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Metrology and numerical characterization
of random rough surfaces—Data
reduction via an effective filtering solution

Itzhak Green

Abstract

Random rough surfaces appear in measurements as noisy signals varying spatially. Mathematically, there is no theoretical

difference between such and time-varying signals. Hence, the extensive array of methods and analysis tools that have

been developed for signal processing are available also for rough surfaces characterization. In both, the objective is to

reduce the vast amount of data to just a few meaningful parameters that allow the application of other physical concepts.

Particularly in contact mechanics, it is well known that the Greenwood–Williamson model requires three parameters for

the calculation of the elastic deformation of rough surface asperities. The parameters are the roughness standard

deviation, the equivalent asperity radius, and the asperity density. These parameters are byproducts of the spectral

moments. The spectral moments have been employed for decades in many fields of engineering and science. For rough

surfaces, for example, the work by McCool outlines a mathematical blueprint procedure on how to straightforwardly

reduce the entire roughness data into the said three spectral moments. It is commonly claimed, however, that the said

procedure inherently suffers from resolution problems, that is, a given surface shall have much different spectral

moments depending on the sampling rate (or spacing). To study these issues, synthetic surfaces are generated herein

using a harmonic waveform precisely as McCool had done. However, here the signals are contaminated by a white noise

process with various magnitudes. A signal-to-noise ratio is defined and used to assess the quality of the signal, and the

spectral moments are evaluated for various magnitudes of the noise. Since closed-from solutions are available for the

spectral moments of the uncontaminated signal, the contaminated signals are evaluated vis-à-vis the exact anticipated

values, and the errors are calculated. It is shown that using the common techniques (such as those outlined by McCool)

can lead to enormous and unacceptable errors. Resolution is studied as well; it is shown to have an effect only in the

presence of noise, but by itself it has no independent influence on the spectral moments. The venerable Savitzky–Golay

smoothing filter is used on the noisy signals, showing some improvements, but the resulting spectral moments predicted

still contain objectionable errors. A generalized exponential smoothing filter, G-EXP, is constructed, and it is shown to

markedly moderate the errors and reduce them to acceptable levels, while effectively restoring the underlying surface

physical characteristics. Moreover, the filtered signals do not suffer from resolution problems, where results, in fact,

improve with higher (i.e., finer) resolutions. Fractal-generated signals are likewise discussed.
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Introduction

This work puts emphasis on data reduction regarding
rough surfaces for the purpose of contact mechanics
calculation, but the concepts herein apply equally well
to the processing of any signal contaminated by a
random noise.

The Greenwood–Williamson (GW)1 approach to
modeling the contact of two elastic rough surfaces has
gained wide acceptance. The approach reduces the two
rough surfaces into a single equivalent rough surface that

is forced against a perfectly smooth and rigid flat. The
common assumptions are that the equivalent surface has
asperities that deform independently of the neighboring
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asperities, all asperities have an equivalent radius,R, they
have an areal density, Z, and that they are distributed by
some probability density function. At the time of its
development (1966), in the absence of a closed-form
solution for a Gaussian distribution, GW used an expo-
nential distribution that could be solved analytically in
closed-form, which led to some physical conclusions.
However, even GW state and show that surfaces’
height distribution tends to be Gaussian rather than
exponential. It was not until 2011 that Jackson and
Green2 provided a closed-form solution to the GW
model using an uncompromised Gaussian distribution.
That work2 has also demonstrated the resolution issue
where the same measured data of real rough surfaces can
provide very different spectral moments depending on
the spacing (see Table 1 there).

The GW has gained acceptance in contact of rough
surfaces even under elasto-plastic loading.3–5 Lacking
in the original GW work, however, is the mathematical
process of reducing the two rough surface properties
into a single rough one. The work by McCool6 fills this
gap by providing a complete mathematical blueprint
on how two surfaces having three-dimensional (3D),
orthotropic roughness, z¼ z(x,y), can be converted
into the desired single surface having a composite
roughness. That work6 allows, without loss of general-
ity, to employ two-dimensional (2D) roughness quan-
tities, and that is precisely what is considered herein,
i.e. z¼ z(x). As also summarized by McCool,6,7 the
three quantities m0, m2, and m4, known as the spectral
moment, are sufficient to completely define all the par-
ameters needed in the GW model. These moments can
be obtained in the spatial domain by

m0 ¼
1

N

XN
i¼1

zð Þ2i ð1Þ

m2 ¼
1

N

XN
i¼1

dz

dx

� �2

i

ð2Þ

m4 ¼
1

N

XN
i¼1

d 2z

dx2

� �2

i

ð3Þ

where N is the total number of data points sampled on
a surface along a generic coordinate x, while z¼ z(x)
is the asperity height measured from the mean surface.
In the said works,6,7 an alternative method is pro-
pounded by using the power spectrum P(!) of the
waveform z(x) to yield the kth moments

mk ¼

Z 1
0

!kP !ð Þd! @ k ¼ 0, 2, 4 ð4Þ

Here, ! ¼ 2� f ¼ 2�=l, where ! is the circular fre-
quency of f and l is the wavelength (being equivalent
to the period had z¼ z(t) been a waveform in time, t).
Note that for k¼ 0, equation (4) signifies Parseval’s
theorem. For additional information, see Sweitzer
et al.;8 Davidson and Loughlin;9 Vogel;10 and
Brown.11 Evidently, these moments are not specific
to modeling surface roughness just in tribology, as
they are central in the many fields of science and
engineering, falling generally into the category of
signal processing for which there is ample literature,
see notably the excellent classical texts by Bendat and
Piersol.12–14 Non-tribological examples can range
from geomechanics of rough wall fracture11 to
signal processing performed on the output from the
pulsed laser photoacoustic instrument monitoring
crude oil in water,10 or in the analysis an optical tele-
scope.8 Specifically, in tribology though, these three

Table 1. Values of the exact spectral moments and their numerically calculated values with relative errors for various noise

amplitudes, �A, and resolutions, dx.

At �A ¼ 0

m0¼ 1/2¼ 0.5 m2 ¼ 2�2 ¼ 19:739 m4 ¼ 8�4 ¼ 779:27

�¼ 1 SNRdB ¼ 1Value Error % Value Error % Value Error %

nfft¼ 9, �x ¼ 0:012272

�A ¼ 1% 0.503 0.5 19.87 0.7 16681.1 2.04E3 21.24 41.5

�A ¼ 10% 0.508 1.7 42.04 113 1.591E6 2.04E5 457.8 21.5

�A ¼ 30% 0.541 8.3 220.7 1018 1.432E7 1.84E6 159.3 12.2

nfft¼ 11, �x ¼ 0:003068

�A ¼ 1% 0.503 0.5 22.9 16.23 3.830E6 4.91E5 3656.7 41.5

�A ¼ 10% 0.505 1.1 349.3 1669 3.829E8 4.91E7 1586.0 21.5

�A ¼ 30% 0.531 6.2 2986 1.5E4 3.446E9 4.42E8 205.22 12.2

nfft¼ 12, �x ¼ 0:001534

�A ¼ 1% 0.503 0.5 32.5 64.52 5.846E7 7.50E6 27865 41.5

�A ¼ 10% 0.506 1.3 1303.9 6505 5.846E9 7.50E8 1741.5 21.5

�A ¼ 30% 0.534 6.8 11578 5.9E4 5.26E10 6.75E9 209.61 12.2

Notes: Given also are the bandwidth parameter, �, and the signal-to-noise ratio in (dB). For all cases, A¼ 1 m and f¼ 1 Hz.
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moments are sufficient to execute the GW model, and
they are focal in this work.

Similar coverage of the subject is recapped also
by McCool,7 where he specifically suggests that the
calculation of the derivatives in equations (1) to (3)
be done by finite difference approximations, stating
that it offers a simpler approach to using equation
(4). The reasoning offered is that that approach has
computational speed advantages, it avoids ‘‘leak-
age’’ in the calculation of P(!) that plagues the
spectral estimation, and that there are other con-
straints. To prove his point, McCool7 employs a
pure sine waveform of amplitude, A, and frequency,
f, given by

z xð Þ ¼ A sin 2�fxð Þ ð5Þ

For this analytic waveform, the moments can be
calculated exactly from equations (1) to (3), and
McCool finds that the ratio of the approximated
to the exact moments depends only upon the
number of intervals per period, N, but not upon
A or f. To prove his point, McCool varies the
number of sample intervals per period from 3 to
50, and concludes that 8 intervals are sufficient to
calculate m2 with less than 5% underestimated
error, and m4 with a 3% overestimated error.
(McCool continues to examine instrumentation
and sampling relevant to that era, but that is
mostly irrelevant for today’s instrumentation.)
Importantly though, McCool uses a forward differ-
ence algorithm for the first derivative, known to
have a truncation error of O(�x), and a central dif-
ference for the second derivative, known to have a
truncation error of O(�x2). Here, �x, is the equidis-
tant spacing between two adjacent sampled points,
and is denoted as the resolution. For a pristine
waveform such as in equation (5), a closed-form
solution is possible for the spectral moment (as
given below), and likewise these can be obtained
with great accuracy using the finite difference
approach suggested by McCool. It is emphasized
that numerical differentiation to calculate equations
(2) and (3) is commonplace in tribology and used
by many, for example Jackson and Green;2 Pawar
et al.;15 Xu and Jackson;16 and Kalin.17 Problems
arise when signals are not quite as pristine, as
clearly it is the case for data of real surfaces.
That is the subject of this work. It is important to
highlight before proceeding that even for the pris-
tine signal of equation (5), the calculation of the
spectral moments fails using equation (4), as it is
detailed in Appendix A. That finding provides a
more convincing argument for not using the spectral
approach on the signal defined by equation (5)
(rather than the ‘‘leakage’’ explanation mentioned
by McCool). The stated problem that is outlined
below escalates in difficulty as this work unfolds.

