Gyroscopic and Support Effects on
the Steady-State Response of a
Noncontacting Flexibly Mounted
Rotor Mechanical Face Seal

The dynamic behavior of a noncontacting rotary mechanical face seal Is analyzed. A
closed-form solution is presenied for the response of a flexibly mounted rotor to
Sforcing misalignments which normally exist due fo manufacturing and assembly
tolerances. The relative misalignment between the rotor and the stator, which is the
most important seal parameter, has been found to be time dependent with a cyclical-
ly varying magnitude. The relative response is minimum when support stiffness and
damping are minimum. The gyroscopic couple is shown to have a direct effect on the
dynamic response. This effect is enhanced at high speeds, and depending on the
ratio between the transverse and polar moments of inertia, it can either decrease or
increase the dynamic response. Its effect is most beneficial to seal performance when
the rofor is a “short disk.”> A numerical example demonstrates that a flexibly-
mounted rotor seal outperforms a flexibly mounted stator seal with regard to the
total relarive misalignment, the critical stator misalignment, and the critical speed.
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Introduction

With the ever increasing demand for higher speeds,
pressures, and temperatures in high performance rotating
machinery, nongontacting sealing is essential for long life and
reliable operation, Advances in analysis, development, and
design of face seals in the past two decades have been im-
pressive {Allaire, 1984). Yet, the vast majority of research,
especially dynamic investigations, has concentrated on
mechanical face seals whose flexibly mounted element is sta-
tionary (Etsion, 1982 and 1985). In a very recent study (Green,
1988) it was found that a mechanical face seal whose flexibly
mounted element is rofating will be either inherently stable or
conditionally unstable as a result of the gyroscopic couple.
The nature of this couple was shown to depend upon the ratio
between the transverse and polar moments of inertia of the
rotor. If the seal is designed properly, i.e., if the rotor is a
“short disk®* so that the inertia ratio is kept below a critical
value, dynamic stability is guaranteed at any speed {as op-
posed to the case of the flexibly mounted stator type seal
{Green and Etsion, 1985)). On the other hand, if therotorisa
“*long disk’ so that the inertia is above the critical value, the
seal may be either stable or unstable, However, most practical
mechanical face seals fall into the category of ‘‘short disks.”
Therefore, it is quite unlikely that dynamic instability will ever
occur in a real seal. Still, failure due to face contact or high
leakage may result from a high relative misalignment between
the two seal elements (stator and rotor) at steady state. This
relative misalignment originates from stator and rotor
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misalignments normally resulting from manufacturing and
assembly folerances. This misalignment is directly affected by
system parameters and operating conditions.

The problems associated with rotatry (i.e., flexibly mounted
rotor) seals have been addressed by Nau (1981). A qualitative
solution limited to rotor nutation angles much smaller than
the stator misalignment has been presented by Metcalfe
(1981). The effect of initial rotor misalignment upon the
dynamic response has never been addressed.

This paper is a logical extension and completion of a
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previous work (Green, 1988) which focused on the stability
problem. Here, the general steady-state problem where both
rotor and stator are misaligned with respect to the axis of shaft
rotation will be considered. The rotor response to these
misalignments will be presented in a closed form analytical
solution. The same effects that were found to greatly influence
dynamic stability, namely, the gyroscopic couple and the flexi-
ble support characteristics, will draw our special atiention.

Coordinate Systems and Equations of Motion

A noncontacting flexibly mounted rotor mechanical face
seal is shown in Fig. i. The rofor is supported by a cir-
cumferential spring and by a secondary seal, and it is driven by
no more than two positive drive devices. (If the situation
allows and the flexible support is capable of supporting the
frictional torque at the interface (i.e., at the sealing dam), the
drives should be climinated altogether since they introduce an

Section A-A

Fig. 3 Relative position balween rotor and stator

port.) Five different coordinate systems are needed for the
solution of the stated problem. The systems are shown in Figs,
2 and 3 and are described below:

1. Intertial reference system-£y¢

¢ Fixed in space

e {is the axis about which the shaft rotates

Rotating reference system-XYZ

* Attached to the shaft and rotates with it at a speed w
® The directions of Z and { coincide

¢ The angle between X and £ is wf

3. Rotor reference system-xyz
¢ x is always in the XY plane
* v, is the rotor nutation angle about x
o y always points to the point in the rotor plane of max-
imum distance from the XY plane
* The rotor is free to spin within xyz about z
¢ The angle between X and x is the relative precession
of the rotor, ¥
¢ The angle between £ and x is the absolute precession
of the rotor, ,. Hence,

[

undesirable nonaxisymmetric character to the flexible sup- Yr=wtt+y M
Nomenclature
C, = design clearance P = dimensionless pressure, p/S
D* = angular damping coefficient P = pressure . s .
D = dimensionless angular damping R = dimensionless radial coor- ubscripts
- coefficient, D*wC,/Sré dinate, r/r, cr = critical
I* = rotor moments of inertia; r = radial coordinate f = fluid film
transverse I*, polar I} § = seal parameter, i = inner radius, or initial rotor
I = dimensionless moment of iner- Su(r, /Cy {1 - R;)* misalighment _ o
tia, M*w?C,/Srd B* = face coning I = rotor response 10 its own initial
K* = angular stiffness coefficient g = dimensionless coning, 8*r,/C, misalignn?ent .
K = dimensionless angular stiffness 4* = misalignment o = outer radius, or relative
coefficient, K*C,/Sr} v = dimensionless misalignment, iisalignment in the absence of
m* = rotor mass /G, YVei
m = dimensionless mass, p = viscosity r = rotor )
m*w?C,/Sr} » = shaft angular velocity s = stator, or flexible support
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4, Stator reference system-x,¥%;
o Fixed in space
o x, is parallel to the X Y plane
e ., is the stator misalignment about x;
o y_ always points to the point in the stator plane of
" minimum distance from the XY plane
o y, is the angular location of x; measured from £

5. Relative reference system-123
o Rotating reference as viewed by an observer placed on
axis 1
o 1 is always parallel to the x,»; plane
o v is the relative misalignment measured between rotor
and stator normals, z and z;, respectively
o 2 always points to the point in the rotor plane of max-
imum distance between rotor and stator
o The angle between X and 1 is the relative precession
of axis 1, ¢,
o For small nutation and misalignment angles, the
following vector relationship applies:
Y=~ %s @
Bquation (2) is valid for any practical mechanical face seal
since the axial clearance, C (see Figs. 2 and 3), is very small
compared to any radial distance to the sealing dam.
Therefore, tilts are very small, and all reference systems can be
described in the planar vector diagram of Fig. 4. The vector
relationship of equation (2} is shown in the parallelogram
along with the varlous applied moments that act on the
flexibly-mounted rotor. One such moment, My;, is due to the
rotor’s own initial misalignment, vy, (prior to attachment}, as
can be expected from an imperfect spring or secondary seal
support, The motion of the rotor within the housing produces
an applied moment, M, which originates from the flexible
support (expressed in the rotating reference xyz), while the
relative mation between the rotor and stator produces the
fluid film moment, M, (expressed in the relative system 123).
These moments along with the equations of motion have been
derived in detail by Green (1988). That work demonstrates
that as long as the analysis is Hmited to small perturbations,
the equation of motion in' the axial mode is linear,
homogencous, and decoupled from the equations in the
angular mode. The treatment of this equation in that work is
complete and will not be repeated here. However, the
nonhomogeneous equations of motion in the angular mode re-
main to be sotved: These equations read:
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The last termt on the lefi-hand side of both equations, which
involves I,, is a gyroscopic term. These terms are inherent in
the problem because the dynamic moment is written for a
misaligned rotating element, that is, the flexibly mounted
rotor {Green and Etsion (1986a)). The overall stiffness and
damping coefficients, K and D, respectively, are-given by

K=K, +K; (4a)

