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This is the first study to develop an empirical formulation to predict fretting wear (volume
removal) under frictional conditions for plane-strain line contacts as borne out by the finite
element analysis (FEA). The contact is between a deformable half-cylinder rubbing against
a deformable flat block. The FEA is guided by detailed physical conceptions, with results
that subsequently lead to the methodical modeling of fretting wear. The materials in
contact are first set to steel/steel, then to Alloy617/Alloy617, and finally to copper/
copper. Various coefficients of friction (COFs) and the Archard Wear Model are applied
to the interface. Initially, pure elastic conditions are investigated. The theoretical predic-
tions for the wear volume at the end of the partial slip condition in unidirectional sliding
contact agree very well with the FEA results. The empirical formulation for the initial
gross slip distance is constructed, again revealing results that are in good agreement
with those obtained from the FEA for different materials and for various scales. The Timo-
shenko beam theory and the tangential loading analysis of a half elastic space are used to
approximate the deflection of the half-cylinder and the flat block, respectively. That theory
supports well the empirical formulation, matching closely the corresponding FEA results.
The empirical formulation of the wear volume for a general cycle under fretting motion
is then established. The results are shown to be valid for different materials and various
COFs when compared with the FEA results. Finally, plasticity is introduced to the
model, shown to cause two phenomena, namely junction growth and larger tangential
deformations. Wear is shown to either increase or decrease depending on the combined
influences of these two phenomena. [DOI: 10.1115/1.4043074]

1 Introduction
Fretting is a common occurrence in engineering between two con-

tacting bodies when an oscillatory tangential load is compounded
with a normal load. It may be caused by vibration, cyclic temperature
changes, cyclic loading in gears, bolts, human joints, bearings, etc.
Fretting wear and fretting fatigue are two main tribological failure
causes. According to the study by Vingsbo and Söderberg [1], fret-
ting can be sorted into stick, mixed stick-slip, and gross slip regimes.
Varenberg et al. [2] define a slip index to determine the different fret-
ting regimes. Under a certain normal load, the contact status goes
from stick, to partial slip, and gross slip with the increase in the tan-
gential displacement.
Experimental studies of fretting have been done thoroughly.

Junction growth, i.e., the increase in the contact area, is found by
Tabor [3] and by Parker and Hatch [4]. The fretting wear experi-
ments are done in cylindrical line contacts [5], cross cylindrical con-
tacts [6], and spherical contacts [7]. Ahmadi et al. conduct fretting
wear experiments using an Alloy 617 ball loaded against an Alloy
flat disk [8]. An Archard wear model is used to quantify the results.
Two types of wear regimes with different wear coefficients are
found. One regime is running-in with a relative large wear coeffi-
cient, and the other regime is steady state with a relative small
wear coefficient.
Analytical studies on the fretting wear are relatively scarce due to

the complexity arising from the frictional tangential loading. For the
tangential loading of a half elastic space, there is a partial slip

condition according to the study by Johnson [9]. The information
about the local slip distance at the interface, in partial slip condi-
tions, is necessary for the fretting wear analysis. The analytical solu-
tion for the local slip distance under a Hertzian pressure with a
constant coefficient of friction is recorded for the 3D spherical
contact by Popov and Heß [10]. However, the solution for the cylin-
drical line contact is not available.
Numerical studies have been first performed for normal contacts

[11–13]. Green [14] finds theoretically the onset of plasticity in the
normal contact between spherical and cylindrical bodies. The first
finite element analysis (FEA) work of parallel cylindrical fretting
contact is done by Gupta et al. [15]. However, their model consists
of a very coarse mesh with only 285 elements, limited by the typical
computational means available at that time. Recent numerical fret-
ting analyses utilizing the FEA method with very fine meshes are
done between cylindrical and spherical contacts by Yangand
Green [16–18]. The evolution of von Mises stress, plastic strain,
junction growth, fretting loop, and scars at the interface is recorded.
However, these works do not apply a wear model at the interface.
Ghosh et al. [19] simulate the fretting wear of a Hertzian line
contact in a partial slip. However, the simulation is not supported
by an analytical solution, and the evolution of the wear volume
with respect to the sliding distance is not thoroughly explained.
This work incorporates a fretting wear model for a 2D plane-strain

contact using FEA (ANSYS 17.1) subject to force-controlled loading in
the normal direction and displacement-controlled fretting motion
in the tangential direction. Various coefficients of friction (COFs)
and the Archard wear model are applied at the interface. The FEA
results are generalized by normalization andfittedwith empirical for-
mulations. The initial gross slip distance is first defined. The Timo-
shenko beam theory and the tangential loading analysis of a half
elastic space are used to approximate the deflection of the half-
cylinder and the block, respectively, supporting the empirical
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formulation. The wear volume under elastic conditions for a general
cycle of the fretting motion is then derived based on the said function
of the initial gross slip distance. In conclusion, the effect of plasticity
on the wear volume is likewise investigated.