The problem

The procedure offered by McCool7 is re-examined
herein. First, suppose that the signal data are avail-
able in the spatial range x 2 0, xmax½ �. The moments
for a continuous waveform are calculated exactly
using a continuous (integral) form of equations (1)
to (3), namely

m0 ¼
1

xmax

Z xmax

0

z xð Þ½ �
2dx

m2 ¼
1

xmax

Z xmax

0

z0 xð Þ½ �
2
dx

m4 ¼
1

xmax

Z xmax

0

z00 xð Þ½ �
2
dx

ð6Þ

Substituting equation (5) in equation (6), yields

m0 ¼
A2 xmax

2 �
sin 4�f xmaxð Þ

8�f

h i
xmax

m2 ¼
�A2f ½4�f xmax þ sin 4�f xmaxð Þ�

2xmax

m4 ¼
2�3A2f 3 4�f xmax � sin 4�f xmaxð Þ½ �

xmax

ð7Þ

For simplicity, suppose that sin 4�fxmaxð Þ ¼ 0, i.e.
xmax is a signal length that always renders complete
cycles. In which case, the set m0, m2, m4f g is inde-
pendent upon xmax, giving exactly

mt ¼ m0, m2, m4f g ¼ A2=2, 2 �Afð Þ
2, 8A2 �fð Þ4

� �
ð8Þ

A so-called bandwidth parameter is defined by
Nayak18 (and used, e.g. by McCool6 and Pawar
et al.15)

� ¼
m0m4

m2
2

Where upon substitution of equation (8), �¼ 1, as
it ought to be for the single-frequency pristine signal
of equation (5). Notably, this parameter is used to
calculate the standard deviation of the asperities’
summit height in the GW model.

Without repeating McCool’s derivation (see
McCool7), a finite difference scheme is employed to
obtain numerically the approximated moments.
Consistent with McCool’s observation (as verified
again), that for the said special case of xmax, the
ratio between the approximated to the exact values
of mk, k¼ 0, 2, 4, are indeed independent of A and
f. So, arbitrarily, for the remainder of this work, select
A¼ 1m, and f¼ 1Hz. Let �A be a modulated noise
amplitude, which contaminates the signal expressed in
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equation (5). Hence, when �A¼ 0, there is no noise,
and the first row in Table 1 represents the results of
the ‘‘pristine’’ or ‘‘ideal’’ signal. For that case, the
moments are provided exactly, as well as by their
numerical values. The noise amplitude �A shall be
elaborated upon shortly, as it greatly affects the
numerical values of the spectral moments, which are
the objectives (i.e. target values) of this work. Also
given are the bandwidth parameter as discussed
above and the signal-to-noise ratio (SNR) (which is
defined and discussed below).

So, the signal in equation (5) is an ideal (i.e. ‘‘pris-
tine’’) sine wave, and that is the signal that McCool7

focused upon. However, that is an unrealistic expect-
ation for the behavior of real surfaces. Clearly, real
surfaces shall always exhibit some noise in the mea-
sured signal (where in fact quite frequently, consid-
erable noise should be expected10,19,20). Suppose that
a random noise process of magnitude �A is
superimposed upon the pure sine waveform of equa-
tion (5). The entire signal is constructed using the
following Mathematica script (again for A¼ 1m
and f¼ 1Hz)

w ¼ 2�; nfft ¼ 9;

n ¼ 2 ^ nfftþ 1; delx ¼ 2�= n� 1ð Þ;

x ¼ Table i� 1ð Þ � delx, i, 1, nf g½ �;

signal ¼ Sin½w � x�;

SeedRandom 1234½ �; �A ¼ 0 � 0:01;

noise ¼ �A � Table RandomReal �1, 1f g½ �, i, 1, nf g½ �;

z ¼ signalþ noise

ð9Þ

The variable z¼ z(x) in equation (9) is evidently
composed of a pure sine waveform signal of equation
(5) having an assigned circular frequency, w, and a
white noise contamination having a uniform distribu-
tion in the range {–1, 1}, where the noise is modulated
by an amplitude, �A. The arbitrary seed of 1234
guarantees that all noise cases analyzed herein shall
always have the same white noise content throughout
(By using the Mathematica script given in equation
(9), along with the parameters in Table 1, all the
results in this work can be straightforwardly repli-
cated.). The lengths of the signals (the pure waveform
and the noise) are set to be powers of 2 via the nfft
exponent parameter. That is a convenience to help
with a fast Fourier transform, when taken. Clearly,
that parameter also decides the resolution, �x (as
determined by equation (9), and given in Table 1).

To calculate the derivatives in this work, the
first and second derivatives are calculated by a finite
difference scheme using a five-point approximation
(see Hildebrand,21 p. 111). Corresponding to
nfft¼ {9,11,12}, the number of points are n¼ {513,
2049, 4097}, and the truncation errors, for both first

and second derivatives, are of order,
O(�x4)¼ {2.27*10–8, 8.86*10–11, 5.54*10–12}, respect-
ively. This is opposed to McCool’s n¼ 51, having the
finest truncation errors of orders, O(�x)¼ 0.02, for
the first derivative, and O(�x2)¼ 4*10–4, for the
second derivative. Hence, in the current work, the
estimations for the derivatives are of truncation
errors of at least four orders of magnitude smaller
(better) than McCool’s calculations. Also, six cycles
are used herein (see Figure 1), where McCool uses
only one cycle. Clearly, the numerical procedure
used herein is considerably more accurate and
robust than McCool’s procedure.7 To verify the val-
idity of the current numerical procedure, the noise
amplitude is set first to zero in equation (9), i.e.
�A ¼ 0, and the numerical results obtained for
the moments turn out to be identical to those of the
exact predictions (with no error visible within the first
six (6) significant digits). That is true for any reso-
lution, �x. With that, the numerical derivative proced-
ure used herein is verified. It is explicitly emphasized
that in this work, only the five-point finite difference
scheme of higher order O(�x4) is used to calculate the
numerical derivatives.

Now, Table 1 summarizes the spectral moment
values along with the deviation from the exact value
for other values of �A and nfft, i.e. �x, which are
varied in equation (9). The deviation, or relative
error, is calculated according to ‘‘100%*abs(exact_va-
lue – numerical_value) / exact_value’’. The details are
as follows.

To start off, a tiny random noise amplitude of 1%
is tacked upon the signal (i.e. �A ¼ 0:01m).
Figure 1(a) shows an ideal sine wave signal, equation
(5), and its exact first and second derivatives in black
color. The noisy signal and its respective numerical
derivatives are shown in red color. When the pure
sine waveform and the noisy signal are plotted
together (left most plot in Figure 1(a)), it is nearly
impossible to tell the difference between the two sig-
nals. However, the first derivative already shows some
deviation from the exact solution near the inflection
points, while the second derivative is hugely over-esti-
mated throughout.

The zeroth moment m0 contains no derivatives
and, hence, it is predicted nearly exactly for any
resolution, as shown in Table 1. The second
moment m2 is affected by the errors in the first
derivative, and when averaging takes place by equa-
tion (2), the error varies from 0.7% to 16.23%, and
then to 64.52% depending on the resolution.
However, the fourth moment m4 is affected signifi-
cantly by the huge errors in the second derivative,
and when averaging takes place by equation (3), the
error varies from 2040% to 7.5� 106%. That cannot
be considered acceptable under any circumstances.
The bandwidth parameter, �, which should have
equaled unity, is also grossly overestimated, ranging
from 21.24 to 27,865.
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If all that happens just for a tiny noise of 1% that
contaminates the signal, matters can only get worse
with larger noise levels. Practically, there is always
noise in the measuring equipment in addition to the
fact that real surfaces are simply imperfect. It is also
intuitively understood that such small noise levels
should not have a meaningful effect when the surfaces
are brought (loaded) into contact, because such
small surface undulation would be structurally
‘‘weak,’’ and they will be leveled (smashed) by the
initial application of a normal load. However, with
such large errors in m2 and particularly m4, the neces-
sary GW parameters cannot be considered trust-
worthy even for a 1% noise level. Moreover, it
seems that indeed, the errors exacerbate with the
refinement of the resolution, a phenomenon that is
analyzed in detail hereunder.