D=D,+D; (4b)

where the subscripts s and f designate the support and the Fluid
film, respectively. The above equations are nondimensional
(see Nomenclature for normalization). The various normal-
.ized angular coefficients are summarized in the Appendix. The
angles p* and p (used Iater) are simply

p’:lpr""v['s

p=¢,—¥

(5a)

(5D}

Steady-State Response

The equations of motion (3) are expressed in the Bulerian
system, xyz, and are obviously nonlinear. However, when
these equations are transformed to the inertial system, &n{,
with the simplification that misalignment and nutation angles
involved are very small, they become linear {though coupled)
equations (Green, 1988). The lincar nature of the equations
enables us to identify the forcing functions and solve for each
forcing function separately. The responses can then be com-
bined, employing the superposition principle, to produce the
complete steady-state response. The two forcing functions in-
volved originate with the fixed stator misalignment, v,, and
the initial rotor misalignment «,;.

Rotor Response to Stator Misalignment. In this section we
assume that the rotor is initially perfecily aligned, i.e., v, =0.
Since the stator niisalignment, v,, is fixed in space, the rotor
response, v,;, must also be fixed in space. Explicitly, the time
derivatives of the nutation and the absolute precession angles
equal zero:

Y= ').’rs =0

‘l’r =¥, =0

where o is normalized time. If the rotor maintains an absolute
precession rate of zero (¢, =0) equation (1) resulis in y= 1,
Due to the kinematical constraint imposed on the rotor in the
form of a wiversal joint (Green and Etsion, 1986a), the spin
rate is the negative of the relative precession rate. This means
that while the housing rotates about axis Z at a speed w, the
rotor spins about axis g of Fig. 2 at the same speed. At the
same time the rotor precesses (whirls) in a direction opposite
to that of the housing (i.e., the negative Z direction). Since the
magnitudes of all angutar velocities are equal the motion can
be called ‘‘synchromous retrograde precession’ or ‘‘syn-
chronous backward whirl.”® The vector diagram of Fig, 5
describes the kinematic relationship Letween the parameters
involved in this case. Substituting the identities above into
equation (3) and rearranging, we have
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k’y:s = (KJCOS'O ‘ w—z—Dfsinp ') Ys (Ga)

1 .1
(Ds + TD,) Py = (K sing” + TDJCOS:G')% (60
Adding the squares of right and left hand sides defines the ab-
solute {ransmissibility of the systemn

1
2 h_.DZ
(%s 2 A ;
v T 1N @
K2+(DS+TDf)

Note that inertia is not a part of the solution due to the
above kinematical conditions which cause all of the dynamic
moments to vanish, i.e., this is a static response of the rotor to
a static forcing function. Therefore, axis x in Fig. 5 is sta-
tionary. Of great importance is the relative misalignment, +,
between the rotor and stator. This misalignment directly in-
fluences the leakage from: the seal and determines whether
touchdown of the faces occurs. Therefore, this misalignment
should be minimized. Since v, and v, are stationary, cquation
(2) implies that v (or in this case vo) must also be siationary as
indicated on axis ! in Fig. 5. Using equation {2) and Fig. 5, we
have

yeosp =y, —yscosp’ (8a)
ysing =v,sing’ (8D)
Substituting equations (8) in equations {6) results in
1 s
Key,s=— (K /C08p +—2—Dfsmp)'yo 9a)
. 1
Dy = (Kjsino = -Dycosp) o 9b)

where in this case we have substituted ¥, and 4, for y and v,,
respectively. Repeating the same process that follows equa-
tions {6), we get

( Yo ) 2 _ KSZ +DSZ
‘st 1

K}+ ?sz
Multiplying equation (7) by equation (10) gives the relative
transmissibility

(10)

(70 )2 =K52+Dsz

1i
", ] R (11}

K+ (DS + TDf)
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Flg. 6 Vector diagram of the roler response to Hs own Intlial
misalignment

It is quite obvious that in order to minimize v, we require
that K, and D, be small compared to K, and Dy, indicating
that a very soft support is preferable. A hypothetical ¢limina-
tion of K, and D, results in +y,, =y, and y; =10 as can be easily
verified from equations (7) and (11} (note that K=K, + K, as
given by equation (d4a)).

