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ABSTRACT 

A semi-analytical method for the tridimensional thermal-
elastic-plastic contact between two hemispherical asperities is 
proposed. This first part of the paper describes the algorithm 
used to deal with the normal contact, which can be either load-
driven (ld) or displacement-driven (dd). Both formulations use 
the Conjugate Gradient (CG) method and the Discr 
Convolution and Fast Fourier Transform (DC-FFT) technique. 
A validation of the code is made in the case of t 
displacement-driven formulation for an elastic-plastic body in 
contact with a rigid punch, simulating a nano-indentation test. 
For both formulations (ld and dd) a very good convergence rate 
is found. Another new feature is the treatment of the contact 
between two elastic-plastic bodies. The model is first validated 
through comparison with the Finite Element Method (FEM). 
The contact pressure distribution, the hydrostatic pressure and
the equivalent plastic strain state below the contacting surfaces 
are also found to be strongly modified in comparison to the case 
of an elastic-plastic body in contact with a purely elastic body. 
An application to the tugging between two spherical asperities 
in simple sliding (dd formulation) is made in part II of the 
paper. 

INTRODUCTION 
It is now well recognized that Semi-Analytical Methods 

(SAM) are efficient methods for solving contact problems. 
Compared to Finite Element (FE) analyses, SAM show much 
shorter computation times, typically by several orders of 
magnitude. Among many numerical methods it seems that the 
most efficient to solve contact problem are the Conjugate 
Gradient (CG) method first introduced by Nogi and Kato [1], 
later used by Polonsky and Keer [2], the Multi Level Multi 
Summation (MLMS) technique first implemented by Lubrecht 
and Ioannides [3], and the Discrete Convolution and Fast 
Fourier Transform (DC-FFT) used by Nogi and Kato [1] and 
e

later by Liu et al. [4] combined to the CGM. The present paper 
is in the continuity of the work by Nélias and co-workers [5-11] 
who developed a semi-analytical method for solving contact 
problems with different levels of complexity ranging from 
elastic-plastic (EP) rolling contact simulation [5], thermal-
elastic-plastic (TEP) analysis [6], normally and tangentially 
loaded EP contact [7] with various potential applications such 
as the determination of the micro-yield stress profile in a 
nitrided steel by nano-indentation [8], the rolling of a load on a 
smooth, dented or rough surface [5, 9], the simulation of 
fretting wear [10], and the running-in or wear of initially 
smooth or rough surfaces [11]. 

NOMENCLATURE 

Elastic contact resolution (CGM) 
u = elastic displacement, m 
p = pressure, Pa 
h = surface separation, m 
α = interference, m 
g = gap, m 
P0 = initial load, N 
P = load, N 
Sg = grid area 
Ig = set of nodes in the grid 
Ic = set of grid nodes in contact 
Iol = set of grid nodes where there is no contact and where 

the surfaces overlap 
t = direction of the gradient 
r = residue 
τ = step length  

(Thermal-)Elastic-Plastic contact resolution 
ue = elastic displacement, m 
ut = thermal displacement, m 
ur = residual displacement, m 
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h0 = initial surface separation, m 
ε

p = plastic strain tensor, - 
ep = equivalent plastic strain, - 
σ

r
1, σ

r
2, σ

r
3 = principal components of the residual stre

tensor 
PL = interpolation polynom  
Pj

L = Lagrange polynoms 
C(%) = percentage difference between E_EP and EP 

max pressures 
Lc = critical load for 0.2% equivalent plastic strain, N 

Elastic constants 
ν = Poisson ration 
E = Young modulus, Pa 
E’ = equivalent Young modulus, Pa 
 
Geometry 
R1 , R2 = radius of body 1 and 2, respectively, m 
R = equivalent radius, m 