2 Model
The fretting model in this work is shown in Fig. 1. A simulated

rigid plate is positioned on the top of a half-cylinder that has a
radius of R= 0.5 m, which is in contact with an R× 4R block. The
elastic modulus of that plate is set large enough (2 × 1010 GPa) to
enforce a uniform downward displacement at the interface between
the plate and half-cylinder during the fretting motion. That interface
is made frictionless, as the role of the rigid plate is to prevent rotation
of the half-cylinder at its upper boundary. The material of the half-
cylinder and the flat block is first set to steel/steel, then to
Alloy617/Alloy617, and finally to copper/copper. The material
properties are listed in Table 1 (see Ref. [21]). Although the
Poisson ratios of the chosen materials are very close, the moduli of
elasticity and yield strengths are quite distinct.
The fretting loading condition is shown in Fig. 1. X-axis and

Y-axis are shown where the origin is located at the initial contact
point. For brevity, the positive and the negative directions of
X-axis are metaphorically designated as “right” and “left,” respec-
tively. The base of the flat block, a, is fixed in both the X and the Y
directions (other B.C. will be discussed shortly). A normal force,
P, is first applied to the top of the plate, which introduces a vertical
interference, ω, designated as the indentation. With the normal force
being kept constant, an oscillatory displacement in the X direction δ
is applied to the top of the half-cylinder. The oscillationmagnitude in
each cycle is maintained constant. The fretting cycles obtained are
identical to those in Ref. [17], but again for brevity, the schematics
are omitted here. The loading condition is displacement controlled
in the X direction and force controlled in the Y direction. In other
words, the normal load P and the tangential displacement δ are
inputs, whereas the interferenceω and tangential forceQ are outputs.
An Archard wear model, Eq. (1) is used at the contact between

the half-cylinder and the block. The wear volume V is proportional
to the normal force P and sliding distance S and inversely propor-
tional to the hardness H2 [12]. The hardness H is assumed to be
equal to 2.8*Sy for each material. The dimensionless wear coeffi-
cient K, according to the study by Archard and Hirst [20], is typi-
cally between 10−2 and 10−5 for metallic contacts under
unlubricated conditions. Without the loss of generality, K is set to

10−4 in this work.3 The Archard Wear model is applied locally
(i.e., at each nodal point) at the contact region.

V =
KPS

H
(1)

2.1 Theoretical Equations for Normal Contact. For normal
contact of elastic cylinders in plane-strain, the relations among the
load per unit length P/L, the half contact width b, the maximum
contact pressure p0, and the pressure distribution p(x) is given in
the following, according to the Hertzian theory of contact [9]:

p0 =
2P
πbL

(2)

b =
4PR
πLE′

( )1/2

(3)

p(x) = p0

�������
1 −

x2

b2

√
(4)

The symbol ν represents the Poisson ratio, while E ′ represents the
equivalent elastic modulus, which is given by

1
E′ =

1 − ν21
E1

+
1 − ν22
E2

=
2(1 − ν2)

E
(5)

The symbols E1 and E2 correspond to the elastic moduli of the
half-cylinder and the block, respectively, and ν1 and ν2 corresponds
to the Poisson ratio of the half-cylinder and the block, respectively.
In this work, E=E1=E2 and ν= ν1= ν2, since the material proper-
ties of the two bodies in contact are set to be identical, with the
outcome given in Eq. (5).
For the blockwhose depth equals to the radius of the half-cylinder,

d=R= 0.5 m, the relation between the interference, ω, and the load
per unit length, P/L, is derived by Yang and Green [17]:

ω =
P/L

2πE′ 2 ln
2πRE′

P/L

( )
−

1
1 − ν

{ }
(6)

According to the study by Green [14], the ratio between the
maximum contact pressure and the maximum von Mises stress is
defined as a parameter, C= p0/σemax. In the elastic contact regime,
this parameter is a function of the Poisson’s ratio, C(ν)= 1.164+
2.975ν− 2.906ν2, for ν> 0.1938. By introducing this ratio, the crit-
ical half contact width bc, critical load per unit length Pc/L, and crit-
ical interferenceωc, at the onset of plasticity in the contact, are given
by Refs. [14] and [17]:

bc =
2RCSy
E′ (7)

Pc

L
=
πR(CSy)2

E′ (8)

ωc =
R

2
CSy
E′

( )2

4 ln

��
2

√
E′

CSy

( )
−

1
1 − υ

[ ]
(9)

By substituting the material properties listed in Table 1 into Eqs.
(7)–(9), the critical values are then calculated and listed alongside.
The three cases exhibit critical values that are quite distinct, which
are nearly an order of magnitude different. The critical values in
each case are used to normalize the foregoing results. It is also
noted that the oscillation amplitudes in all cases are always main-
tained at 1*ωc, which is listed in Table 1.

Fig. 1 The loading condition and dimensions of the model

2Equation (1) is used here as Archard intended, regarding hardness as a material
property. According to the work by Jackson and Green [12], it has been shown that
hardness actually depends not only on the yield strength but also on the deformation.
For consistency with the Archard original model, however, hardness is used here as if it
were a constant material property.

3A numerical value for K has to be implemented in the FEA code. However,
because of normalization, the results are generalized for any value of K.
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2.2 Theoretical Equations for Tangential Contact in the
Elastic Regime. Consider the model in Fig. 1 under a Hertzian
pressure, p(x) (Eq. (4)), caused by a total normal load per unit
length P/L (Eq. (2)). A COF μ is applied to the contact when
sliding takes place. According to the study by Johnson [9], when
the tangential traction per unit length Q/L< μ*(P/L), the interface
experiences partial slip conditions. As shown schematically in
Fig. 2, within the contacting region (−b< x< b), the conditions
are stick for [−c, c], and slip between [−b, −c]U[c, b]. The
symbol c is called the stick half-width.
In the slip region, the tangential traction is q′(x)= μp(x), where

p(x) is the Hertzian pressure given by Eq. (4). If the q′(x) is
applied to the entire contact region, [−b, b], there should be
another q″(x) to achieve the stick status for [−c, c], where all the
points in the stick region displace uniformly. The distributions of
q′(x) and q″(x) are given by Johnson [9],

q′(x) = μp0

�������
1 −

x2

b2

√
− b < x < b (10)

q′′(x) = −
c

b
μp0

�������
1 −

x2

c2

√
− c < x < c (11)