Next, larger contaminations are investigated.
Suppose that the noise magnitude has a moderately
larger value of 10% (i.e. �A ¼ 0:1m, see Figure 1(b)).
The errors in the prediction of the moments m2 and
m4 are expected to worsen, and indeed they escalate
rather significantly, as indicated in Table 1. And when
the noise level is 30% (see Figure 1(c)), the predictions
of m2 and m4 are practically useless. Likewise, the
bandwidth parameter, a, is very much off from the
ideal value of one unit, regardless of the magnitude
of the noise or the resolution. Appendix A takes on
the noisy signal case of �A ¼ 0:3m, in an attempt to

evaluate the moments by spectral means using equa-
tion (4). It is proven that on the subject problem, that
method is incapable to produce exact or even satisfac-
tory results. Hence, that leaves the differentiation
method as the only option, but evidently, a remedy
is sternly needed.

It is clear that if the differentiation method would
ever render trustworthy spectral moments, then it
necessary to reform the raw noisy signals to expose
the underlying geometry before taking the derivatives,
such that the moments would be principally unaf-
fected by the imperfections. But before that objective
is handled in a later section, a metric for signal ‘‘good-
ness’’ must be put forward. The metric of choice
herein is the SNR. That metric is useful not only in
assessing the ‘‘goodness’’ of the raw signal but it is also
used to assess improvements in the proposed methods
offered that are forthcoming.

The SNR

The SNR is a common measure that compares the
level of a desired signal to the level of the background
noise, and it is defined as the ratio of the signal power,
Psignal, to the noise power, Pnoise, often expressed in
decibels. A ratio higher than one unit (greater than
0 dB) indicates that the signal is more powerful than
the noise. It can be shown that the SNR also equals to
the ratio of the corresponding variances of the signal

Figure 1. Signals, z(x), first derivatives, z0(x), and second derivatives, z00(x), shown for three noise amplitudes, �A and nfft¼ 9.
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and noise. The following expressions are all
equivalent

SNRdB ¼ 10Log10
Psignal

Pnoise

� �
¼ 10Log10

�2signal
�2noise

 !

¼ 20Log10
RMSsignal

RMSnoise

� �
ð10Þ

For the pure deterministic sine wave of equation (5),
the root mean square (RMS) is A=

ffiffiffi
2
p

, and since in this
work A¼ 1m, and f¼ 1Hz, then the RMS¼ 0.707 is
fixed for that pure signal. Since the noise is superim-
posed upon that pure signal (see equation (9)), its power
and RMS values are calculated separately. Herein, only
the RMS value is used, and it equals to the second
central moment of the noise signal (see equation (9)
for the definition of noise). In Mathematica’s notation,
two equivalent forms are given, an intrinsic function,
and by its definition, hand-coded

RMSnoise ¼ CentralMoment noise, 2½ �

�a Mathematica intrinsic function�ð Þ

¼ Sqrt noise� Total noise½ �=nð Þ½

� noise� Total noise½ �=nð Þ=n�

ð11Þ

For the case when �A ¼ 0 (i.e. no noise), clearly
the SNR is infinity, representing a perfect or ideal
signal. For the other three cases in Table 1, the
SNRdB is decreasing with the increase in the noise
amplitude, �A (As indicated, all white noise records
herein use the same seed and procedure of equation
(9). The only difference is that they are modulated by
the amplitude �A. Thus, the RMS values and the
noise amplitudes, �A, are proportional. For example,
the RMS value for �A ¼ 10% is that of the 1% noise,
multiplied by a factor of 10, etc.).

As a reference, the following is accepted amongst
the telecommunication industry for wireless (cellular)
networks:

1. When the SNRdB is greater than 40 dB, then the
signal is excellent (five bars), and the connection is
‘‘lightning’’ fast;

2. When the SNRdB is between 25–40 dB, then the
signal is very good (3–4 bars), with very fast
connection;

3. When the SNRdB is between 15–25 dB, then the
signal is of low or poor quality (two bars), but it
may be acceptable if SNRdB is still above 20 dB;

4. When the SNRdB is between 0–15dB, then the signal
is very poor (one bar), it is unreliable, and mostly
there is a slow connection, if at all; and when SNRdB

is between 5–10dB, connection is unlikely.

For the lack of a scale in tribology that is spe-
cific for ‘‘signal quality’’ of rough surfaces, suppose

that the above ranges from the telecommunication
industry can be adopted. Then, the cases herein for
�A ¼ 0, 0:01, 0:1, and 0:3f g m render, respectively,
signals with SNRdB ¼ 1, 41:5, 21:5, 12:2f g (see
Table 1), going from perfect, and then degrading to
excellent, good, and low. Reiterating and emphasizing
that even for an ‘‘excellent’’ SNRdB¼ 41.5 belonging
to �A¼ 0.01, the spectral moments, as seen above,
especially m4, cannot be trusted.

Resolution issues

A notion that is prevalent in the tribology research
community is that the spectral moments are very sen-
sitive to the sampling intervals, or to the reso-
lution.2,15,17,22 Observing the data in Table 1,
seemingly that perception is ‘‘confirmed.’’ In fact,
that perception has prompted the development of
other methods, for example, peak points, shoulders,
neighboring asperities, etc.17,22,23 The resolution’s
‘‘negative reputation’’ truly deserves a much closer
examination.

First, the resolution (spacing) of �x at nfft¼ 11
(n¼ 2049) is four (4) times finer than that with nfft¼ 9
(n¼ 513). The first observation from Table 1, is that
for m0, the errors for nfft¼ 9 and nfft¼ 11 are about
the same for the same �A, with the trend that as �A
increases so does the error, but very slightly. In other
words, the resolution does not affect much the error in
m0. The reason that the error increases with �A is
logical because the noise adds to the signal magnitude,
and the larger the noise the larger the error. But, it is
apparent that the errors for m2, for the finer reso-
lution of nfft¼ 11, are much larger than the corres-
ponding value of nfft¼ 9, and are significantly larger
for m4. That may be counter intuitive because the
truncation error in estimating the derivatives is
much smaller for the case of nfft¼ 11, which is
indeed so, but the truncation error is not the reason.
The reason, as detailed in Appendix B, is that m2 and
m4 depend on the derivatives of the signal, i.e. the
differences between neighboring noisy points across
a smaller (finer) �x. Hence, the theoretical error for
m2 at nfft¼ 11 should be 42¼ 16 higher than that for
nfft¼ 9, and for m4 it should be (42)2¼ 256 higher,
respectively. Close examination in Table 1, say for
�A¼ 0.1m, confirms that finding with actual numer-
ical values of 14.8 (vs 16 theoretically), and 241 (vs
256 theoretically), respectively. Roughly, that behav-
ior holds for other noise levels. The theoretical error
for m2 at nfft¼ 12 should be 22¼ 4 higher than that
for nfft¼ 11, and for m4 it should be (22)2¼ 16 higher,
respectively, and indeed that trend, by and large, is
confirmed in Table 1.

Another observation that is apparent is that for
each separated resolution, the error between
�A¼ 0.01 and 0.1 is nearly 102¼ 100 fold, and
between �A¼ 0.1 and 0.3 it is nearly 32¼ 9 fold, as
that should be so because of the square powers in
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equations (1) to (3). It is, therefore, concluded that the
resolution has an effect only in the presence of noise,
but for a perfect signal with no noise, the resolution
has absolutely no independent effect at all. In other
words, the culprit is in the formulation that depends
upon numerical differentiations that amplify the
errors in inexact data. If that difficulty can be miti-
gated, then higher resolutions should actually provide
results that are more dependable.

Data partitioning

The signals with nfft¼ 9 and nfft¼ 11, besides being of
different length (i.e. number of sampled points of
n¼ 513 and n¼ 2049, respectively) the white noises
generated are not spread across the length the same.
Only the first 513 values of the noise for nfft¼ 11 are
the same as for nfft¼ 9, but the rest are not—they are
additional independent noise values (still, having the
same statistics throughout).