Rotor Response to Its Own Initial Misalignment, In this
section we assume that the stator is perfectly aligned, i.e.,
v, =0 where v,; is the initial rotor misalignment, Since the mo-
ment M,; =Ky, is constant in the rotating reference XYZ,
the rotor response, +v,;, to this forcing function must be of the
same nature. This is, v,, is constant in magnitude and rotates
with the same frequency as My, This situation is iliustrated in
Fig. 6, where the following mathematical identities apply:

yp=const; $,=1; =0

Substituting these identities in the equations of motion (3) and
rearranging resufts in

(Iz "I+K)'Yr[:Ks'erCOS’I{’I (Izﬂ)
1 .
?Dﬂd = —Kyygsing; (128)

Again, adding the squares of the right and left-hand sides of
equations (12) and simplifying, results in the response

_ Ks'yri 13
Y™ 1 /2 ( a)
[(IZ—I+K)2+~4—D}}
Solving for the relative precession angle, ¥;, we have
2
tang; = ————— (13b)
it I,-I+K

where the negative sign indicates that the response lags the
forcing function, Once again we see that as K, decreases
(“‘soft*’ flexible support) the response, <, decreases.
Eliminating +,; altogether is, of course, even more desirable.
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Fig. 7 Vector representation of the complete response

The response v,; as expressed in equation (134), is also the
relative misalignment between rotor and stator since in this
case v, = 0.

The Complete Response. The complete steady-state
response of the rotor can now be obtained by utilizing the
superposition principle, ie., adding vectorially the two
separate responses ¥, and v,

Yr =Yrst Vo1 (14)
Since v, is fixed in space, while +,; Totates at the speed w, the
over all response, 7,, is 4 rotating vector with a time varying
frequency, ,. The magnitudes of both y, and v, vary cyclical-
ly with a constant frequency w.

A more important parameter is the relative misalignment, v,
between rotor and stator. By adding vectorfally the relative
responses v, and «,; obtained from the solution of the two
cases ;=0 and v, =0, respectively, we have

¥=Yo+ Yo (15)
where by equation (2) and for v, =0 we have
’:{.(3:’;’::—';: (16}

Again, since the vector ¥, is fixed in space and the vector Yo
rotates at the speed o, the overall relative response, v, is a
rotating vector of varying relative frequency, ¢. The
magnitudes of both ¢ and y vary cyclically at a constant fre-
quency o. AH the vector operations as expressed in equation
{2) and equations (14} through (16) are shown in Fig. 7. With
the aid of this figure, equation {15) can be expressed in a scalar
form

(17

where 7 is some reference time measured from the instant at
which the rotating vector v, passes over the stationary «v,.
Hquation (17) once again demonstrates the time dependence of
the relative misalignment . Obviously, the maximum value
occurs when 7=0, in which case

¥ =k + 43+ 2ypypcoswr

('Y)max=70+‘yﬂ (18)
The minimum value, however, occurs when wr =1, Hence,

(V) ta = fve— Yr}l (1%

The magnitudes of the responses <y Y and v, and their
positions relative to each other determine whether the time
dependent absolute and relative responses, -y, and 7y, respec:
tively, are leading or:lagging the stationary. forcing :function:
v,. While a lagging response may. exist over.an entire shafticy=1
cle, a leading response canexist only over:a: portion
cycle. From a practical standpoint this;isiofilesserd

ortanc
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shaft!

Discussion of Resulfs

The relative misalignment, v, as given hy equation (17) is of
prime importance in the determination of seal performance.
For example, leakage is proportional to % (Btsion and
Sharoni, 1980}, and face touchdown occurs when the max-
imum relative misalignment given by equation (18} is too high.
The only way to eliminate v altogether is to eliminate stator
and rotor misalignments, v, and v, respectively. This,
however, is practically impossible. The other alternative is to
require the responses, v, and v, to these misalignments to
vanish. As can be seen from equations (£1) and (134) this goat
is achieved if K, and D, equal zero, However, such values in
mechanical seals are once again impractical since some stiff-
ness and possibly some damping do exist in a flexible support
which consists of a circumferential spring and a secondary
seal, Since in a practical seal some misalignments as well as
some stiffness and damping of the support must exist, we will
examine in this section the other parameters which govern the
relative misalignment.