Note that q(x)= q′(x) for slip region and q(x)= q′(x)+ q″(x) for
stick region.4 Clearly, the flat block and the half-cylinder always
experience the tangential traction in opposite directions. For
instance, if the half-cylinder is forced to the “right” (i.e., the positive
X direction), in the coordinates of this model, the flat block experi-
ences q′(x) and q″(x), whereas the half-cylinder experiences −q′(x)
and −q″(x).
When the tangential force per unit length reaches Q/L= μ(P/L),

gross slip starts. In other words, the contact status is slip for
the entire range [−b, b], whereas c= 0. By taking the two bodies

as two half elastic spaces, the tangential displacement on the
surface of contact for each body �u(x) within contact is given by
Johnson [9]:

�u(x) = −
(1 − ν2)μp0

bE
x2 · sgn(q(x)) + C − b < x < b (12)

Hence, in the current coordinates, if the half-cylinder is forced to
the “right,” the tangential displacement of the half-cylinder �u1(x)
and that of the block �u2(x) are, respectively:

�u1(x) =
(1 − ν21)μp0

bE1
x2 + C1 − b < x < b (13)

�u2(x) = −
(1 − ν22)μp0

bE2
x2 + C2 − b < x < b (14)

Consider the boundary condition that at the initial of gross
slip �u1(0) = �u2(0) makes the two constants equal C1=C2. The
local sliding distance between the half-cylinder and the flat block
at the initiation of the gross slip s0(x) is then derived by
s0(x) = �u1(x) − �u2(x). By using the relations E=E1=E2 and ν=
ν1= ν2 gives

s0(x) =
2(1 − ν2)μp0

bE
x2 (15)

It is again emphasized that this initial gross slip equation is
derived for elastic conditions.

3 Mesh Convergence
Mesh convergence has been done to a displacement-controlled

model by Yang and Green in Ref. [17]. However, since this
model is force controlled in a normal direction and displacement
controlled in a tangential direction, it is prudent to verify mesh con-
vergence under such conditions just as well.
Element PLANE183 is used to mesh the model in ANSYS 17.1 (a

representative of which is shown in Fig. 3). Taking the case for
steel/steel for instance, there are 58,103 elements for the entire
model. The size of the refined mesh in the contact area is 8 × 10−4

R. One hundred contact elements (CONTA172 and TARGE169) on
each side of the contact are used to simulate the contact between the
half-cylinder and the block. Similar mesh schemes are used to
model the other two material cases.
A frictionless contact condition is applied to the interface

between the rigid plate and the half-cylinder. The contact between
the half-cylinder and the flat block is set to frictionless or frictional
to investigate different cases. In the frictional contact cases, a small
amount of fake slip is generated in the sticking area to calculate the
tangential traction in ANSYS 17.1, and it is documented by ANSYS

[22]. To alleviate the influence of this fake slip, the elastic slip tol-
erance factor is used so as to control the fake slip to be smaller than
1% of the sliding distance applied to the top of the half-cylinder.
The results of the mesh convergence for material Case1 (see

Table 1) is shown in Table 2. It is first done to the pure normal
elastic contact and frictionless loading. To validate the mesh in
FEA, the results from ANSYS are compared with those obtained
from theoretical predictions. With an input of normal force per

Fig. 2 The distribution of tangential surface traction of the cylin-
drical contact under a tangential force, Q/L<μ(P/L)

Table 1 The material properties and critical values for three cases [21]

Case Materials
Elastic modulus, E

(GPa)
Yielding strength,

Sy (MPa)
Poisson
ratio, ν

Critical interference,
ωc (µm)

Critical load per unit
length, Pc/L (MN/m)

Critical half contact
width, bc (mm)

1 Steel 200 911 0.32 927 38.7 14.9
2 Alloy 617 211 322 0.3 144 4.83 5.26
3 Copper 130 331 0.33 328 7.90 8.30

4Note that q(x) has units of stress and is occurring at the interface. It is distinguished
from Q/L, which is the tangential force (per unit length) applied at the top of the half-
cylinder, see Fig. 1.
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unit length P/L (ranges from 0.2*Pc/L to 1*Pc/L), the half contact
width b is calculated by Eq. (3), and the interference ω is calculated
by Eq. (6). The maximum contact pressure p0 is then derived by
Eq. (2). The maximum von Mises stress σemax= p0/C is conse-
quently obtained. The theoretical results for Case1 are compared
with those from the finite element method (ANSYS 17.1), as listed
in Table 2. The percentage differences are listed under “%dif” for
each of the parameters. Except for the difference of half contact
width b, i.e., 4.91% under 0.2 Pc due to the relative coarse mesh,
all the other differences are below 3%. Table 3 lists the results for
the case of P*= 1, but for frictional loading with µ= 0.3, for mate-
rial Case 1. The half contact width converges to 15.2 mm after the
mesh size is reduced to 0.8 mm and below (this is relative to the
cylindrical radius of 500 mm). Note (Table 2) that the theoretical
value for the half contact width is 14.88 mm for frictionless
contact. Clearly, further refinement of the mesh is unnecessary,

and thus, the mesh size of 0.4 mm is mostly adopted. In addition,
the region of contact is safeguarded to always be confined within
the refined mesh. Similar mesh convergence processes for the
other two material cases have also been done with similar outcomes.
Therefore, the mesh can be regarded established for the elastic
normal contact.
Now, mesh convergence verification is done also for tangential

loading. Under a tangential loading per unit length Q/L< μ*(P/L),

Table 2 Comparisons of contact parameters between theoretical predictions and FEA results formaterial Case1. The relation σemax=
p0/C is according to Green [14]

Theoretical predictions

Input Equation (6) Equation (3) Equation (2) p0/C FEA results

P*
P/L

(MN/m) ω (μm) b (mm) p0 (GPa)
σemax
(GPa) ω (μm) %dif b (mm) %dif p0 (GPa) %dif σemax (GPa) %dif