So, it may be argued that an ‘‘equitable’’ compari-
son must use data from the same record. Hence, the
signal of nfft¼ 11 is partitioned (apportioned) four
times into four signals where the first signal is made
of the values of 1, 5, 9, 13,. . ., the second takes on the
values of 2, 6, 10, 14. . . etc. These four signals have a
reduced nfft¼ 9, with values taken from the original
record of data (those from the signal of nfft¼ 11). All
four partitioned signals have the same resolution as
for the case of nfft¼ 9. For brevity, only the worst
case of �A¼ 0.3 is analyzed here. Those four signals
are analyzed each individually, and the moments are
averaged, where by doing so the statistical error is
further reduced by a factor of 41/2¼ 2, yielding {m0,
m2, m4}¼ {0.531, 222.5, 1.447E7} with corresponding
standard deviations of {2%, 9.2%, 12.9%} when nor-
malized by the averaged values. Comparing these
moments with those given in Table 1 for the case of
nfft¼ 9, and �A¼ 0.3, shows nearly identical
matches. Also the average SNRdB¼ 12.2 for the four
apportioned signals is almost identical to the said case
in Table 1. Hence, the conclusion is that the results
summarized in Table 1 may be regarded as a faithful
representation for each one of the cases regardless of
how data are apportioned.

Interpolation

Another approach to take numerical derivatives is to
use interpolation functions. In fact, Mathematica
does not contain built-in (intrinsic) finite difference
numerical derivative functions (the ones mentioned
above had been hand-coded). A tactic in
Mathematica to calculate derivatives of discrete data
is to fit interpolation functions to the data, and then
take derivatives of the interpolation functions.
Hermite polynomials and n-powered splines have
been tried, and the general behavior shown in
Figure 1 is repeated (and hence, for brevity, it is

omitted). In other words, the interpolation approach
has not produced better results than those reported in
Table 1.

Fractals

In the work by Majumdar and Tien,24 it is postulated
that the Weierstrass–Mandelbrot (WM) function can
be ‘‘used to simulate deterministically rough surfaces
which exhibit statistical resemblance to real surfaces.’’
Following Majumdar and Tien24 and Berry and
Lewis,25 the WM function is

z xð Þ ¼ AðD�1Þ
X1
n¼n1

cos 2��nx

�ð2�DÞn
15D5 2, �4 1

ð12Þ

where A is a scaling constant, D is a fractal dimension,
and � determines the density of the spectrum and the
relative phase difference between spectral modes. As
can be seen, equation (12) is made up by a sum of
harmonics. Clearly the harmonic function in equation
(5) can serve as a kernel to the sum of equation (12)
having modulated frequencies and amplitudes, but the
underlying mathematics is obviously the same.
Appendix A details the mathematical difficulties to
obtaining exact closed-form solutions for the spectral
moments via equation (4) for the signal given in equa-
tion (5). Indeed, Berry and Lewis25 ran into the same
difficulties in formulating the Weierstrass spectrum.
So they introduce a workaround by averaging the
spectrum over a range of frequencies. That approxi-
mation is adopted by Majumdar and Tien,24 who pro-
pose high and low cutoff frequencies (conjecturing
physical reasoning), to replace the bounds of integra-
tion in equation (4). That approach had been tried
herein too, with no success because the selection of
such synthetic high and low cut-off frequencies,
whether in fractal signals or those containing a
white noise process, is not only subjective, it intro-
duces biases which affect the spectral moment values
significantly. Regardless of how this is looked at, from
a purely mathematical point of view, the moments
provided by Majumdar and Tien24 (specifically equa-
tions (6) to (8) there) cannot be considered exact
mathematical solutions.

Perhaps the most important observation about the
WM function is that it has absolutely no randomness.
This is because the three parameters A, D, and, �
define deterministically the signal. And because there
is no randomness (i.e. there is no noise) the SNRdB

equals infinity. As such one may contemplate whether
the WM function can truly represent random rough
surfaces, genuinely pondering about the qualification
of ‘‘statistical resemblance’’ made by Majumdar and
Tien.24 Moreover, according to Majumdar and
Tien,24 �n1 ¼ 1=L, where L is the sample length, so
that in equation (12), n1 ¼ � lnL= ln �, somehow
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approximated to an integer. In numerical computa-
tion, an infinite sum cannot be accommodated, so
the sum in equation (12) must be truncated. The selec-
tion of how many terms are retained in the sum is
allegedly tied to the finest resolution (or highest
cutoff frequency) of the measuring equipment. That
adds another bias that affects the calculated spectral
moments. Also Majumdar and Tien24 state that ‘‘it is
well known that the determination of the high cutoff
frequency is fraught with difficulties.’’ In summary,
the fractal approach to rough surfaces representation
is burdened with assumptions and approximations.
Because of that, and the fact that the WM function
contains no randomness, it is excluded from any fur-
ther numerical investigation presented here, which
strictly deals with random processes. Nevertheless,
the power spectrum appearing in Appendix A is
used as another test bench for the generalized expo-
nential (G-EXP) filter that is forthcoming.

From all the attempts described above, none of the
aforementioned methods had produced credible
results for m2 and m4. The conclusion is that the spec-
tral moments, m2 and m4, contain enormous errors
and they cannot be trusted whatsoever. The next
(fifth) method is offered as a plausible remedy.

Signal conditioning

It is a daunting proposition that the two techniques
known to calculate the spectral moments fail wretch-
edly on the stated problem, which is simple: a har-
monic signal that is contaminated by a tiny to a
moderate noise. It is clear is that small undulations
will mostly be smashed in contact, and should have
little to no effect on the contact mechanics of the
underlying geometry. Hence, the underlying geometry
must be recovered and exposed. It is proposed herein
that the raw signal must be conditioned, and the way
to handle that is to filter out undulations that are not
‘‘natural’’ or not ‘‘significant’’ to the underlying
geometry. While filtering, as it is well known, shall
clearly introduce biases, it is a common practice in
signal processing.

Modern packages such as Mathematica and
Matlab are rich with filters for noisy signals (many
are dedicated to filter audio and images). Similar fil-
ters are available in other procedural languages, e.g.
Press26 and IMSL.27 A few filters, including Dirichlet,
Sine, and Hann have been hand-coded and tried on
the given problem. The Gaussian filter as imple-
mented by Mathematica has also been tried. Other
filters (e.g. Blackman, Nuttall, Hamming, Bartlett,
Kaiser, Lanczos, and Parzen) have been considered
but not implemented because under some conditions,
they degenerate to those tried. It is emphasized that:
(1) it is not the objective of this work to present an
exhaustive comparison of the level of success of the
multitude of windowed filters and (2) the fact that
results are not reported for the said filters indicates

that they have not produced meaningful improve-
ments in the prediction of the spectral moments.
Two filters stand out, and they are discussed below.

The first is the venerable Savitzky–Golay (SG)26,28

filter as implemented in the Mathematica intrinsic
library. It is found to provide a marked improvement
upon the conditioning of the noisy signal. The SG
filter is a digital filter that can be applied to a set of
digital data points for the purpose of smoothing the
data and can increase the precision or fidelity of the
data without distorting the signal tendency. This is
achieved by fitting successive subsets of adjacent
data points with a low-degree polynomial by the
method of linear least squares, or in a convolution
process. In essence, the method uses a polynomial fit
in the same way as a weighted moving average, where
the coefficients of the smoothing procedure are pre-
determined and fixed. Moreover, the same algorithm
can be used to calculate not only the smoothed signal,
but also its first and second derivatives. So while this
is the best filter tried out of the Mathematica library,
on the given problem herein, it is not as effective as the
G-EXP filter presented subsequently. Hence, these
two linear filters are now explored in detail.

The SG filter

In fact, a recent work has already employed the SG
filter for rough surfaces.29 For brevity, the mathemat-
ical details are not repeated as numerous sources,
including those already mentioned give many details
and vast explanations. The SG filter is applied in
Antón-Acedos et al.29 on a series of machined probes
producing similar results as the Gaussian or Splines
filters in roughness parameters. The authors conclude
that the SG filter is an interesting alternative to be
applied in the study of surface finish. So, it has been
decided to try that filter on the stated problem herein.

First, it should be noted that while there is flexibil-
ity in selecting polynomial order and the window size,
the strict use of polynomials for smoothing hinders
the effectiveness of the SG filter. Nevertheless, by
trial-and-error, that filter may produce reasonable
results. In this work, the smoothing polynomial is
always quadratic (other orders had been tried but
with worse outcomes). The window size is determined
by a Fibonacci optimization algorithm to produce the
smallest normalized norm between the smoothed
signal spectral moments, ms ¼ ms0, ms2, ms4f g and
the known theoretical values, mt ¼ mt0, mt2, mt4f g,
which are given by equation (8) for A¼ 1m, and
f¼ 1Hz. Procedurally, the optimization objective is
given by

norm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ms0 �mt0

mt0

� �2

þ
ms2 �mt2

mt2

� �2

þ
ms4 �mt4

mt4

� �2
s

! minimum
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Note that each term individually is normalized by
its own theoretical value. That normalization guaran-
tees that all moments are weighed equally (i.e. be of
similar significance) in the optimization process.

So first, the noisy signal, z, is smoothed by the SG
filter using the optimal window size, then derivatives
are taken, and finally equations (1) to (3) are executed.
Table 2 shows the same information as in Table 1, but
now this is after the SG filter is applied. It should be
noted that because the SG is a linear filter, the
smoothed signal is subtracted from the raw noisy
signal, leaving only the effective noise. Hence, the
SNRdB can likewise be calculated according to equa-
tions (10) and (11).