LOAD-DRIVEN (LD) VS. DISPLACEMENT-DRIVEN (DD) 
FORMULATIONS 

In order to simulate the rolling/sliding contact, a ld 
formulation was first used by applying a normal load (vertical 
loading) prior to the tangential displacement of the load (rolling 
load). In such a formulation one may consider a frictionless 
contact, see for example [5, 6, 9], as well as the effect of 
friction which often tends to overload the near surface area [7, 
11]. This formulation is well adapted when considering the 
whole contact between two bodies pressed against each other 
with a prescribed load. On the other hand, when focusing the 
analysis to the contact between two single asperities led on 
opposite surfaces which are in relative motion, it is clear that 
this localized interaction is more related to a rigid body 
displacement (interference) producing a transient normal and 
tangential loading when asperities collide. It should be noted 
that the tangential load is here defined as the force that acts 
opposite to the relative velocity, which is not limited to 
frictional effects since the contact surface is barely parallel to 
the relative velocity between the contacting surfaces. This is the 
reason why a friction coefficient is purposely omitted in this 
study, in order to uncouple tangential effects induced by 
mechanical deformations, and the ones induced by friction. The 
mechanism at the origin of the tangential load found when two 
asperities tug each other is similar to the one found during 
ploughing when a normally loaded rigid indenter is translated 
on the surface of a deformable media.  

A realistic application of the sliding between two asperities 
with a fixed value of the interference could be the sliding of a 
projectile between two rails in an electromagnetic launcher for 
example, since the projectile is sliding on two rails that are 
fixed in distance. 

The model is based on the work of Polonsky and Keer [2] 
that developed a load driven formulation for the normal contact. 
In their formulation, they used the CG method and the MLMS 
 

 

P

technique to accelerate the computation speed. Based on the 
same formulation but using a different numerical procedure, i.e. 
using the DC-FFT technique instead of the MLMS technique, 
Liu et al. [12] found a better convergence rate and improved 
accuracy [4]. 

Basically the load driven formulation shows very good 
results in terms of convergence rate and accuracy, but the user is
forced to fix a value for the load, resulting in finding a rigid 
body displacement after computation. As said earlier, this is 
convenient for the resolution of the whole contact, but not to 
describe the tugging between two single asperities. Thereafter 
are presented the contact algorithms first for the load driven 
formulation and second for the displacement driv
formulation. 

Elastic contact problem  
The pressure distribution in the contact conjunction creates 

a composite displacement u(x,y), which is the summation of the
two displacements on the surface of each body at the point of 
coordinate (x,y), given by: 

( ) ( ) ( )∫∫ −−−=
gS

dydxyxpyyxxKyxu ''','',',  (1) 

In this expression, Sg is the grid area and K(x, y) stands for 
the surface deflection distribution produced by a concentrated 
normal contact load of unit magnitude acting at the origin of the 
domain. For a pair of homogeneous elastic solids in contact, the 
kernel K(x,y) is given by the Boussinesq formula [13]: 
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where E1 and E2 are the Young moduli of the two solids, and ν1 
and ν2 are their Poisson’s ratios. The grid area Sg is divided into 
N rectangular surface elements Sij centered at the grid nodes
The length and the width of each element are equal to the grid 
spacings in the x and y-directions, respectively. The contac
pressure distribution is approximated by a piecewise constant 
function, uniform within each surface element. Denoting Ig the 
set of all nodes in the grid, Eq. 1 can be re-written as: 

( )
( ) g

Ilk
klljkiij IjipKu

g

∈−= ∑
∈

−− ,,
,

,  (3) 

where uij is the surface deflection at node (i, j), pkl is the 
uniform pressure acting on the element centered at node (k,l), 
and Kij are the influence coefficients, given by: 

( ) ( ) g

S

jiij IjidydxyyxxKK ∈−−= ∫∫ ,,''','
00

 (4) 

In the case of homogenous elastic solids, the coefficients 
Kij can be easily calculated using the well-known closed-form 
solution for a patch load acting on an elastic half-space [13]. 
The calculation of the elastic displacement in Eq. 3 is done 
using the DC-FFT method, as introduced by Liu [4]. 
2 Copyright © 2006 by ASME 
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Taking into account the expression of the elas
displacement in Eq. 3, the contact problem can be described by 
the following system of equations and inequalities: 

( )
( ) cij

Ilk
klljki IjihpK

g

∈+=∑
∈

−− ,,
,

, α  (5a) 

( ) ;,,0 cij Ijip ∈>  (5b) 