0.2 7.75 221 6.65 0.741 0.408 222 0.43 6.98 4.91 0.736 −0.72 0.410 0.56
0.6 23.2 590 11.52 1.28 0.706 591 0.13 11.75 2.00 1.28 −0.39 0.718 1.74
1 38.7 927 14.88 1.66 0.912 929 0.24 14.93 0.36 1.65 −0.16 0.930 2.03

Fig. 4 The normalized sliding distance at inception of gross slip under P*=1 with μ=0.3 for
three material cases

Table 3 The half contact width for different mesh sizes in the
contact region for a normal load, P*=1, with elastic-perfectly
plastic model for material Case 1

Mesh size in contact region (mm) 8 4 2 0.8 0.4
Half contact width (mm) 16.0 15.7 14.5 15.2 15.2

Fig. 3 The model in ANSYS 17.1
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the contact status is partial slip. At the inception of gross slip, the
relative slip distribution (for the situation when the half-cylinder
is forced to the right), s0(x), is given by Eq. (15). That theoretical
result is compared with those obtained by FEA.
Figure 4 shows the normalized local sliding distance under P*=

1 with μ= 0.3 at the inception of the gross slip for different pairs of
materials. By inputting the normal load per unit length Pc/L, the
maximum contact pressure p0 and the half contact width b are
obtained by Eqs. (2) and (3). With the known parameters, p0, b,
E, ν, and μ, the sliding distance s0(x) is derived by Eq. (15) and nor-
malized by the critical interference ωc. In the FEA model, P*= 1 is
first applied to the top rigid plate and then 1*ωc sliding distance to
the “right” is stepwise applied to the top of the half-cylinder (see the
stepwise details in Ref. [22]). By investigating the contact status
during sliding, the gross slip starts at the sliding distance of
0.44*ωc. The local sliding distance s0(x) at 0.44*ωc is then obtained
from ANSYS 17.1 as the local sliding distance at inception of the
gross slip. The theoretical prediction agrees very well with the
FEA results with a maximum difference less than 5% at the edges
of the contact for all three cases. Note that Eq. (15) shows symmetry
with respect to x, and the FEA results confirm that behavior. The
good agreement also exists for other material cases with different
normal loads and different COFs, but for brevity, those results are
omitted. With that verification, it is concluded that the mesh

convergence for elastic contacts is likewise established for tangen-
tial loading just as well.
Note that since there is no closed-form solution for elastic–plastic

contacts under the combination of normal and tangential loads, the
elements of the mesh are iteratively refined by a factor of two until
there is a less than 1% difference in the contact width between the
iterations.

4 Results and Discussion
4.1 The Initial Gross Slip Distance. In the model of this

work, after the normal load P/L is applied, the sliding distance δ
is applied uniformly to every point on the top of the half-cylinder,
as shown in Fig. 5. Before gross slip initiates, the sliding distance δ
equals to the addition of the deflection of the half-cylinder δ1 and
the tangential displacement of the stick region δ2, while the center-
line of the half-cylinder OA deforms to O′A′. The deflection of the
half-cylinder δ1 equals to the deflection of the centerline. The mid-
point of the contact region is point O, which is also the last point in
stick just before the gross slip starts. The tangential displacement of
the stick region δ2 equals to the tangential displacement of the mid-
point O to O′, so δ2 = OO

′
.

For the frictional contact under the partial slip condition, as the
sliding distance δ increases, the tangential traction Q/L increases
with it. When Q/L= μ(P/L), the onset of the gross slip begins.
The corresponding sliding distance is designated to the initial
gross slip distance δi. That δi varies under different P/L and different
COFs. Figure 6 shows both the FEA results and theoretical predic-
tions for the evolutions of the normalized initial gross slip distance
δi/ωc with different P* and μ for steel/steel. The inset of the figure
shows the same results but in linear scale coordinates. The δi is
shown to be proportional to P/L and μ. A fitting function is found
to express δi analytically as follows:

δi = 4.78μ1.15
P/L

RE

( )0.928

R (16)

The rationale for this fit form is forthcoming (details are provided
also in the Appendix).
The predicted normalized initial gross slip distance from the

fitting function in Eq. (16) is compared with the results from the
FEA, as shown in a semi-log scale shown in Fig. 6. The normal-
ized load is given in the log scale to spread the data points at low
P*. The results from the FEA and the fitted function agree wellFig. 5 The schematic of the sliding distance

Fig. 6 The normalized initial gross slip distance under different normalized normal loads with
different COFs for the FEA results and fitting functions, Eq. (16), for steel/steel
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with the maximum difference of less than 5%. Noteworthy, Fig. 7
shows the dimensional initial gross slip distance under μ= 0.3
and different normal loads for three different pairs of material for
R= 0.5 m and for steel/steel also for three radii R= 0.05 m,
0.5 m, and 5 m. The normal load for each material ranges from
0.01*Pc/L to 1*Pc/L. While the three materials listed in Table 1
are vastly different in their properties, the results from the FEA
and the fitted function agree well with less than 5% difference
even when the radii are orders of magnitude different. Therefore,
in the foregoing analysis, Eq. (16) is used to predict the initial
gross slip distance.
The initial gross slip δi as given by Eq. (16) seems nearly linearly

proportional to μ and P/L. This is explained in the Appendix with
the Timoshenko beam theory and half elastic space loading analy-
sis. The deflection of the half-cylinder δi1, where the gross slip ini-
tiates, is obtained in the Appendix, specifically see Eq. (A8). By
nullifying the unknown but small moment on the tips, M0/L= 0,
the deflection of the half-cylinder can be estimated.
Figure 8 shows the deflections of the half-cylinder at the initiation