Figure 2 shows in red the smoothed signals for only
the largest noise level case, �A¼ 0.3, using the intrin-
sic Mathematica function, ‘‘SavitzkyGolayMatrix.’’
The optimal window size found is 30. The smoothed
signal (shown in red) is compared to the raw noisy
signal (shown in gray), and the pure objective signal
(shown in black). Visibly, the SG filter is quite effect-
ive in smoothing z(x). However, while the derivative,
z’(x), generally seems to follow the objective, devi-
ations from the target values are quite visible about
the extremum points. These deviations when summed
up, according to equations (1) to (3), are responsible for
the errors in the spectral moment estimations. The big-
gest problem still remains with the second derivative,
z’’(x), as the deviations there are very significant, where
the magnitudes are very far from the target. These two
deviations, and particularly the latter, cannot fully
restore the objective spectral moments. That is apparent
by inspecting the moments in Table 2 where the errors
in m2 and m4 are still quite large.

Two resolutions are also examined in Figure 2,
nfft¼ 9, and nfft¼ 12 (see also Table 2). It seems
again that as the resolution gets finer, the errors get

larger. The SG filtered signal and its derivatives
(shown in red) have more difficulty following the
desired signal and its derivative (shown in black).
Particularly, when the resolution is finer, nfft¼ 12,
the deviations are still so enormous in the second
derivative (at least an order of magnitude larger
than the case for nfft¼ 9), necessitating dropping it
from the figure. Even the bandwidth parameter, �,
is getting worse as the resolution gets finer. The fact
that the resolution issue remains unresolved is defin-
itely another reason why the SG filter is still falling
short.

In summary, while the improvements compared to
the results in Table 1 are indeed notable, however, the
errors remain at a high level, making the resulting
moments untrustworthy. Moreover, the resolution
problem also remains unsolved because the errors
increase with resolution refinement. In general, with
the increase of �A, the errors increase, a is deviating
quite significantly from the exact value of 1, and
SNRdB decreases. It is again emphasized that this is
the best filter tried out of the Mathematica library of
intrinsic filters. So while the SG filter provides an
improvement, clearly a better filter is needed. That
filter is the G-EXP filter that is structured next.

The G-EXP filter

The G-EXP filter shares main characteristics with the
SG filter or other filters. Namely: (1) ‘‘do no harm,’’
i.e. do not introduce artifacts that are not present in
the original data, and it should not distort the original
tendency or underlying geometry, (2) apply the filter
in a similar way, i.e. by convolving the signal with a
windowed filter, (3) preserve linearity, i.e. if the signal
is a total of two or more data sets, then the overall
filtered effect can be obtained by superposition of the

Table 2. Results using the SG filter.

At �A ¼ 0

m0¼ 1/2¼ 0.5 m2 ¼ 2�2 ¼ 19:739 m4 ¼ 8�4 ¼ 779:27

�¼ 1 SNRdB ¼ 1Value Error% Value Error% Value Error%

nfft¼ 9, �x ¼ 0:01227

�A ¼ 1% 0.500 0.0 19.66 0.4 854.25 9.52 1.11 52.2

�A ¼ 10% 0.474 5.2 18.93 4.11 1950.0 150.2 2.58 36.1

�A ¼ 30% 0.417 16.6 16.75 15.2 5644.0 624.3 8.39 28.0

nfft¼ 11, �x ¼ 0:00307

�A ¼ 1% 0.499 0.2 19.67 0.4 1505.0 93.2 1.94 57.25

�A ¼ 10% 0.465 6.9 18.61 5.72 1.626E4 1987 21.85 40.28

�A ¼ 30% 0.387 22.7 15.36 22.2 6.801E4 8628 111.39 32.37

nfft¼ 12, �x ¼ 0:001534

�A ¼ 1% 0.500 0.0 19.65 0.45 3107.9 298.8 4.0 60.03

�A ¼ 10% 0.450 9.6 18.06 8.52 4.958E4 6.26E3 68.75 44.0

�A ¼ 30% 0.330 34.78 12.88 34.77 1.935E5 2.47E4 380.6 35.68

SG: Savitzky–Golay.

Notes: Values of the exact spectral moments and their numerically calculated values with relative errors for various noise amplitudes, �A, and

resolutions, �x. Given also are the bandwidth parameter, �, and the signal to noise ratio in (dB). For all cases, A¼ 1 m and f¼ 1 Hz.
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data sets filtered individually; and, vice versa, subtrac-
tion a certain filtered data set from the filtered total,
would reveal the remainder intact, and (4) similar to
the aforementioned filters, it should contain coeffi-
cients or weights that are symmetric about the mid-
point. That is a necessity as there should not be
preference to neighboring points on either side of a
point of interest undergoing smoothing.

On the other hand, the G-EXP filter is significantly
different from the SG filter in some major ways. The
SG filter uses polynomials of fixed order with fixed
coefficients (i.e. fixed windowed weights), while the
G-EXP filter is flexible using any positive real param-
eters, allowing the weights to assume whichever
designed values.

The G-EXP filter can be thought of belonging to a
general exponential form

g xð Þ ¼ e��jxj
n

@ x 2 �L,Lð Þ ð13Þ

This generalization allows for a three-parameter filter
design where the power, n, can take on any positive real

value. A changeable power, n, provides a whole family of
exponential filters. The absolute of jxj allows the power
calculation, while preserving filter symmetry for any
power, n. If n¼ 0, then g(x) degenerates to a Dirichlet
filter. When n¼ 1, then g(x) is strictly exponential, and
when n¼ 2, then g(x) is related to the standard normal
distribution,30–32 retaining only the quadratic exponential
form (The standard normal distribution is: P xð Þ ¼
1=

ffiffiffiffiffiffi
2�
p� �

e�x
2=2 @x 2 �1,1ð Þ. First, the leading coef-

ficient of 1=
ffiffiffiffiffiffi
2�
p

is of no consequence, because the G-
EXP filter as given subsequently by equation (14) is nor-
malized. Then, the parameter � is free to take on any
positive real value (i.e. other than ½). Finally, the range
x 2 �L,Lð Þ, i.e. the filter window size, is selectable or
adjustable.), in which case the absolute of x can be
omitted. The filter is actually completely stated by

g ¼ e��jRange �L,L½ �jn=Total e��jRange½�L,L�j
n	 


ð14Þ

In the current work, n¼ 1 and n¼ 2 are tried, and
found to smooth the signals as intended. However,
because of the superior results rendered by the filter

Figure 2. Signal, z(x), first derivatives, z0(x), and second derivatives, z00(x), for two resolutions: (a) nfft¼ 9 and (b) nfft¼ 12.

Color keys: gray¼ noisy signal generated by equation(9) with �A¼ 0.3; black¼ pure signal using equation (9) with �A¼ 0; red¼ SG

filtered; and green¼G-EXP filtered.

SG: Savitzky–Golay; G-EXP: generalized exponential.
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with n¼ 2, other values of n had been bypassed.
Hence, for the remainder of this work, the G-EXP
is specific to the case of n¼ 2. In which case, equation
(13) degenerates to

g xð Þ ¼ e��x
2

@ x 2 �L,Lð Þ ð13� aÞ

So now, the G-EXP filter has two parameters left
that can be adjusted. Specifically, the tuning param-
eter, �, is any real positive value, while the integer, L,
decides the window size. Again, using Mathematica’s
syntax, the G-EXP filter, given in equation (14), is
entirely expressed by a single statement

g ¼ e��Range �L,L½ �2=Total e��Range½�L,L�
2

h i
ð14� aÞ

The advantage of the G-EXP filter is that L and � are
generally not restricted, and in addition to n, they allow
for a ‘‘three-degree of freedom’’ filter. The only restric-
tion on L is that it is sufficiently smaller than the number
of points in the signal to be smoothed, i.e. L<<N,
which should commonly be the case. Additional con-
struction details of the G-EXP filter, along with exam-
ples, are given in Appendix C. For portability, the
appendix provides also a Fortran 77 code for the con-
struction and execution of the G-EXP filter.

We turn now to the outcomes of applying the
G-EXP filter. As described above, similar to the appli-
cation of the SG filter, a Fibonacci optimization algo-
rithm is executed to assist in the parameter selection.
The process is to try a set of window sizes, L, and then
let the optimization algorithm determine the optimal
� for each one of them. Of all sets of L and �, the one
that produces the smallest normalized norm between
the smoothed signal spectral moments and the known

theoretical values is selected. Again, herein, that pro-
cedure can be executed because the target values are
known a priori. Once the noisy signal, z, is smoothed
by the G-EXP filter, derivatives are taken, and finally
equations (1) to (3) are executed. Table 3 shows the
same information as in Tables 1 and 2, but the results
pertain to signals smoothed by the G-EXP filter. It
should be noted that because the G-EXP is a linear
filter, the smoothed signal is subtracted from the raw
noisy signal, leaving only the effective noise. Hence,
the SNRdB can likewise be calculated according to
equations (10) and (11).