( )
( ) ;,,

,
, cij

Ilk
klljki IjihpK

g

∉+≥∑
∈

−− α  (5c) 

( ) ;,,0 cij Ijip ∉=  (5d) 

( )
.0

,

Ppaa
gIji

ijyx =∑
∈

 (5e) 

where α is the rigid body approach (interference) between the 
two solids, ax and ay are the grid spacings in x and y direction
respectively, P0 is the total normal load, hij is the total 
separation between the two solids and Ic denotes the set of al
grid nodes that are in contact. In the case of the displacement 
driven contact problem, the load is unknown, then Eq. 5e is not 
valid any longer. Since one equation has been removed, one 
unknown – the interference α – should also be removed from
the set of unknowns in the numerical procedure. 

Solving the elastic contact using CGM and DC-FFT  
Hereafter the elastic contact algorithm used for both ld and 

dd formulations is briefly presented. Differences in the 
algorithm due to the formulation chosen are outlined. For a 
more complete description of the algorithm and t
assumptions, the reader may refer to [2]. 

At first, an initial value of the pressure must be fixed and 
Eqs. 5b, 5d and 5e have to be verified. In order to verify Eqs. 
5b and 5d it is required to choose non-negative values for the 
discrete pressure. For Eq. 5e, for simplicity, each point of the 
surface is assigned a value of the pressure corresponding to the 
total load divided by the surface area, i.e. the number of grid 
points multiplied by the elementary surface area dS = ax × ay. It 
is to be noticed, though, that the pressure distribution can be 
taken arbitrarily as long as it obeys Eq. 5e. 

For the displacement driven formulation, the load s 
unknown, but could be estimated at the initial state by using the 
Hertz theory, see for example [14]: 

( ) 2/3
0 '

3

4 αREP =  (6) 

In this expression, R is the equivalent radius given in Eq. 
and E’ is the equivalent Young modulus given by Eq. 8. 
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Two other variables are introduced, δ and Gold that are 
initialized by setting δ=0 and Gold = 1. 
 

 

 

 

The displacements uij are then computed and the iteration
can start. The first step is the calculation of the gap g. For the 
load driven formulation, it gives: 

( ) ;,, gijijij Ijihug ∈−−=  (9) 

( )
;

,

1 ∑
∈

−=
cIlk

klc gNg  (10) 

( ) .,, gijij Ijiggg ∈−←  (11) 

where Nc is the number of points in the contact area, which 
means all the grid points where the pressure is not nil but 
positive. 

For the displacement driven formulation, the calculation of 
the gap g gives: 

( ) gijijij Ijihug ∈−−−= ,,α  (12) 

Once gij is calculated, G is computed as follow: 

( )
∑

∈

=
cIji

ijgG
,

2  (13) 

GGold =  (14) 

G and Gold are used for the calculation of the new conjugate
direction tij: 

( ) ( ) ;,,/ cijoldijij IjitGGgt ∈+← δ  (15) 

( ) .,,0 cij Ijit ∉=  (16) 

In order to calculate the length of the step that will be made 
in the direction tij, r ij is calculated as follow: 

( )
( )
∑

∈
−− ∈=

gIlk
gklljkiij IjitKr

,
, ,,  (17) 

Since Eq. 17 is a convolution product, the calculation of 
the r ij is done using the DC-FFT method [4], the same way as 
the elastic displacements were calculated in Eq. 3. 

For the load-driven formulation, the residual r ij is adjusted 
to deal with the interference calculation enforcement: 

( )
;

,

1 ∑
∈

−=
cIlk
klc rNr  (18) 

( ) .,, gijij Ijirrr ∈−←  (19) 

This step is not required for the displacement driven 
formulation since the interference is known. 

The length of the step τ can now be calculated, giving for 
both formulations: 

( )

( )
∑

∑

∈

∈=

c

c

Iji
ijij

Iji
ijij

tr

tg

,

,τ  (20) 

Before updating the pressure, the current pressure value is 
stored for the error calculation: 

( ) gij
old
ij Ijipp ∈= ,,  (21) 

The new pressure distribution is then calculated using the 
previous calculated step and direction: 
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( ) cijijij Ijitpp ∈−← ,,τ  (22) 

After this step, Eq. 5d must be verified. Then, for all the 
grid nodes where the pressure is found negative, a nil value is 
enforced: 

00 =< ijij pthenpif  (23) 

Denoting Iol the set of nodes where there is no contact a
where the surfaces overlap, i.e. 