of gross slip from FEA and Eq. (A8) (withM0/L being neglected as
discussed in the Appendix), for P*= 1 at three different COFs.
Although the results from both seem to converge for small COFs,
the difference increases with the COFs, which causes larger tangen-
tial loads and strains. Recall that the strain-displacement relation in
the Timoshenko beam analysis is valid for small strains. Conse-
quently, this is the cause for the discrepancy.
The tangential displacement δi2 can be estimated by taking the

block as a half elastic space and applying the Hertzian distributed

tangential traction to the contacting region. The tangential displace-
ment distribution u(x) on the surface is derived by Eq. (A18).
Figure 9 shows the u(x) from FEA and Eq. (A18) at P*= 1 with
μ= 0.3. The results agree well on the “left” side of the surface
with little difference at the contact center. A larger difference
appears on the “right” side, since the boundary condition of the
right side of the block is free, so the block does not produce suffi-
cient resistance to horizontal deflection. The difference is likewise
heightened by ignoring the normal load, p(x), when calculating u
(x). Fortunately, however, the tangential displacement δi2 is relevant
only on the “left” part (x< 0) of the surface anyhow. Therefore, the
estimation in Eq. (A19) is unaffected by the differences shown in
the behavior on the “right” side. Noteworthy, Eqs. (A8) and
(A19) that estimate δi1 and δi2, respectively, are nearly linearly pro-
portional to μ and P/L, which provides the rationale for Eq. (16).
The slight deviation from linearity is caused by the difference in
the boundary conditions used in the FEA pitted against the half-
space assumption used in the analytical model.

4.2 TheWear Volume at Initiation of Gross Sliding. As dis-
cussed in Sec. 2.2, before gross sliding starts, the contact condition
is partial slip and partial stick, as shown in Fig. 2. The local Archard
Wear model is applied to the interface, as given by the following
equation:

v(x) =
K

H
p(x)s(x) (17)

Fig. 7 The dimensional initial gross slip distance under different normal loads with μ=0.3 for the
FEA results and fitting functions results for steel/steel (for R=0.05 m, 0.5 m, and 5 m), for
Alloy617/Alloy617, and for Cu/Cu (for R=0.5 m)

Fig. 8 The deflections of the half-cylinder at the initiation of the
gross slip from FEA and Eq. (A8) with for P*=1 at different COFs

Fig. 9 The tangential displacement on the surface of the block
at P*=1 with μ=0.3 from FEA and half elastic space estimation

061012-6 / Vol. 86, JUNE 2019 Transactions of the ASME

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/86/6/061012/6389065/jam
_86_6_061012.pdf by G

eorgia Institute of Technology user on 26 February 2020



Here, only the wear on the half-cylinder is considered. The local
wear volume v(x) is proportional to the dimensionless wear coeffi-
cient K, contact pressure p(x), and the local sliding distance s(x),
whereas it is inversely proportional to the hardness H. Clearly,
wear happens in both the half-cylinder and the block, in which
case the wear volume is just twice that of the case for the half-
cylinder alone. This is true for identical materials in contact. Had
the materials been different, the wear volume would be inversely
proportional to the hardness. Note that the evolution of the contact-
ing profile due to wear is not considered here.
At the initiation of gross sliding, the local sliding distance is s(x)

= s0(x), as given by Eq. (15). The pressure distribution can be
approximated by the Hertzian pressure p(x) as given by Eq. (4).
The total wear volume at the initiation of gross sliding V0 can be
derived by integrating Eq. (17) over the region in contact:

V0 =
∫b
−b

K

H
p(x)s0(x)dx =

∫b
−b

K

H
p0

�������
1 −

x2

b2

√
2(1 − ν2)μp0

bE
dx (18)

The result of the Eq. (18) gives the wear volume at the initiation
of gross slip, giving:

V0 =
(1 − ν2)μπKp20b

2

4HE
(19)

To normalize the results, the critical wear volume Vc is defined as
follows:

Vc =
Kcωc(Pc/L)

H
(20)

Herein, the critical wear coefficient is defined as follows: Kc= 1.
Figure 10 shows the normalized wear volume at the initiation of

gross slip V0/Vc from FEA and Eq. (19) at different normal loads
and COFs for steel/steel. Since the tangential displacement is
applied stepwise, it is hard to pinpoint numerically the initiation
of gross slip. Conversely, the two steps changing from partial slip
to gross slip are easy to detect. Thus, V0 in the FEA is decided as
the average volume between these two steps. As shown in
Fig. 10, the results in the FEA and from Eq. (19) agree very well
with less than 5% difference, which further verifies the theoretical
prediction.
Figure 11 shows the wear volume at the initiation of gross slip V0

from FEA and Eq. (19) with μ= 0.3 now for different material pairs.
The normal load for each material ranges from 0.01*Pc/L to 1*Pc/L.
The results for the three cases from the FEA and Eq. (19) are all in

excellent agreement with less than 5% difference, which supports
the viability of using Eq. (19) for different material pairs.

4.3 Prediction of Fretting Wear Volume Under Elastic
Conditions. During the fretting motion, the amplitude of each
cycle in different cases (see Table 1) is maintained at 1*ωc.
Figure 12 shows the typical evolution of wear volume during one
cycle of the motion from FEA results at P*= 1 with different
COFs for steel/steel under elastic conditions. The nominal sliding
distance, Sn, represents the cumulative tangential sliding distance
applied to the top surface of the half-cylinder, which is different
from the local sliding distance at the contact region. It is also differ-
ent from δ, which is the tangential displacement applied to the top
surface of the half-cylinder. For µ= 0, the wear volume increases
linearly with respect to the nominal sliding distance, and it is a
special case for gross slip fretting. For µ= 0.3, there are two parts
in each direction of sliding (the half-cylinder changes direction at
Sn*= Sn/ωc= 1, 3, etc.). At the beginning, the contact status is
partial slip, and the wear volume increases slowly. As the half-
cylinder displaces further, gross slip starts and the wear volume
increases linearly at the same rate as that in the case of µ= 0. For
µ= 1, the contact status is always partial slip with no gross slip.
Thus, the wear volume is negligible compared with the other two
cases. In this study, the prediction of the wear volume is only
done for the case when the gross slip condition is reached.
For the case with µ= 0.3 as shown in Fig. 12, the evolution of the