Figure 2 depicts in green the smoothing results for
the largest noise level case, �A¼ 0.3, using the two-
statement hand-coded filter as detailed in Appendix C
using the Mathematica package. The smoothed signal
(shown in green) is compared to the raw noisy signal
(shown in gray) and the pure objective signal (shown in
black). For comparison also the results of the SG filter
are shown there (in red). It is quite clear that the G-
EXP filter is very effective in smoothing z(x).
Moreover, the derivative, z0(x), follows the objective
derivative quite closely, with much less noise than the
SG filtered signal. But the most startling finding is that
the second derivative, z00(x), while in itself is still some-
what noisy, the magnitude and behavior follow closely
the target behavior and magnitude. It is emphasized
that at this point, no more derivatives are taken, so
that noisy behavior in the second derivative is of no
consequence. Particularly, when equations (1) to (3) are
executed, averaging takes place, which has an add-
itional smoothing effects (much like a moving average).

Two resolutions are also examined in Figure 2,
nfft¼ 9 and nfft¼ 12. The findings are again startling.
Examining the results in Table 3, as the resolution
gets finer, the errors get smaller. Even the bandwidth

Table 3. Results using the G-EXP filter (n¼ 2).

At �A ¼ 0

m0¼ 1/2¼ 0.5 m2 ¼ 2�2 ¼ 19:739 m4 ¼ 8�4 ¼ 779:27

�¼ 1 SNRdB ¼ 1Value Error% Value Error% Value Error%

nfft¼ 9, �x ¼ 0:01227

�A ¼ 1% 0.493 1.5 19.42 1.61 791.8 1.61 1.03 49.9

�A ¼ 10% 0.472 5.5 18.65 5.52 822.2 5.51 1.12 33.5

�A ¼ 30% 0.451 9.8 18.01 8.74 855.6 9.79 1.19 25.2

nfft¼ 11, �x ¼ 0:00307

�A ¼ 1% 0.496 0.7 19.46 1.43 790.4 1.42 1.04 54.2

�A ¼ 10% 0.480 3.94 18.88 4.33 812.9 4.31 1.09 37.0

�A ¼ 30% 0.461 7.7 18.31 7.22 839.3 7.70 1.15 28.6

nfft¼ 12, �x ¼ 0:001534

�A ¼ 1% 0.500 0 19.47 1.37 789.9 1.37 1.04 56.6

�A ¼ 10% 0.480 3.24 19.03 3.58 807.0 3.56 1.08 39.2

�A ¼ 30% 0.470 5.88 18.71 5.22 856.5 9.91 1.15 30.7

G-EXP: generalized exponential.

Note: Values of the exact spectral moments and their numerically calculated values with relative errors for various noise amplitudes, �A, and

resolutions, �x. Given also are the bandwidth parameter, �, and the signal to noise ratio in (dB). For all cases, A¼ 1 m and f¼ 1 Hz.
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parameter, �, is getting better as the resolution gets finer,
being very close to the ideal value of 1. The SNRdB is
also better compared to those reported in Tables 1 and 2.

In summary, the G-EXP filter makes a remarkable
discovery of the underlying geometry of the pure
signal. The filter recovers almost to perfection the
ideal spectral moments and the bandwidth parameter.
There is no longer a resolution problem, in fact, as the
resolution gets finer, the results get better. All this is
true for tiny, moderate, and fairly large magnitudes of
noise, �A. The SNRdB increases to acceptable values.
It can be concluded that the G-EXP filter provides a
very effective solution for noisy signals.

In addition to that objective, the G-EXP filter is
shown to be a general tool for smoothing out noisy
signals not only in the time domain but also in the
frequency domain. The latter capability is demon-
strated by the green color line in Figure 3 in
Appendix A, where the G-EXP filter is successfully
used to smooth out also the power spectrum.
Moreover, the G-EXP filter can be applied repeatedly
in what is known as ‘‘passes.’’ Each pass tends to
remove even more noise, exposing more of the under-
lying signal. For some filters (e.g. the G-EXP), the
process removes the noise very effectively even by
using a single pass. But like other filters, additional
passes may increase the possibility of signal distor-
tion, loss of information, and more importantly, L
points on each side of the signal are lost after each
pass. That is, N must be much greater than L. In this
work, only one pass is applied to test the various fil-
ters without the bias of repeated passes.

Application of the G-EXP filter on real
and fractal rough surfaces

The challenge in calculating the spectral moments for
real surfaces stems from the fact that the target values
are not known a priori. A trial-and-error process is
needed to find the filter parameters. The G-EXP filter,
with L¼ 20, and �¼ 5, is used upon two real rough
surfaces of a ceramic spherical indenter loaded against
a multi-wall carbon nanotube counterpart.20 The
GW1 model is subsequently executed. For brevity,
details of that application and measuring techniques
are spared. The important and relevant fact herein is
that the roughness of each surface is 3D, not homo-
geneous, and not isotropic. The said paper20 details
how such surface characteristics are handled by pur-
suing McCool’s6 procedure. That involves finding sets
of two two-dimensional (2D) orthogonal directions
of maximum and minimum spectral moments that
are averaged either arithmetically or harmonically.
Hence, the procedure developed herein for a 2D case
is specifically suitable to handle 3D surface roughness.
It is not the intent herein to repeat the calculation
procedure other than to exhibit how the G-EXP is
applied to such 2D rough surfaces, as shown in
Figure 3. As can be seen, some of the data of the

original signal measurements are exceedingly far off
from the ‘‘norm.’’ These are either defects in the sur-
faces, voids or bumps in the material, or they are
equipment related, producing erroneous measure-
ments. Should the original data are taken ‘‘as is’’ to
calculate the spectral moments according to equations
(1) to (3), enormous errors would result, as it takes only
one ‘‘bad’’ point, or a region of ‘‘bad’’ points to skew
the results very profoundly. Filtering out those data
points that ‘‘do not belong’’ is undoubtedly essential.

The G-EXP filter can be applied equally well also
to surface having fractal roughness. That, however, is
not necessary, as fractal roughness contains no noise.
As discussed above, the signal is entirely deterministic
for given A, D, and �. Consider equation (12) mod-
ified to have a truncated sum having an upper sum-
mation bound, n2

z xð Þ ¼ AðD�1Þ
Xn2
n¼n1

cos 2��nx

�ð2�DÞn
15D5 2,

�4 1, n25n1

The value of n2 is related to the finest resolution
(i.e. highest frequency) capability of the measuring
equipment.24 The signal would appear ‘‘smooth’’ or
‘‘rough’’ depending on how ‘‘small’’ or ‘‘large’’ is n2,
respectively. Hence, reducing the value of n2 smooth-
ens the signal mathematically without filtering.
Fractal roughness deserves a completely different
treatment that is beyond the scope of this work.

Conclusions

The upside of the GW model is that only three spectral
moments are needed to execute it. That is also the down-
side of the GW model, as not too many parameters are
available to work with. To estimate the spectral
moments reliably, the surface roughness needs to
undergo massive data reduction. So, the estimation
must be quite good with almost zero room for error.

In the current work, a sine waveform is contami-
nated by a white noise process varying in magnitude
from tiny to moderate. To recover the underlying
geometry, these methods have been tested to calculate
the spectral moment: (1) finite-difference derivatives
using accurate five-points (instead of two- or three-
points as suggested by McCool), (2) data partitioning
and averaging (to reduce statistical errors), (3) calcu-
lation of derivatives via interpolation functions, and
(4) calculation via the power spectrum. The following
conclusions can be drawn:

1. The finite difference method as suggested by
McCool to calculate the spectral moments fails
dramatically on his own problem when the wave-
form is contaminated even by the tiniest noise, and
matters become worse with moderate to higher
noise levels.
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2. The zeroth spectral moment does not contain
derivatives in its definition and, hence, it is less
sensitive to noises in the signal, i.e. its prediction
by equation (1) is quite good and can be trusted.

3. The second spectral moment depends on the first
derivative, and hence a noisy signal affects its
accuracy because derivatives tend to accentuate
errors.

4. The fourth spectral moment depends on the
second derivative (theoretically, it is the derivative
of the first derivative, which is already erroneous,
although herein it is calculated directly by a five
(5) finite difference, without resorting to a ‘‘deriva-
tive of the first derivative’’). The errors in the cal-
culation of the fourth spectral moment are much
worse than even the second moment.

5. A finer resolution makes things even worse, but that
is attributed to the presence of the noise. Once the
noise is attenuated, a higher resolution produces
better predictions for the spectral moments.