( ){ }0,0:, <=∈= ijijgol gpIjiI  (24) 

then δ set equal to unity if Iol = Ø. Otherwise, δ is set to zero 
and the pressures are corrected where the surfaces overlap: 

( ) olijijij Ijigpp ∈−← ,,τ  (25) 

In the case of the load-driven formulation, Eq. 5e is still to 
be verified. To do so, the force balance condition is enforced, 
and the pressures are corrected as follow: 

( )
∑

∈

=
gIji

ijyx paaP
,

;  (26) 

( ) ( ) gijij IjipPPp ∈← ,,/ 0  (27) 

This step is not required for the displacement driven 
formulation, since Eq. 5e is not part of the problem. 

Finally the error is computed as follow: 

( )
∑

∈

− −=
gIji

old
ijijyx ppPaa

,

1ε  (28) 

and a new iteration is performed, unless convergence is 
reached, i.e. ε ≤ ε0, with ε0 the prescribed error. 

Application to the thermal-elastic-plastic formulat ion  
 
 

Convergence test 
|δu3

rf - δu3
ri| 

   

max |δu3
ri| 

 

Yes 

Yes 

No 

Thermal-elastic contact 
p+δp=f(P+δP or α+δα, h0, ur, δur) 

Plastic strain increment 
 δεp=f(p+δp) 

Residual displacement increment 
δur=f(δεp) 

End of loading? 

End 

εp=εp+δεp 
P=P+δP or α+δα 
Hardening evolution 
ur= ur+δur 
δεp=0 ; δur=0 
 

No 

Relaxation 
δu3

ri = δu3
ri + λ(δu3

rf - δu3
ri) 

Initial state 
P or α , h0(x1,x2), εp, 
Material hardening 

ur(x1,x2)=f(εp) 
δεp=0 ; δur=0 

 

< eps 

 
Fig. 1 – Thermal-elastic-plastic algorithm 

 
The elastic contact solver is one part of the (thermal)-

elastic-plastic contact code. For a complete description of the 
problem, the reader is referred to both [5] and [6]. A return-
 

 

mapping algorithm with an elastic predictor/plastic corrector 
scheme and a von Mises criterion has also been implemented, 
improving the plasticity loop, see [11]. This improvement in the 
numerical algorithm increases the computing speed significantly 
and shows a much better convergence and accuracy.n 
overview of the algorithm is given in Fig 1. 

Starting from an initial state which is the application of a 
load P or an interference α, any initial geometry, some plasti
strains and a hardening state, a first residual displacement is 
calculated, see [5, 6] for calculation details. The plastic strain 
increment δεp and the residual displacement increment δur are 
initially set to zero. The thermal-elastic contact is then 
calculated using the method proposed in the previous section, 
but replacing uij by the displacement calculated in Eq. 29 a
replacing hij by the updated geometry calculated in Eq. 3
which takes into account the residual displacement found at the 
previous step of the iteration process. 

For a more detailed description, the reader is referred to 
[6]. 

t
ij

e
ijij uuu +=  (29) 

with uij the total displacement, ue
ij the elastic displacement a

expressed in Eq. 1, and ut
ij the thermally induced displacemen

[12]. 
r
ijijij uhh +←  (30) 

with hij the updated geometry, and ur
ij the residual displacement

Then, the plastic strain increment δε
p is computed, using a

return mapping scheme, based on the Newton Raphson method. 
The algorithm used is presented by Fotiu and Nemat-Nasser in 
[15], and applied to the current model in [11]. 

The next step is the calculation of the residual displacement 
increment [5] which is added to the initial geometry in Eq. 30 
until convergence is reached. At this point, for a vertical 
loading, either the load P or the interference α is increased by
an increment, and the iteration procedure is carried on. For 
rolling loading in the ld formulation, the load is kept constant 
whereas the hardening state and the plastic strains are updated
after each increment. For rolling / sliding loading in the dd 
formulation, the interference, the hardening state and the plastic 
strains are updated before the next step of the iteration process. 