wear volume is periodic after Sn*= 1. Hence, a general cycle is pre-
sented in the figure, starting where the half-cylinder is positioned at
the rightmost point, i.e., x*= 1 or Sn*= 1, heading back to the left-
most position, i.e., x*=−1 or Sn*= 5, thus completing a general
cycle. Then, the half-cylinder changes motion returning to the right-
most position.
Thus, the wear volume for a general cycle is analyzed by taking

the cycle, Sn*= 1 to 5, for instance. At the beginning of the cycle
(Sn*= 1), the half-cylinder is at the rightmost position, x*= 1.
Since the half-cylinder is forced to the right before reaching Sn*= 1,
its centerline is predeflected by a tangential force acting to the
right. At the beginning of the cycle, the half-cylinder starts to
move to the left. The centerline of the half-cylinder now restores
and deforms from the right to the left. As a result, it takes a
nominal sliding distance 2δi (i.e., Sn= 2δi) to finish the partial slip
condition, with a corresponding wear volume that is V= 2V0. As
the half-cylinder slides further to the left, gross slip starts, i.e., the
nominal sliding distance equals to the sliding distance in the
contact region, s(x)=ΔSn. The normalized wear rate, i.e., the slop

Fig. 10 The normalized wear volume at the initiation of the gross slip, V0/Vc, from FEA and
Eq. (19) at different normal loads and COFs with K=10−4 for steel/steel
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of the normalized wear volume in Fig. 12, for the gross slip is

ΔV*
ΔSn*

=

�b
−b
Kp0(x)ΔSndx

H
/
KPcωc

H
ΔSn/ωc

= K

�b
−b p0(x)dx

Pc
= KP* (21)

Here, ΔV*=ΔV/Vc, ΔSn*=ΔSn*/ωc.

When the half-cylinder returns back to the right at x*= 0 or Sn*=
3, the second partial slip starts with V= 2V0. After that, another
gross slip begins with the normalized wear rate given by Eq. (21).
Thus, the total wear volume for a general cycle during the partial
slip condition is as follows:

Vpartial* = 4V0* δi* < 0.5 (22)

The total normalized nominal sliding distance for the gross slip
condition during a general cycle is ΔSn*= 4(1− δi*). Then, the
total wear volume for the gross slip condition during a general
cycle is

Vslip* = ΔS*
ΔV*
ΔS*

= 4(1 − δi*)KP* δi* < 0.5 (23)

The normalized wear volume for a general cycle of the fretting
motion is then the sum of Vpartial* and Vslip*:

V* = 4V0* + 4(1 − δi*)KP* δi* < 0.5 (24)

If δi* > 0.5, the partial slip condition will last for the whole cycle,
which leads to a very small (negligible) wear volume.
Figure 13 shows the normalized wear volume for a general cycle

of fretting motion under elastic condition with different normal loads
and COFs for steel/steel. The results from FEA and Eq. (24) agree
very well, which further verifies the theoretical predictions. For the
case with µ= 0.5, the wear volume first increases with the normal
load as predicted by the Archard Wear model. However, the wear

Fig. 12 The FEA results of the evolution of normalized wear
volume during three cycles of fretting motion at P*=1 for steel/
steel in elastic contact

Fig. 11 The normalized wear volume at the initiation of gross slip, V0/Vc, from FEA
and Eq. (19) at different normal loads with µ=0.3 for steel/steel, Alloy617/Alloy617,
and copper/copper

Fig. 13 The wear volume for a general cycle of frettingmotion at elastic condition for
different normal loads and COFs, comparing FEA and theoretical predictions for
steel/steel (for R=0.5 m)
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volume decreases as the normal load further increases, because δi*
increases with P*, which then decreases V*, as shown in Eq. (24).
Figure 14 shows the results of the wear volume for a general

cycle of fretting motion under elastic condition with µ= 0.3 under
different normal loads, now for three different material cases (see
Table 1). The results from the FEA and theory are in very good
agreement, which further verifies the analytical predictions.

4.4 The Effect of Plasticity. In the previous section, the wear
volume is considered for elastic conditions. Here, the elastic-
perfectly plastic contact model is applied. To find the influence of
plasticity on the wear volume, two groups of loading condi-
tions are compared. One is the loading that introduces plasticity,
and the other is the same loading but yielding (or plasticity) is dis-
abled (i.e., pure elasticity is open endedly imposed on the material
in ANSYS 17.1, as it is solved in Sec. 4.3). The wear volumes between
the elastic and plastic conditions are then compared in Fig. 15.
Figure 15 shows the evolution of the wear volume at P*= 1 with
different COFs under elastic and elastoplastic conditions. Plasticity
appears due to the combined effects of normal and the frictional tan-
gential loadings. The wear volumes under pure elastic conditions
are larger than those under elastoplastic conditions in these two
cases. For μ= 0.3, there is a larger tangential deflection in the elas-
toplastic case, which decreases the gross slip distance and the wear
rate during gross slip. Consequently, the wear volume in the elasto-
plastic case is smaller. For μ= 0.5, the decrease of the wear volume
in the elastoplastic condition is dominated by the junction growth
effect (see details in Ref. [17]). Due to the large COF, higher
plastic strains (deformations) are generated at the interface,
causing an increase of the contact region, i.e., causing junction

growth. The junction growth leads to the partial slip condition at
the two limit positions during the fretting motion, which greatly
decreases the wear volume.
It should be noted that the wear volumes in elastic cases are not

always larger than those in elastoplastic cases under the same
loading conditions. As shown in Fig. 16, the wear volume at P*
= 3 with μ= 0.3 is larger in the elastic case first, but larger in the
elastoplastic case after three-fourth of the cycle that keeps getting
larger up to three cycles, which is the largest number of the cycle
in the current simulation. Wear is larger in the elastic case first,
because plasticity introduces the junction growth, which decreases
the sliding distance at the interface with the same amount of
nominal sliding distance. It is larger in the elastoplastic case after-
ward because the cross section A(x) given in Eq. (A3) is getting
larger in the elastoplastic contact, which decreases the deflection.
Consequently, the sliding distance at the interface is larger in the
elasto-plastic case than that in the elastic case after one cycle.