First, by observing equations (11) and (13a) we see that
maximum fluid stiffness and damping, K, and D, respective-
ly, reduce the two responses, v, and «,;. The conditions under
which K, and D, are maximum have been discussed elsewhere

- {Green, 1987). Generally, there exists an optimal face coning

which maximizes fluid film stiffness, while flat faces (no con-
ing) maximize fluid film damping. The best coning angle will
therefore depend on system parameters such as pressure drop,
viscosity, geometry, etc. For example, ina high pressure seal it
is reasonable o maximize the fluid stiffness by having optimal
coning since the stiffness is directly proportional to the
pressure drop. In a low pressure seal for a high fluid viscosity,
a small amount of coning to maximize fluid damping would
probably be the preferable configuration. (Maximum values
of K, and D, have also been found to be preferable with
regard to dynamic stability (Green, 1988)).

The gyroscopic effect is very interesting. As we have seen
(equations (3)), the inherent gyroscopic term comes into effect
through the polar moment of inertia, I,. Using a relationship
between the transverse and the polar moments of inertia, Jand
I,, respectively,

e=I/T

and using dimensional parameters (see nomenclature), equa-
tion (134) takes the form

K
1 ) 2 1 25 172
Aenrask] (o)
{[(c o+ + 5 He

Now the gyroscopic effect is imbedded in the parameter c.
For cylindrical rigid bodies, ¢ is bounded from below by 1/2.
“Fo minimize the response v} we require ¢ to be minimum, that
is, ¢=1/2. This value corresponds to a very short disk, i.e.,
the rotor should have a small length to radius ratio. Conse-
quently, higher speeds are preferable because they further
reduce the response. As ¢ increases, the response v increases.
Still, as long as ¢ is in the range 1/2=<e<1 the speed, w, has a |
positive effect in reducing .v};. When c¢=1, note that the
response 4 is independent of inertia as is the case for the
response v, (see Bquation (11)), However, if ¢>1 the speed
changes .its role.and contributes to an increase in v}. This

oo K
Vel = Yok

range should theréfore' be avoided.

-Of interest -is:to ‘compare: the performance of the flexibly
.mounted rotor: seal with'thatiof the flexibly-mounted stator
séhi (Greenand Eision; 1985): The two seals will be referred to
g nd  EMS;, respectively, First, the critical stator

causes face contact needs to be determined,
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Table 1° Performance comparison between the flexibly mounted rotor (FMR) and

the flexibly mounted stator (FMS)

FMR FMS
Static
transinissibility Yo 0.071 st _ 0.061
Ts Vst
0.055@c=1/2
Dynamic
transmissibility L L. 0.080
T . Yr
0.066@c=3
0.126@c=1/2
Maximum
relative (YImax = (Y max = 01410
misalignment
0.137@c=13
16.8@c=1/2
Critical
misalignment Ysder = (e )er = 148
16.7@c=3
co@e=1/2
Criti((l:al
spee W = W = 3.9
“ ] 8.4w=8.4X 10%rad/s “
@c=3 = 5,9% 10*rad/s

As explained in the previous work, if the coning angle is

greater than a critical value, face contact is likely to occur on

the inner radius of the seal, Le., 1— {v); . R;=0, where

R;=r/r, (see Fig. 3), By equation {18) we have

’ 1

oy = 19

Yo+t Tn =g (19)

The relative misalignment is related to the stator misalign-

ment by the relative transmissibility, T=1y,/7,, given by the

squate root of equation (11). Substituting T{y,),, for v, in
equation {19) resuits in the critical stator misalignment.