Validation of the dd-driven algorithm  
In the case of the contact between an elastic-plastic body 

and a rigid punch (nano-indentation test), the load-driven 
formulation has been validated with the Finite Element software 
Abaqus, and also experimentally, see [5]. For this simulation, 
the elastic-plastic body is a flat made of steel used in aeronautic
applications. The elastic properties of this steel are E=210GPa 
for the Young modulus, and ν=0.3 for Poisson ratio. The Swif
law is used to describe the hardening behavior, see Eq. 31 and 
the chosen parameters are B=1240MPa, C=30, and n=0.085. It 
is to be noted that the equivalent plastic strain in this expression
is expressed in microdef (10-6 def). These values are take
4 Copyright © 2006 by ASME 
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according to El Ghazal [16] and correspond to the experimental
data presented in [5]. 

( )np
VM eCB +⋅=σ  (31) 

For the rigid punch, a sphere with radius 105 µm is chosen
(nano-indenter tip). The load is progressively applied until 
0.650 N and then the two bodies are unloaded until no contact
occurs anymore.  
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Fig. 2 – Load (mN) vs. interference during the load ing 

/ unloading phases. Max load 0.650 N / Max 
interference 372 nm 
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x / a

P
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P
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Hertz
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p 
/ p

h 

x / a 
 

Fig. 3 – Pressure distribution at the end of the lo ading 
phase, in the plane y=0. Load 0.650 N  

 
Figures 2 and 3 present a comparison between the ad-

driven and the displacement-driven formulations. 
Figure 2 gives the evolution of the load versus  

interference during loading and unloading. It is observed here
the influence of both plasticity and conformity change due to
permanent deformation of the surface, since the curves are
really different for the loading and the unloading phases
Plasticity is a phenomenon that depends on the loading history. 

The pressure distribution in the plane y=0 (longitudinal 
plane) for the maximum load of 0.650 N at the end of the 
loading phase, is given in Fig. 3. The pressure distribution is 
found flattened compared to the Hertz solution. This is due
mostly to hardening of the elastic-plastic material which tends
to increase the contact area. There is also a little influence of
the geometry change due to permanent deformation o the 
surface. 

 

(1) 

(2) 
 

As it can be seen, a very good agreement is found, for a 
comparable time computation with for the mesh-si 
dx=0.6µm, dy=1.2µm, dz=0.3µm i.e. 31 x 17 x 44 = 23,188 
points in the plastic zone and with a total of 26 time-step 
increments for loading / unloading (about 25 minutes for the 
whole loading / unloading process on a 1.8 GHz Pentium M 
personal computer). 

MODELING OF THE CONTACT BETWEEN TWO 
ELASTIC-PLASTIC BODIES 

This paragraph deals with the contact between two elastic-
plastic bodies. The current assumptions are that the two bodies 
have the same initial geometry with identical elastic properties 
and hardening behavior. In order to validate the new proposed 
algorithm, a comparison with a Finite Element simulation is 
made through the normal contact between two spheres. The 
differences between the case of an elastic plastic body in 
contact with another elastic plastic body, and the case of an 
elastic plastic body in contact with a pure elastic body will be 
outlined. 

Improved algorithm  
The algorithm has been improved to deal with two elastic-

plastic bodies in contact. The only change in the previous model 
is in Eq. 30. Indeed, when the initial geometry is updated, it 
takes into account the change in both bodies geometry at the 
same time since hij is actually the surface separation. At th
beginning of each new increment, the pressure is calculated, and 
this pressure repartition is applied on both counter surfaces. 
Then, the residual displacement calculated at the end of the 
increment is added to the initial geometry. If one of the bodies 
is elastic, then the residual displacement is basically added to 
the initial geometry, see Fig. 4. Though, if the bodies are both 
elastic-plastic and have the same hardening behavior, then the 
surface separation in Eq. 30 becomes: 

r
ijijij u2hh +←  (32) 

because of the symmetry about the plane of contact, see Fig. 4. 
 