6. Signal conditioning is a necessity for the removal
of noise in the data. Various filters have been tried,
but most have not greatly improved upon the cal-
culation of the spectral moments. The venerable
SG filter is found to make progress in that calcu-
lation, but still the results are objectionable.

7. The only filter that is successful in restoring the
underlying geometry and removing the noise
effectively (even when it is of a relatively high mag-
nitude) is the G-EXP filter. Upon smoothing, the
predictions of the spectral moments and the band-
width parameter are extremely close to the theor-
etical values. The SNR improves considerably
upon the application of the G-EXP filter.

8. The G-EXP is applied upon real surfaces in eight
different directions, and it is shown to smoothed
out the enormous noise levels very effectively.

9. The G-EXP filter can be applied not only on the
waveform, but also on the power spectrum.

10. The G-EXP filter is a linear filter and, hence,
superposition can be applied and taken advantage
of so that the noise can be isolated.

11. The G-EXP can be applied in successive passes, if
deemed necessary.
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22. Pogačnik A and Kalin M. How to determine the

number of asperity peaks, their radii and their heights
for engineering surfaces: a critical appraisal.Wear 2013;

300: 143–154.

Green 13



23. Hariri A, Zu JW and Mrad RB. N-point asperity model
for contact between nominally flat surfaces. J Tribol
2006; 128: 505–514.

24. Majumdar A and Tien CL. Fractal characterization and
simulation of rough surfaces. Wear 1990; 136: 313–327.

25. Berry MV and Lewis ZV. On the Weierstrass–Mandelbrot

fractal function. Proc R Soc A 1980; 370: 459–484.
26. Press WH, ed., FORTRAN numerical recipes. Cambridge,

UK; New York, NY: Cambridge University Press, 1996.

27. IMSL. STAT/Library: FORTRAN subroutines for
statistical analysis: user’s manual. Houston, TX:
IMSL, Inc., 1987.

28. Savitzky A and Golay MJE. Smoothing and differenti-

ation of data by simplified least squares procedures.
Anal Chem 1964; 36: 1627–1639.

29. Antón-Acedos P, Sanz-Lobera A, López-Baos A, et al.
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Appendix A. The spectral moments via
the power spectrum

If the procedure for obtaining the spectral moments is
problematic using numerical differentiation, perhaps
using equation (4) on noisy signals can produce a
desirable solution. So, the next step is to obtain the
power spectrum of the signal investigated herein. It is
noted the noise is superimposed upon the waveform.
Thus, according to equation (9), we have a signal of

z xð Þ ¼ A sin 2�fxð Þ þ noise½ �A¼1, f¼1¼ sin wxð Þ þ noise

ð15Þ

where noise is a random process as discussed above.
Note that w¼ 2�, is the specific frequency of the
waveform of equation (5). The power spectrum is
defined by the Fourier transform for a continuous
function

Z !ð Þ ¼

Z 1
�1

z xð Þe�2�ix! dx ð16Þ

where here, and in equation (4), ! is a general fre-
quency in the entire spectrum, i.e. ! 2 �1,1½ �.
Since the Fourier transform is a linear operator,
and had z(x) in equation (12) been a continuous func-
tion then

Z !ð Þ ¼ Z wxð Þ þ Z noiseð Þ ð17Þ

However, the noise herein is a white noise process
with a uniform distribution. By definition, its Fourier
transform is ‘‘flat’’ and equals to zero, i.e. Z(noise)¼ 0
throughout the entire spectrum regardless of the ampli-
tude �A (see equation (9)). That leaves

Z !ð Þ ¼ Z wxð Þ ¼ i
ffiffiffiffiffiffiffiffi
�=2

p
� !� wð Þ � � !þ wð Þ½ �

ð18Þ

where �(*) is the Dirac delta function. The power of
the signal is

P !ð Þ ¼ Z !ð Þ
�� ��2¼ �=2ð Þ � !� wð Þ � � !þ wð Þ½ �

2

¼ �=2ð Þ �2ð!� wÞ � 2� !� wð Þ� !þ wð Þ
	

þ �2 !þ wð Þ



ð19Þ

Indeed, the discussion can be limited to just posi-
tive frequencies ! 2 ½0,1�. This result for the power
needs to be substituted in equation (4) to calculate the
spectral moments k¼ 0, 2, 4. However, when equation
(19) is substituted in equation (4), an exact mathema-
tical solution for the latter is elusive. That mathema-
tical difficulty compelled the workarounds and
approximations made by Majumdar and Tien.24,25

Those workarounds contain biases and the approxi-
mated moments cannot be regarded exact solutions.

To further illustrate the difficulty with the spectrum
approach, a numerical fast Fourier transform (FFT)
is executed upon the discrete values of the contami-
nated signal of z(x) (given by equation (9)). The power
spectrum is obtained, and the spectral moments (fol-
lowing equation (4)) are calculated numerically using
either a trapezoidal or the Simpson rule (both giving
very similar results). That approach is tried for the
noise level case of �A¼ 30%, and nfft¼ 9, where
the power spectrum is shown in Figure 4. While the
spectrum captures well the specific dominant fre-
quency of the waveform (see the peak at f¼ 1 or
!¼w¼ 2�), the final results for {m0, m2,
m4}¼ {0.5012, 149.2, 7.466E6} are inconsequential.
First, the power spectrum shown in Figure 3 cannot
represent the exact solution that equation (19) com-
mands. Second, results for m2 and m4 are in great
error and intolerable (similar or even worse than
those appearing in Table 1).

Appendix B. Numerical derivatives

For simplicity, a three-point central derivative will be
used to show the reason for the increasing error in the
computation of m2 and m4. Starting off with the first
derivative (omitting the truncation error),

z0 xð Þ ¼
z xþ �xð Þ � z x� �xð Þ

2�x
ð20Þ

Theoretically, for A¼ 1 and f¼ 1, at x¼ k/4 for
k¼ 1, 3, 5. . ., the derivative of equation (5) equals
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zero. Indeed, when the pure equation (5) is digitized
discretely, z x� �xð Þ ¼ z xþ �xð Þ at the said points,
and the numerical derivative turns out the correct
zero result. However, using equation (20) on the
noisy z(x) at those points, z x� �xð Þ 6¼ z xþ �xð Þ

because of the added random noise, thus clearly

rendering a result that is not zero. That phenomenon
happens not only at the selected x values, but actually
at any value of x2{0, xmax} along the signal. As noise
is modulated by �A, then when the sum is employed
on (z’(x))2 according to equation (2), the accumula-
tion of the error only intensifies.

Figure 3. Real rough surfaces from Reinert et al.20 Abscissa and ordinate are shown in m. (a) Composite carbon nanotube and

(b) Ceramic ball counterpart.

Color key: Orange¼ the original rough surfaces, purple¼ the G-EXP smoothed surfaces, with L¼ 20 and �¼ 5.

Source: reproduced with permission from Reinert et al. 2018.20

G-EXP: generalized exponential.
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The second central numerical derivative is

z00 xð Þ ¼
z x� �xð Þ � 2z xð Þ þ z xþ �xð Þ

�x2

¼
z xþ �xð Þ � z xð Þ½ � � z xð Þ � z x� �xð Þ½ �

�x2

¼
z xþ �xð Þ � z xð Þ½ �=�x� z xð Þ � z x� �xð Þ½ �=�x

�x
ð21Þ

The second form of equation (21) emphasizes
that the second derivative (like the first derivative) is
based on the difference of the differences between
the neighboring z(x) values, while the third form of
the equation renders the expected result that the
second derivative is, of course, a derivative of the first
derivative. Hence, if the first derivative contains errors
clearly, the second derivative must be erroneous too.

So again, theoretically, for A¼ 1 and f¼ 1, at
x¼ k/4 for k¼ 0, 2, 4. . .N when the digitized pure
signal of equation (5) is used, the numerical second
derivative equals identically zero, as it should be.
However, when the noisy z(x) values are substituted
into equation (21), the results are not zero. And as
explained above, that behavior happens actually at
any value of x2{0, xmax} along the signal. And as
the error is modulated by �A, then when the sum is
executed on (z00(x))2 according to equation (3), the
accumulation of the error escalates dramatically.

The analysis above holds for any central difference
of any order, including order five (5) that is used
herein. The conclusion is that for m0, which does
not include derivatives in its definition, the estimation
by equation (1) can be considered ‘‘correct’’ or ‘‘suffi-
ciently accurate’’ as the noise contaminates the mag-
nitude of the signal, but if the noise amplitude is
relatively small, then m0 shall have only a correspond-
ing small error. However, m2 and m4 depend on the
derivatives, which happen on the differences between
z(x) values (so the relative magnitudes of z(x) values
themselves are irrelevant). Hence, the errors in the
derivatives are directly proportional to the magnitude

of the noise, and that cannot be mitigated. In other
words, m0 hinges on ‘‘macro’’ or ‘‘global’’ quantities
where the noise effects are less significant, while m2

and m4 hinge on ‘‘micro’’ or ‘‘local’’ quantities
where the noise effects are very significant.

