (stress-relaxation), the CERF model is able to account for biphasic behavior when
considered as a conglomerate material. Many additional tests are required to quantitatively
describe the behavior of equine cartilage. The CERF model does have limitations; however,
its application is appropriate in many situations. In particular, the CERF model has utility
in impact studies, adaptive bearings and dampers design, and study of systems that include
biphasic materials.

The preliminary results obtained should justify additional research and experimentation.
More cartilage samples are needed for statistical significance; however, the experimental
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Table 2 Tabulated data for cartilage samples immersed in saline

Fluid bath Saline

Number of samples 12

Degrees of freedom 11

Strain range 7.35–13.08 %

Glassy modulus (MPa) Rubbery modulus (MPa)

Avg. 1.240 0.323

Std. 1.011 0.226

SE 0.292 0.065

Two-tailed, 95 % Student’s t test 2.201

Confidence interval ± 0.642 0.143

Lower mean 0.597 0.180

Upper mean 1.882 0.467

data is a proof-of-concept. The bulk mechanical response of articular cartilage in stress-
relaxation can be described with the spring/spring-pot systems proposed. This is important
for future analysis of biphasic materials, including biomimetic substances. The simplic-
ity of the CERF model is beneficial in large-scale finite-element (or other) studies. Addi-
tional fractional models also exist that may have utility for cartilage. In particular, the recent
anisotropic model from Hilton (2012) could be useful in cartilage mechanics.

The current work is focused on describing the stress-relaxation behavior of cartilage in
unconfined compression. Many previous researchers have used stress-relaxation to deter-
mine properties for modeling, but a strictly phenomenological model has not been thor-
oughly explored. The majority of tests being performed are creep tests, which are typically
easier to execute. However, stress-relaxation experiments are more analogous to movements
experienced during exercise. The methods used herein are advantageous compared to previ-
ous studies because they more closely mimic biological function and require fewer material
properties.

Equine articular cartilage displays similarities to human cartilage (Malda et al. 2012).
Within the equine skeleton, the stifle joint is harvested for its regions of thick, flat car-
tilage and for the mechanical similarity to the human knee. A CETR-UMT-3 tribometer
performs stress-relaxation experiments, which mimic biological function during exercise
such as walking or running. The tribometer produces a nearly instantaneous displacement.
The resulting relaxation in the cartilage is captured and fit phenomenologically. The pseudo
spring and damper model (CERF) is studied in the time and frequency domains. The rela-
tionship between time and frequency domains is analytic. This is an important advantage of
the phenomenological approach, and the Boltzmann convolution integral that governs the
stress-strain relationships.

In the limited range of gaits associated with physiological movement, the storage and
loss moduli of cartilage transition dramatically. This behavior is common to viscoelastic
materials. Cartilage appears to adapt to the type of exercise undertaken. Although the many
variables of genetics make it difficult to draw comparisons between samples, the transition
region is ubiquitous. This could contribute to cartilage’s longevity and may be an important
design aspect for biomimetic materials. Ultimately, the CERF model provides a compact
tool that can be used to evaluate biphasic material behavior if the phases do not require
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separation. The CERF is not a detailed model for cartilage, but it allows for practical analysis
to be undertaken.

Unconfined compression tests and the CERF model can characterize cartilage with as
few as two types of terms: E and μ. Poisson’s ratio and other experimental “fudge-factors”
are not required for fitting the data. For a complex material, models that can capture the
majority of the mechanical response with relatively few parameters are very useful. The
advantage of the phenomenological characterization is its simplicity. The techniques given
can be used for comparisons between species or between healthy and diseased cartilage. The
material properties given are needed for a full dynamic or impact study. Potential other uses
of the CERF include: magnetic resonance elastography (MRE), biphasic bearing/damper
evaluation, and control problems considering fractional order viscoelasticity.

5 Conclusions

There has been little previous work linking fractional calculus and biomechanics, and in
particular, cartilage mechanics. However, as displayed in the current study, the robustness
and flexibility of fractional calculus is well suited for such applications. The special case
of fractional derivative, α = 1/2, has unique advantages for modeling stress-relaxation in
cartilage. The time-domain representation of the CERF model (Eq. (13)) is very powerful
and intrinsically useful when the elastic-viscoelastic correspondence principle is invoked.
For the first time, it is shown that the relaxation modulus can be robustly expressed as a
polynomial, and the polynomial expansion is easily fit in a least-squares sense. This alone
is advantageous when compared to many models that present significant fitting challenges.
The succinctness of the CERF model is a major factor in its utility. In applications where
cartilage (or a biphasic material in general) is modeled as a component of a larger system, the
CERF model is accurate without being inordinate. These reasons warrant additional study
in fractional calculus and biomechanics.

Acknowledgements This work is supported by NSF Grant No. DGE-1148903.

Appendix

For simplicity, only a one-element fractional derivative model is developed. However, the
one-element model can be generalized to include multiple elements in parallel by the prin-
ciple of linear superposition. This concept is analogous to that of the more common Prony
series. The constitutive equation relating stress to strain is similar to that of a standard linear
viscoelastic material:

(
1 + E0

E1

)
dε

dt
+ E0

c1
ε = 1

E1

dσ

dt
+ 1

c1
σ, (A.1)

except that the dashpot is replaced with the spring-pot element

dε

dt
←− dαε

dtα
(A.2)

and

dσ

dt
←− dασ

dtα
, (A.3)
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leading to the constitutive equation for the fractional derivative model
(

1 + E0

E1

)
dαε

dtα
+ E0

η1
ε = 1

E1

dασ

dtα
+ 1

η1
σ. (A.4)

In Eq. (A.4), the damping coefficient c1 has been replaced by η1 to reflect unit consistency.
If α = 1, then the constitutive model becomes the standard linear material (one-term Prony
model shown in Eq. (A.1)), and the units of η1 collapse to those of c1 (Pa s). If α = 0,
then the spring-pot simply becomes strictly a spring, and the entire model is reduced to an
equivalent linear spring. For any fractional valued α between 0 and 1, the spring-pot element
has both spring and dashpot behavior.