Elastic 

Elastic-plastic 

ur 

 

Elastic-plastic 

Elastic-plastic 

2ur 

 
 a) b) 
Fig. 4 – Updating of the initial geometry with u r at the 
beginning of a step. a) Elastic body against elasti c-
plastic body, b) Contact between 2 elastic-plastic 

bodies 
5 Copyright © 2006 by ASME 



e

he

n 

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/IJTC

/proceedings-pdf/IJTC
2006/42592a/739/2652810/739_1.pdf by G

eorgia Institute of Technology user on 06 January 2021
Results  
A simple example is proposed which corresponds to the 

simulation of the normal contact between two spheres of radius 
15 mm. The spheres are made of AISI 52100 bearing steel, with 
elastic properties E=210GPa for the Young modulus, and ν=0.3 
for the Poisson ratio. The hardening law is described by a Swift 
law, as in Eq. (31), with parameters B=945MPa, C=20, and 
n=0.121. Here again, ep is expressed in microdef. 
 

0

0.2

0.4

0.6

0.8

1

1.2

-1.5 -1 -0.5 0 0.5 1 1.5

x / a

P / Ph

Hertz
E_E
Série10
Abaqus
E_EP
EP_EP
Série7
SAC
E_EP
EP_EP

 
Fig. 5 – Pressure distribution at the end of loadin g in 

the plane y=0. Load 11,179N, i.e. P h=8GPa and 
hertzian contact radius a=817µm. 

 
In order to compare the results for the loaded case, figure 5 

shows the pressure repartition at the end of the loading with a 
normal load of 11,179N corresponding to a hertzian pressure of 
8GPa. The pressure P is normalized by the hertzian pressure Ph, 
and the abscissa x by the hertzian contact radius a. The 
axisymmetric FE model consists of 40,247 elements (type 
CAX4R) with 81,128 dof. Two EP (Elastic-Plastic) situations 
are presented, the first one with only one inelastic body (E_EP), 
the second one when both bodies are inelastic (EP_EP, with the 
same hardening law). As it can be seen, a very good agreement 
is observed between the results provided by Abaqus and the 
ones from the Semi-Analytical Code (SAC). 

In order to compare the results for the unloaded case, figure 
6 shows this time the evolution of the hydrostatic pressure as 
defined in Eq. 33 versus the depth, in the same conditions as 
before, i.e. at the end of the loading and with the same 
hardening law. Again, the hydrostatic pressure is normalized by 
the hertzian pressure Ph, and the depth z by the hertzian contact 
radius a. 

( )1 2 3

1

3
r r r

hydroP σ σ σ= + +  (33) 

with σr
1, σ

r
2, and σr

3 the principal components of the residual 
stress tensor. 

As it can be seen again, a very good agreement is observed 
between the results provided by Abaqus and the ones from the 
Semi-Analytical Code (SAC). 
 

One may observe two regions where the residual strss 
state is compressive: at the hertzian depth and at the surface, 
whereas two tensile regions are found: one between the surface 
and the hertzian depth, but very close to the surface, and one far 
below the hertzian depth. 

One may also observe that the maximum compressive value 
is found at depth z/a=0.68, i.e. deeper than the hertzian depth 
(z/a=0.48). 

Almost no variation difference is found in the tensile zones, 
whereas an important difference in the compressive zone at the 
hertzian depth is found, the minimum value being smaller when 
one of the bodies is considered as elastic. For more results 
concerning the hydrostatic pressure, and the influence of the 
friction coefficient on its evolution, the reader can refer to [7]. 

Figure 7 gives the maximum contact pressure and t 
corresponding maximum equivalent plastic strain versus the 
normal load at the center of the contact. The dash line indicates 
the plasticity threshold in term of equivalent plastic strain 
commonly used to define the yield stress, i.e. ep = 0.2 %, that 
will be used later to define the critical load at the onset of 
yielding. To find the aforementioned critical value, a 
polynomial interpolation is used: 

( ) ( )
1

n
L L

j
j

P x P x
=

=∑  (34) 

where x is equal to 0.2 %, and where Pj
L are the Lagrange 

polynoms expressed as follows: 

( )
1

n
L k
j j

k j k
k j

x x
P x y

x x=
≠

−=
−∏  (35) 

where xj are the values of the equivalent plastic strains, and yj 
the values of the loads. 
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Fig. 6 – Hydrostatic pressure at the end of loading  at 
the center of the contact. Load 11,179N, i.e. P h=8GPa 

and hertzian contact radius a=817µm. 
 