5 Conclusion
A fretting wear model is presented in this work for a cylindrical

line contact, under 2D plane-strain conditions, for force controlled
in the normal direction and displacement controlled in the tangential
direction. Friction and the Archard wear model are applied at the
interface. Three different material pairs are examined by the
model. The following are the outcomes:

(1) The initial gross slip distance is defined and approximated
with the Timoshenko beam theory and line loading of a
half elastic space. A fitting function for the initial gross
sliding distance is also derived. Both the theoretical

Fig. 14 The wear volume for a general cycle of fretting motion at elastic condition with µ=0.3
under different normal loads from FEA and theoretical predictions for steel/steel, Alloy617/
Alloy617, and copper/copper (for R=0.5 m)

Fig. 15 The evolution of wear volume at elastic and plastic conditions with different COFs under
P*=1 for steel/steel during one cycle of fretting motion (for R=0.5 m).
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approximation and the fitting function agree well with the
FEA results.

(2) The wear volume at the initiation of the gross slip is derived.
Results between the theoretical prediction and FEA are in
good agreement.

(3) The wear volume under elastic conditions for a general cycle
of the fretting motion is derived based on the fitting function
of the initial gross sliding distance. The results are in good
agreement between the theoretical predictions and the FEA.

(4) The effect of the plasticity is analyzed. On the one hand,
under small normal loads, plasticity introduces small deflec-
tions and junction growth when COFs are large. These two
effects decrease the wear volume. On the other hand, under
larger normal loads, plasticity introduces larger cross sec-
tions, which makes the two bodies stiffer to the tangential
load. As a result, the deflection decreases, and the wear
volume increases.
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Nomenclature
b = half contact width
c = stick half contact width
q = tangential traction, q = q′ + q″
s = local sliding distance
v = local wear volume
A = cross section of the beam
C = Poisson’s ratio parameter
E = elastic modulus
G = shear modulus
H = material hardness
I = second moment of area
K = dimensionless wear coefficient
L = transverse length along the cylindrical contact
R = radius of half-cylinder
V = wear volume
ū = tangential displacement on the surface of a half elastic

space
bc = critical half contact width
p0 = maximum contact pressure
p0c = critical maximum contact pressure
s0 = local sliding distance at the initiation of the gross slip
E1 = elastic modulus of the half-cylinder

E2 = elastic modulus of the block
Sn = nominal sliding distance
Sy = yield strength
V0 = wear volume at the initiation of the gross slip
Vc = critical wear volume
q′ = tangential traction at slip region, µp(x)
q″ = supplementary tangential traction at stick region
E′ = equivalent elastic modulus
P* = normalized normal force, P/Pc

V* = normalized wear volume, V/Vc

Sn* = normalized nominal sliding distance, Sn/ωc

M0/L = moment on the tip of the half-cylinder per unit length
P/L = normal force per unit length
Pc/L = critical normal force per unit length
Q/L = tangential force per unit length

δ = horizontal displacement
δi = initial gross slip distance
δi1 = the deflection of the half-cylinder at the initiation of the

gross slip
δi2 = the displacement of the stick region at the initiation of the

gross slip
δ* = normalized horizontal displacement, δ/ωc

Δ = the deflection of the half-cylinder
µ = coefficient of friction
ν1 = Poisson’s ratio of the half-cylinder
ν2 = Poisson’s ratio of the block
φ = angle of the mid-surface of beam
ω = interference
ωc = critical interference
ω* = normalized interference, ω/ωc

Appendix
The initial gross sliding distance for elastic contacts can be esti-

mated by regarding the half-cylinder as a Timoshenko beam5 while
assuming the block as a half elastic space. The loading condition of
the half-cylinder is shown in Fig. 17, when the gross slip initiates,
i.e., when Q/L= μ(P/L). In addition to Q/L, there is also a moment
per unit length M0/L, acting about the tip of the half-cylinder. This
moment M0/L is caused by the curvature of the contacting surface
and the local tangential traction μp(x) (as shown in Fig. 17(b)).
This moment is directly related to μ and P/L. The moment dis-
tribution M(x)/L, the second moment of area I(x)/L, and the

Fig. 16 The evolution of wear volume at elastic and plastic conditions with μ=0.3 under P*=3
for steel/steel during one cycle of fretting motion

5The Timoshenko beam is appropriate for thick or short beams, since it accounts for
shear deformation and rotational bending effects.
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cross-sectional area A(x)/L are given, respectively, by

M(x)
L

= μ
P

L
(R − x) +

M0

L
(A1)

I(x)
L

=
2
3
(R2 − x2)3/2 (A2)

A(x)
L

= 2(R2 − x2)1/2 (A3)

According to the Timoshenko beam theory [23], the angle of
rotation of the mid-surface is defined as φ. The derivative of φ is
determined by M(x)/L and I(x)/L according to

M(x)
L

= −E
I(x)
L

dφ

dx
(A4)

By integrating Eq. (A4) with the boundary condition, φ= 0 at x=
0, the distribution of φ is expressed as follows:

φ(x) =
3
2
μP

REL

R − 1 +
M0

μRP

( )
x��������

R2 − x2
√ − 1

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (A5)

According to the Timoshenko beam theory [23], the derivative of
the deflection of the half-cylinder Δ is related to φ by:

dΔ
dx

= φ −
1

kAG

d

dx
EI

dφ

dx

( )
(A6)

By substituting φ(x) from Eq. (A5) into Eq. (A6), the distribution
of deflection of the half-cylinder Δ can be solved by integrating Eq.
(A6) with the boundary condition Δ= 0 at x= 0. The expression of
Δ(x) is thus:

Δ(x)=
3
2
μP

EL
arcsin

x

R

( )
+ 1 +

M0

μRP

( ) ��������
R2 − x2

√
− R

R
−
x

R

[ ]

−
μP

2kGL
arcsin

x

R

( )
(A7)

The deflection of the half-cylinder at the initiation of gross slip δi1
can be estimated by taking the deflection of the tip of the beam, δi1=
Δ(R). That is given by

δi1 = |Δ(R)| = 3μP
4EL

(4 − π) +
3M0

2EL
+

πμP

4kGL

[ ]
(A8)

Here, the Timoshenko shear coefficient k for rectangular cross
section is taken according to the study by Cowper [24] as

k =
10(1 + ν)
12 + 11ν

(A9)

and the shear modulus G is given by

G =
E

2(1 + ν)
(A10)

The influence of the moment M0/L on δi1 is now analyzed. The
moment is maximum when the half-cylinder is undeformed (the
curvature of the tip is maximum as if the normal load does not
deform the tip of the half-cylinder). Hence, the maximum
moment M0/L can be estimated using Fig. 18. The contact region
−b< x< b is confined to a corresponding angle range −θ0 < θ < θ0,
where θ0 is given by

θ0 = arcsin
b

R
(A11)

The local frictional force in this region is q(x)= µp(x). The arm of
the force is represented by the length ofOC in Fig. 18 and is given by

OC = 2R sin2
θ

2
(A12)

The moment on the tip of the half-cylinderM0/L can be estimated
by integrating the product of the local friction force and the armof the

Fig. 17 (a) The loading condition of the half-cylinder as a Timoshenko beam at slip onset and
(b) zoomed in the contact region

Fig. 18 The schematic of the loading condition for estimation of
the moment on the tip of the half-cylinder, M0/L
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force:

M0/L=
∫b
−b
μp(x)2R sin2

θ

2
dx=

∫θ0
−θ0

2μp0

����������������
1−

R sinθ
b

( )2
√

R2 sin2
θ

2
dθ

(A13)

In the case where θ is small, which agrees with the conditions
here (θ=∼0.01 rad), Eq. (A13) can be simplified as follows:

M0/L =
μπp0b3

16R
(A14)

According to the above estimation, the deflection of half-cylinder
caused by theM0/L is found to be less than 0.1% of the total deflec-
tion for different material cases and different normal loads with dif-
ferent COFs. Therefore, the moment on the tip of the half-cylinder
M0/L can largely be ignored in the foregoing.
The tangential displacement of the stick region δi2 can be esti-

mated by assuming the block to be a half elastic space and by apply-
ing the Hertzian tangential traction q(x) to the surface. At the
initiation of the gross slip, the local tangential traction in the
contact region approaches q(x)= μp(x) within the contact region,
[−b, b] (see Fig. 2), and it is given by

q(x) = μp0

�������
1 −

x2

b2

√
− b ≤ x ≤ b (A15)

According to the study by Johnson [9], for a half elastic space, the
derivative of the displacement on the surface of a half elastic space
is determined by the distributed tangential traction.

∫b
−b

μp0
b

��������
b2 − s2

√

x − s
ds = −

πE

2(1 − ν2)
du

dx
(A16)

The integrations of the left hand side of Eq. (A16) are distinct for
the regions inside and outside the contact region, thus

du

dx
=

−
2(1 − ν2)μp0

bE
(x +

��������
x2 − b2

√
) (−∞, −b)

−
2(1 − ν2)μp0

bE
x(−b, b)

−
2(1 − ν2)μp0

bE
(x −

��������
x2 − b2

√
) (b, +∞)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(A17)

Consequently, the tangential displacement on the surface u can
be obtained by integrating Eq. (A17). Here, we take the initial
center of the contact as the datum, i.e., u(0)= 0. Then, u(x) can
be derived to give

u=

−
(1−ν2)μp0

bE
x2+x

��������
x2−b2

√
−b2 ln

−x−
��������
x2−b2

√

b

( )
(−∞, −b)

−
(1−ν2)μp0

bE
x2 (−b, b)

−
(1−ν2)μp0

bE
x2−x

��������
x2−b2

√
+b2 ln

x+
��������
x2−b2

√

b

( )
(b, +∞)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A18)

Note the similitude of Eq. (A18) for (−b, b) and Eq. (15). The
displacement of the stick region δi2 at the initiation of the
gross slip can be estimated by taking the difference between

the u(x) at the leftmost position (x=−2R) and the center of the
contact (x= 0). Thus, the estimation of δi2 is δi2= u (0)=−u
(−2R), giving

δi2 =
(1 − ν2)μp0

bE
4R2 − 2R

����������
4R2 − b2

√
− b2 ln

2R −
����������
4R2 − b2

√

b

( )

(A19)

If the contact width is much smaller than the radius, b≪R,
Eq. (A19) can be approximated while also using Eq. (2) for p0
to finally result in

δi2 =
(1 − ν2)μP

πEL
1 − 2 ln

b

4R

( )
(A20)

This result shows a linear relation with respect to μ and a
nearly linear with respect to P/L (the nonlinearity is caused by
the term ln (b/4R), where by Eq. (3), b is a function of P/L).
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