1

'ﬁ'_')’rl

- 20
(IYS )Cf T ( )

It can be seen that the parameters which minimize y,; and T
also maximize (y,}.. A maximum value is preferable from a
design and manufacturing standpoint, As with the case of the
FMS, the analysis here is limited to small perturbations about
the equilibrium position, i.e., design clearance and parallel
faces. When face contact occurs the motions involved are not
small. However, as has been found for the FMS case {Green
and Etsion, [986b), the prediction based on small perturba-
tions results in a conservative value of the critical misalign-
ment. Hence, assuming characteristics similar to those of the
FMS case, the result given in equation (20) can be used with a
certain degree of safety,

We now examine the same “‘typical’’ seal, design
parameters, and operating conditions as in the case of the
FMS seal:

Seal outer radius, rg «omenn, 0.04 m
Radius ratio, R wememon 0.8
Design clearance, C, v 107°m
Face taper (cone height) s 2.5%107*m

Journal of Tribology

ROLOT Mass, IM* e 1kg
Shaft speed, o i 10° rad/s
Pressure differential, p,—p; coeererrsmmenen 5% 10°Pa
Fluid viscosity, p(water at 60°C) reevmmn 0.5 mPas
Support axial stiffness, KF e 5% 10°N/m
Support axial damping, D} e 300 Ns/m

The corresponding dimensionless parameters for this example
are:

Coning anglc, [ T ISR P TO R ALY 12.5
Mass, m 3.25x 103
Inertia, I oerrmmenne. et e 1.63x10-?
Pressure differential, P, — Py vonimimssininn 0.26
Support axial stiffness, Ky s 1.63x 103
Support angular stiffness, K, «weom 8.14x 104
Support axial damping, Dy e 9.76 x 104
Support angular damping, D - 4,88 x 104
Fluid film angular stiffness, Ky s 0.118x 101
Fluid film angular damping, Dy e 0.83x10-2

The comparison is summarized in Table 1. The first com-
parison is done on the static response, The FMR has a slightly
higher static transmissiblity than the FMS seal, which is due to
the support damping, If the support damping is climinated
altogether {which is recommended anyway) the two configura-
tions result in exactly the same transmissibility. The next com-
parison involves inertia effects and the dynamic response. The
dynamic transmissibility of the FMR is considerably smaller
than that for the FMS at ¢=1/2 (“short rotor”) and is also
smaller even at c=3 (which corresponds to a *‘long rotor,”
whose Iength is about 5.5 times its radius which would be a
“bad’* design). It is apparent that for all parameters besides
the static transmissibility the FMR seal outperforms the EMS
seal, If the forcing functions. for the two cases are equal, then
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the FMR seal has a lower maximum relative misalignment,
resulting in a higher critical stator misalignment. The resulis,
0.126 or 0.137, for the maximum relative misalignment assure
that the small perturbation assumption was justified even
more in this case. The critical speed data have been calenlated
using the analysis by Green {1988). A “‘short rofor”
guarantees dynamic stability for the FMR case, while even a
long retor still provides a critical speed substantially higher
than that of the FMS case. ‘

Concluding Remarks

The steady state response of a noncontacting flexibiy-
mounted rotor mechanical face seal has been investigated
analytically. This response is an outcome of the stator
misalignment and the initial rotor misalignment. The response
has been presented in the form of relative and absolute
transmissibilities which enable the determination of a max-
imum relative misalignment and of a critical stator misalign-
ment. These two parameters are very important to seal per-
formance, i.e., leakage and whether face contact occurs.
Rotor nutation and refative misalignment have been found to
be time dependent. For improved steady-state response and
dynamic stability, the following are recommended:

o The flexible support should be undamped and *‘soft.”’

¢ The flexibly-mounted rotor should be a “‘short-disk.”

A numerical example has been presented comparing FMR
and FMS seals. In this example, it has been shown that the
FMR seal performance exceeds that of the FMS seal, and it is
suggested that such a comparison be made regularly during the
design process.