Equation (A.4) is conveniently analyzed in the Laplace domain, which allows for the
treatment of the fractional power (taking Caputo’s definition of the fractional-order deriva-
tive and assuming that the initial conditions for stress and strain can be set to zero (Podlubny
1998)):

[(
1 + E0

E1

)
sα + E0

η1

]
ε(s) =

(
1

E1
sα + 1

η1

)
σ(s). (A.5)

Utilizing the elastic–viscoelastic correspondence principle (Eq. (2)), the relaxation modulus
E(s) can be found from Eq. (A.5):

E(s) =
[(

1 + E0
E1

)
sα + E0

η1

]
( 1

E1
sα + 1

η1
)

1

s
. (A.6)

The relationship between the Laplace and frequency domains allows for the fractional model
to be obtained:

E(ω) =
[(

1 + E0
E1

)
(iω)α + E0

η1

]
[ 1

E1
(iω)α + 1

η1
]

(
1

iω

)
. (A.7)

With some algebra, Eq. (A.7) can be reduced to

E(ω) = 1

iω

[
E0 + E1(iω)α[

(iω)α + E1
η1

]
]
. (A.8)

If required, the fractional model can be generalized to include more spring-pot elements:

E(ω) = 1

iω

[
E0 +

∞∑
n=1

En(iω)α[
(iω)α + En

ηn

]
]
. (A.9)

Theoretically, an infinite number of terms can be used. In practice, this number is finite. The
complex modulus is found from the elastic–viscoelastic correspondence principle (Eq. (2)):

E∗(ω) = E0 +
∞∑

n=1

En(iω)α[
(iω)α + En

ηn

] . (A.10)

Simplifications for α = 1/2 (special case)
For the special case of α = 1/2, the mathematics of the fractional model simplify dra-

matically. In the time domain, a concise solution appears in the form of a complementary
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error function multiplied by a decaying exponential. An analytic form of the model can be
found for the frequency domain solution as well. Consider a one-term fractional model with
α = 1/2:

E∗(ω) = E0 + E1(iω)1/2[
(iω)1/2 + E1

η1

] . (A.11)

The square root of iω can be found from the generalized form of de Moivre’s theorem:

(iω)1/2 =
√

2ω

2
(1 + i). (A.12)

Two substitutions help clarify the mathematics:

β =
√

2ω

2
, (A.13)

μ1 = E1

η1
. (A.14)

Both β and μ1 have the units s−1/2. Substituting these relations into Eq. (A.11) yields

E∗(ω) = E0 + E1β(1 + i)

μ1 + β(1 + i)
. (A.15)

After algebraic manipulation and the simplification (1 + i)2 = 2i, Eq. (A.15) is

E∗(ω) = E0 + E1β

[
μ1 − (2β − μ1)i

μ2
1 − 2β2i

]
. (A.16)

Additional manipulation leads to a usable expression:

E∗(ω) = E0 + E1β

[
μ1 + 2β

μ2
1 + 2μ1β + 2β2

+ iμ1

μ2
1 + 2μ1β + 2β2

]
. (A.17)

Reintroducing the substitution of Eq. (A.13), the derivation of the one-element CERF model
is complete:

E∗(ω) = E0 + E1

[ (√
2ω
2

)
μ1 + ω

μ2
1 + μ1

√
2ω + ω

+ i
(√

2ω
2

)
μ1

μ2
1 + μ1

√
2ω + ω

]
. (A.18)

Equations (A.18) can be generalized for any number of fractional terms, although the utility
of the fractional model is that few terms typically need to be used to characterize viscoelastic
behavior:

E∗(ω) = E0 +
∞∑

n=1

En

[ (√
2ω
2

)
μn + ω

μ2
n + μn

√
2ω + ω

+ i
(√

2ω
2

)
μn

μ2
n + μn

√
2ω + ω

]
, (A.19)

and if

E∗(ω) = E′(ω) + iE′′(ω), (A.20)
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then

E′(ω) = E0 +
∞∑

n=1

En

[ (√
2ω
2

)
μn + ω

μ2
n + μn

√
2ω + ω

]
, (A.21)

E′′(ω) =
∞∑

n=1

En

[ (√
2ω
2

)
μn

μ2
n + μn

√
2ω + ω

]
. (A.22)

For the fractional derivative model where α = 1/2, there exists a concise time-domain
solution (Szumski and Green 1991):

E(t) = E0 +
∞∑

n=1

Ene
(μn

2t)erfc (μn

√
t), (A.23)

which is a decaying complementary error function multiplied by an increasing exponential.
The time-domain solution is critical for fitting experimental data. The Laplace transforma-
tion of Eq. (9) is given by Szumski and Green (1991):

E(s) = 1

s

[
E0 +

∞∑
n=1

En

√
s√

s + μn

]
. (A.24)

Equation (A.24) and application of the elastic–viscoelastic correspondence principle allows
us to relate the CERF model in the time and frequency domains, noting the connection
between the Laplace and Fourier transformations (replace the Laplace variable s with the
Fourier variable iω). We then arrive back at Eq. (A.19).
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