One obtains then for the critical loads, Lc = 1649 N for the 
case of the contact between an elastic and an elastic-plastic 
bodies, and Lc = 1743 N for the case of the contact betwee
two elastic-plastic bodies. The latter value will be used in what 
6 Copyright © 2006 by ASME 
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follows to present now the same results in a dimensionless 
form, see Fig. 8, the maximum contact pressure Pmax being 
normalized by the Hertz pressure Ph and the normal load L by 
the critical load Lc=1743 N.  An increasing difference betwee
the two curves with increasing load can be seen. As in Fig. 7 
one may also observed a pronounced reduction of the maximum 
contact pressure when considering two EP bodies compared to a 
purely elastic one against an EP one, up to 11% at the highest 
load (see Fig. 9). Another interesting trend in Fig. 8 is the 
discrepancy between the EP response compare to the Hertz 
solution, at the critical load, i.e. L/Lc=1. Whereas the analysis 
remains within the classical assumption of elastic behavior, 
since the plastic strain ep does not exceed 0.2%, it appears that 
the real contact pressure is 5% lower than the Hertz solution 
when considering two EP bodies. Note that the difference 
between the E_EP and the EP_EP solutions is given in Fig. 9 in 
term of percentage as defined by Eq. 36. 

( ) 100%
_

max

_
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_
max ⋅

−
=
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Fig. 7 – Maximum contact pressure P max (GPa) and 
equivalent plastic strain e p (%) vs. the normal load 

(N). 
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Fig. 8 – Dimensionless contact pressure vs. 

dimensionless load found at the center of the conta ct. 
 

From Fig. 9 it can be concluded that for L/Lc < 1, i.e. 
4.5GPa for the hertzian pressure, the error made is less than 
3%, if only one body behaves inelastically compared to two 
identical EP bodies in contact. It should be also noticed that, if 
two different elastic-plastic hardening laws are considered for 
the bodies in contact, the difference between the E_EP and 
EP_EP solutions will be lowered, making more appropriate the 
simplification of considering the harder material as purely 
elastic. 
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Fig. 9 – Difference between the maximum contact 
pressures obtained assuming an E_EP and EP_EP 

behavior vs. the dimensionless load L / L c 

MODELING OF THE ROLLING / SLIDING CONTACT 
BETWEEN TWO (THERMAL)-ELASTIC-PLASTIC 
ASPERITIES USING THE DD FORMULATION 

This part is considered in a companion paper [17]. In the 
current incremental procedure, the normal contact is solved at 
every step. The geometry, the hardening state as well as the 
plastic strains are updated at the end of each step for each EP 
body. When the asperities are moving the geometry change 
includes the permanent deformation of the surface of the elastic-
plastic bodies. Special care to the effects of sliding will be 
given since it is a more complex problem than the pure rolling 
situation as discussed earlier. Finally, some results on how both 
the normal and the tangential loads vary during a single tugging 
will be presented in [17]. 

CONCLUSION 
For modeling an elastic-plastic rolling / sliding contact, a 

tri-dimensional thermal-elastic-plastic code has been adapted,
requiring some specific developments. Two formulations have 
been proposed to drive the computation, one by imposing the 
load and the second one by imposing a normal rigid body 
displacement also call contact interference. Thanks to the use of 
optimized numerical techniques, which are the Conjugate 
Gradient and the Discrete Convolution and Fast Fouier 
Transform, the computation time remains very reasonable in 
comparison to similar but 2D only analysis performed by FEM, 
and despite a large number of points in the plastic zone. 

The contact between two identical elastic-plastic bodies has 
been first analyzed. It has been shown a significant reduction of 
7 Copyright © 2006 by ASME 
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the contact pressure compared to the situation when a purely 
elastic body is in contact with an elastic-plastic one. In order to 
complete the study, the tugging between two single asperities is 
then investigated in a companion paper [17]. 
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