Based on previous experience, it seems intuitively that a seal
whose stator and rotor are both flexibly-mounted would result
in even better performance. The reason for this is that if the
rotor is designed properly (*‘short disk®’} the gyroscopic effect
will tend to align it with respect to the shaft axis of rotation,
and this tendency increases with speed. The stator, however,
will try to track an aligned rotor, resulting in minimum
relative misalignment. An even more daring configuration is
suggested, If the two seal faces are flexibly-mounted and
rotating, and if both are ‘‘short disks,” the gyroscopic effect
will align the two elements. Such a configuration is not in-
conceivable in high performance rotating machinery.
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APPENDIX

Angular Stiffness and Damping Coefficients

Fiuid Film, The nondimensional axial and anguiar rotor
dynamic coefficients have been provided by Green {1987). In
the present work only the angular coefficients are of interest:

k, = n{P,—P;) (BR 1)[ L-R7 ]2
7= T TR T 28 (1-R,)
1+R
D; = 2aR}G, @ Rp= 5 f
where B(1-R;)
m{l —R)] -2
o [l +8(1 R} 2+ fl—R)
’ B{1-R)?
and for flat faces (§=0) G, simplifies to
IP’R;
G =
° 12

{The cross coupled angular coefficient has already been in-
cluded in the equations of motion (3)). The dimensional coef-
ficient can be obtained using the normalizing factors provided
in the Nomenclature.

Flexible Suppori. The dimensional angular stiffness and
damping coefficients, K} and D, respectively, can be ob-
tained from the corresponding axial coefficients, K}, and
DY, using the following transformation {Green and Etsion,
1985):

i
K} =—Khyr?
5 3 335

1
Ds*=—2‘ are
where r, is the radial dimension of the flexible support ele-
ment. If more than one element exists, then the above
transformation should be used for each element separately.
The nondimensional coefficients are defined in the

. Nomenclature.
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DISCUSSION

1. Etsion*

This paper is a valuable contribution to the seal literature, It
may be of great help to both designers and users in selecting a
seal concept, i.e., FMR or FMS, for some given application
and operating conditions. Comparisons such as in Table 1 are
very useful for this purpose, This comparison could be
generalized by evaluating the corresponding transmissibility
equations of the FMR and the FMS, i.e., equations {11) and
(13a) in the present paper and equations (314) and (37), respec-
tively, in Green and Etsion (1985). Assuming D, <& D, (which
is normally the case) and searching for the condition that
makes the iransmissibility of the FMS less than that of the
FMR one obtains

D #0 )
for the static transmissibility, and
s (K—=D?+(D/2) e @

s < (K+ D2 4+(D72 7
for the dynamic transmissibility (at ¢ = 1/2).

From {1} is is clear that the static transmissibility of the FMS
is always smaller than that of the FMR. Condition {2) can be
casily met at low speed, w, when 7 << K and D, < K, (see
Nomenclature for definition of dimensionless parameters), As
the shaft speed, w, increases the dimensionless moment of in-
ertia, 7, increases too. Bventually at a certain speed w = * the
right-hand side of (2) vanishes. If w is further increased so that
w > w* condition (2} no longer holds and the dynamic
transmissibility of the FMS exceeds that of the FMR. Since the
static transmissibility is speed independent one may conclude
that below a certain speed w* the relative misalignment of the
FMS is always smaller than that of the FMR and, hence, the
FMS is preferable. Above a certain critical speed (higher than
w*) the relative misalignment of the FMS becomes larger than
that of the FMR and the FMR concept is preferable, There
may, however, be other problems resulting from high speed
rotating flexible support components that have to be resolved
before the full benefit of the FMR concept at high speeds can
be realized.

It is interesting to note that the relative misalignment of the
FMR decreases at high speeds. Intuitively one may think that
centrifugal forces will tend to align the FMR with the rotating
shaft and, hence, prevent alignment with the tilted stator,
causing increasing relative misalignment with speed. However,
the special kinematic constraints of the FMR prevent any such
centrifugal effects. The author should elaborate more on this
point to enhance the clarity of this valuable paper.
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paper and for his constructive remarks.