Appendix C. The construction of the
G-EXP filter

The filter is best explained along with an example. The
filter is defined by equation (13)

g xð Þ ¼ e��jxj
n

@ x 2 �L,Lð Þ; x ¼ Range �L,L½ �

ð13Þ

Suppose that L¼ 3, then using a Mathematica
statement: x¼Range [–L, L] results in a vector
{x}¼ {–3, –2, –1, 0, 1, 2, 3}. Here, the vector {x}
has no physical meaning; it is a dummy list (or a
service vector) of length of 2Lþ 1, and it is used for
illustration only. If also n¼ 2, and �¼ 0.5, then upon
substitution into equation (13), we have

g
� �
¼ 0:0111, 0:1353, 0:6065, 1:, 0:6065,f

0:1353, 0:0111g

Clearly, by definition, the vector {g} also has an
odd length, 2Lþ 1. The values it contains are sym-
metric about the center point. These values have the
role of weights, where the center weight has the largest
value. The next step is to ensure that the smoothed
signal does not overshoot, i.e. worsen the signal.
Hence, the vector {g} is normalized by its total, so
that the largest central weight equals to 1/Total[g].
Hence, issuing the computer assignment

g ¼ g=Total g½ � ð22Þ

achieves that goal. Instead of the two computer
assignments expressed by equations (13) and (22),
the filter design is reduced to a single Mathematica
statement, as given by equation (14)

g ¼ e��jRange �L,L½ �jn=Total e��jRange �L,L½ �jn
	 


ð14Þ

The numerator of equation (14) contains a list,
which is normalized by its own total, and it is
always symmetric about the origin. Clearly, the
dummy variable ‘‘x’’ disappeared, because it is imma-
terial for the formal filter design, but it has utility for
illustration purposes. Therefore, the filter given by
equation (14) contains a list of weights that total to
the value of one unit. On the said example, we have

g
� �
¼ g
� �

=Total g½ �

¼ 10�3 � 4:43305, 54:0056, 242:036,f

399:05, 242:036, 54:0056, 4:43305g

Figure 4. Power spectrum for a sine waveform contaminated

by a white noise level of �A¼ 30%, shown in blue color.

A smoothed spectrum is shown in green.
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The filter is shown in Figure 5, for �¼ 1/2 and
L¼ 3, but for various values of n. Note that n¼� is
used to highlight the fact that n can take on rational
or irrational values. It is specifically emphasized that
the filter {g} contains just the list of values marked by
the bold points only (the continuous line-plots are
shown for illustration only).

Even though values in the range 0< n< 1 are
admissible, it is improbable that they would produce
effective filtering. The power of n¼ 1 had been tried
herein in addition to n¼ 2. While both filter cases per-
form as intended in smoothing the noisy signals, on
the current problem statement, the filter with n¼ 2,
always produces superior results compared to a filter
with n¼ 1. Trial-and-error or Fibonacci optimization
processes can be employed to determine ‘‘better’’ or
‘‘best’’ exponents, n.

The execution of the filter at this point proceeds by
convolving the signal with the filter. Procedurally, fil-
tering is done as follows. Suppose that the vector {zs},
s¼ 1, 2,. . ., N contains the equidistant values of z(x).
Suppose that {gr}, r¼ 1,2,. . ., 2 Lþ 1, contain the
weight values of a G-EXP filter, then the convolution
is executed by

bs ¼
X2Lþ1
r¼1

grzsþr�1 for all s ¼ 1, 2, . . . ,N� 2L

ð23Þ

resulting in the smoothed signal, bs. As an example,
suppose that

g
� �
¼ g2, g1, g0, g1, g2
� �

zf g ¼ z1, z2, z3, z4, z5, z6, z7f g

Here, L¼ 2 and N¼ 7. Note that {g} has sym-
metric values about the center value (as discussed
above). Equation (23) can be easily coded in any
desired programing language (e.g. Fortran or Cþþ)
in a nested do-loop. In Mathematica, equation (23) is
implemented by

bs ¼ Table Sum g r½ �½ � � z sþ r� 1½ �½ �, r, 1, 2 � Lþ 1f g½ �;½

s, 1,N� 2 � Lf g�

ð24Þ

which results in the vector bs

bsf g ¼

g2z1þ g1z2þ g0z3þ g1z4þ g2z5

g2z2þ g1z3þ g0z4þ g1z5þ g2z6

g2z3þ g1z4þ g0z5þ g1z6þ g2z7

8><
>:

9>=
>;
ð25Þ

Taking advantage of the symmetry of {g}, an
intrinsic function in Mathematica can conveniently
be used instead to yield the same result as above

bs ¼ ListConvolve g, z½ � ð24� aÞ

So, to smooth an equidistant noisy signal, {z}, con-
struct first the filter using equation (14), and then
apply it using equation (24). For portability, a
simple Fortran 77 code is also given in Table 4 at
the end of this Appendix showing the filter construc-
tion and the convolution unfolding.

The spacing (i.e. resolution) of the smoothed vector
{bs} is not affected by the filter as the filter operates
on the magnitudes of {z} alone; hence, spacing is iden-
tical to that of the original vector {z}. However, the
length of {bs} is reduced to N-2L, compared to the
length of {z}, which is N. This is common also to
other filters, such as the SG. Clearly, in an actual
case, N is considerably larger than L, such that only
a few values at the two ends are missing. This nor-
mally does not hinder the usefulness of filtering in
general. But even that problem can be overcome by
padding, or imposing cyclic behavior of z (for brevity,
these approaches are omitted, as they are secondary in
this development).

Now the focus turns to �. Consider a certain data
point s in the signal, which will be weighted the most
by the center weight (g0), while the neighboring data
points s – 1 and sþ 1 will be multiplied by a reduced
neighboring weight (g1), and so on. Had {g} been a
vector with a length of 1, then the point of interest in
the signal would be multiplied by a weight of one unit,
i.e. no smoothing takes place. So the normalization
guarantees that when more weights are used the new
smoothed points do not overshoot. As indicated, the
filter consists of a list of values that can be regarded as
weights or coefficients. Noteworthy, these coefficients
are not fixed (contrary to those in the SG or other
filters). Varying � can produce any weights desired.
To appreciate that, examine Figure 6, where n¼ 2,
L¼ 10, while � takes on three different values.

It is seen that for a given n, L decides the window
length, while � decides the sharpness. Note, however,
that large � can lessen the effective window length (as
seen with �¼ 0.1, the effective window length reduces

Figure 5. G-EXP filter for �¼ 1/2, L¼ 3, at various n.

G-EXP: generalized exponential.
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to 6 because at point 7 and above, the {g} values
approach zero on both ends). So while the two para-
meters L and � provide great flexibility in the filter
design, a meticulous trial-and-error process is nor-
mally entailed in their selection. The general trends
are: as L gets larger, more neighboring points partici-
pate in the smoothing, where a larger � puts more
weight on the closest neighbors and the extent of
smoothing is reduced (and vice versa for smaller
values of L and �). Clearly L should be sufficiently
smaller than the number of data points, N, to be
smoothed.

Table 4. A Fortran 77 code to produce and execute the

G-EXP filter for the example above.

parameter (n¼ 7, L¼ 2, ng¼ 2*Lþ 1, nb¼ n-2*L)

dimension g(ng), z(n), bs(nb)

data z/1.,2.,3.,4.,5.,6.,7./

data beta/0.5/

write(6,*) ‘‘Construct the filter as in equation (13)’’

sum¼ 0.0

do i¼ 1,ng

x¼ i-(ngþ 1)/2

g(i)¼ exp(-beta*x**2)

sum¼ sumþ g(i)

write(6,*) i,’ ‘,x, ‘ ‘, g(i)

enddo

write(6,*) ‘‘Normalize the filter as in equation (22)’’

do i¼ 1,ng

g(i)¼ g(i)/sum

write(6,*) i,’ ‘,g(i)

enddo

write(6,*) ‘‘Execute the convolution given

in equation (24) or (24-a)’’

do is¼ 1,nb

bs(is)¼ 0.0

do ir¼ 1,2*Lþ 1

bs(is)¼ bs(is)þ g(ir)*z(isþ ir-1)

enddo

write(6,*) is,’ ‘,bs(is)

enddo

write(6,*)’Verify results expected (in paper): for L¼ 2 and any

n’

do is¼ 1,nb

i¼ is-1

write(6,*) is,’ ‘,

g(1)*z(1þ i)þ g(2)*z(2þ i)þ g(3)*z(3þ i)þ

g(4)*z(4þ i)þ g(5)*z(5þ i)

enddo

end

G-EXP: generalized exponential.

Figure 6. The G-EXP filter for n¼ 2, L¼ 10, and three values

of �.

G-EXP: generalized exponential.
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