The author completely concurs with Dr, Btsion’s observa-
tion that there is a speed, w*, above which the benefits of the
FMR seal are perceived. However, analytical determination of
w* is not feasible. Therefore, a comparison between the FMR
and FMS seals, based on the criteria in Table 1, can be per-
formed numerically or graphically as shown in Fig. 8. This
figure presents the static, dynamic, and total transmissibilities
as 3 function of shaft speed, w, for the typical seal where ¢ =
172. (Table 1 provides numerical data for this seal at a speed
of 1000 rad/s.) The total transmissibility equals the maximun
relative misalignment under the conditions of the comparison
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Fig.8 Transmissiblilty comparison belwaen the flexibly mounted rotor
{FMRY} and the flexibly mounted stalor (FMS) seals

of Table 1. As noted in the paper, and also by Dr. Etsion, Fig.
8 confirms that the FMS seal always has a lower static
transmissibility than the FMR seal, Nevertheless, the two
static transmissibilities are of the same order of magnitude,
However, as speed increases, the FMR sgeal substantially
outperforms the FMS seal, The dynamic response of the FMR
seal decreases as speed increases due to the gyroscopic effect
(see section ‘“‘Discussion of Results’), while the dynamic
response of the FMS seal increases with speed under the same
conditions. At 3000 rad/s there is an order of magnitude dif-
ference between the dynamic and the total transmissibilities of
the {wo seals. The values of w* for the dynamic, and total
transmissibilities are 903 rad/s, and 938 rad/s, respectively, It
is worthwhile emphasizing that the FMR seal is unconditional-
ly stable when ¢=1/2, as opposed to the FMS seal,

The relative misalignment, v,, which is a direct outcome
from the static transmissibility (se¢ equation {11)) is rather in- .
creasing with speed as can bé seen in Fig. 8. For the typical seal
under consideration, values for K}, D, Kf, and D} have
been determined to be 400 Nem, 0.24 Nemss, 5791 Nem, and
4,082 Nemes, respectively., Rewriting equation (11) using
dimensional parameters, yields

N K;z + (D;w)z 1/2

i 2
(K7 +KFP+ (D;‘w+7 D}’w)

The derivative, 87,/dw, for the above parameters results in
positive values for a speed range 0 to 10,000 rad/s. This in-
dicates that T, is monotonically increasing with «. But this
monotonic behavior is attributable to the relative magnitudes
of the paramecters under consideration rather than to the
gyroscopic effect (‘‘centrifugal force’”) which does not exist
for this static forcing function. To explain this phenomenon
we resort to a system which is kinematically equivalent to the
problem in hand, as it similarly responds to a static forcing
function, _

Consider the system of Fig. 9, where g disk is mechanically
engaged to a rotating shaft by means of a universal joint. A
stationary pin, supported by a spring, is brought into contact
with the rotating disk, and then further pushed to cause the
disk to tilt an amount, vy, measured between the axis of shaft
rotation, Z, and axis z which is normal to the disk. The system
xyz can only tilt about axis x. The angular velocity of xyz is

&, =%

‘The angular velocity of the disk relative to xyz is the spin ¢,
However, due to the kinematical constraint of the vniversal
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Fig. 9 Pin and disk system

joint (see Green and Etsion (1986a)) the transmissibility T ==
1, or ¢ = w. The absolute angular velocity is then

A=, +pi=pi+wi
The relative angular momentum is simply
L=ry#+ ot ,
The dynamic moment for a nontranslating disk is given by

—

aL -
=T+WCXL

Hence,

T=F#—Luwyy
The equations of motion are obtained by equating the
dynamic and applied moments. The only applied moment

results.from the contacting force, F, between the pin and the
disk, Hence, the equations of motion are

Fy=FR
—~Iwy=0

where R is the radial distance to the contact point. From the
last equation we see that the gyroscopic moment vanishes
where we have 4 = 0, Therefore, ¥ = 0, which results in 7 =
0, This result indicates that although the disk is spinning the
spring remains uncompressed, regardless of the shaft speed, w.
'To conclude, the reason for the vanishing dynamic moment
originates with the kinematical constraint which enables the
disk to spin about its own axis rather than the shaft axis.
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