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ABSTRACT

A semi-analytical method for the tridimensional rthal-
elastic-plastic contact between two hemisphericaledties is
proposed. This first part of the paper describes algorithm
used to deal with the normal contact, which cariieer load-
driven (Id) or displacement-driven (dd). Both folations use

the Conjugate Gradient (CG) method and the Discrete

Convolution and Fast Fourier Transform (DC-FFT)htaque.
A validation of the code is made
displacement-driven formulation for an elastic-ptadody in
contact with a rigid punch, simulating a nano-irtdéion test.
For both formulations (Id and dd) a very good cageeace rate
is found. Another new feature is the treatmenthsf tontact
between two elastic-plastic bodies. The modelrit fralidated
through comparison with the Finite Element Meth&dEN).
The contact pressure distribution, the hydrostatessure and
the equivalent plastic strain state below the aziimg surfaces
are also found to be strongly modified in comparismthe case
of an elastic-plastic body in contact with a purelgstic body.
An application to the tugging between two spherasperities
in simple sliding (dd formulation) is made in pdrtof the
paper.

INTRODUCTION

It is now well recognized that Semi-Analytical Metts
(SAM) are efficient methods for solving contact Iplems.
Compared to Finite Element (FE) analyses, SAM shaych
shorter computation times, typically by several evsd of
magnitude. Among many numerical methods it seeras ttte
most efficient to solve contact problem are the jGgate
Gradient (CG) method first introduced by Nogi andtd[1],
later used by Polonsky and Keer [2], the Multi Leiéulti
Summation (MLMS) technique first implemented by tedtht
and loannides [3], and the Discrete Convolution ekt
Fourier Transform (DC-FFT) used by Nogi and Katd §bd
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in the case of the

I. Green (Georgia Institute of
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later by Liu et al. [4] combined to the CGM. Theegent paper
is in the continuity of the work by Nélias and covkers [5-11]
who developed a semi-analytical method for solvirgtact
problems with different levels of complexity rangirfrom

elastic-plastic (EP) rolling contact simulation ,[Sthermal-
elastic-plastic (TEP) analysis [6], normally andhgantially
loaded EP contact [7] with various potential apgtiicns such
as the determination of the micro-yield stress igoin a

nitrided steel by nano-indentation [8], the rolliafya load on a
smooth, dented or rough surface [5, 9], the siradatof

fretting wear [10], and the running-in or wear ofitially

smooth or rough surfaces [11].

NOMENCLATURE

Elastic contact resolution (CGM)
u = elastic displacement, m

p = pressure, Pa

h = surface separation, m

a = interference, m

g=gap, m

Py = initial load, N
P =load, N

S, = grid area

l4 = set of nodes in the grid

I = set of grid nodes in contact

I = set of grid nodes where there is no contactveimere
the surfaces overlap

t = direction of the gradient

r = residue

T = step length

(Thermal-)Elastic-Plastic contact resolution
u® = elastic displacement, m

u' = thermal displacement, m

U’ = residual displacement, m
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h° = initial surface separation, m

€ = plastic strain tensor, -

€’ = equivalent plastic strain, -

o'y, 6’5, 6's = principal components of the residual stress
tensor

P- = interpolation polynom

PJ-L = Lagrange polynoms

C(%) = percentage difference between E_EP and EP_EPforced to fix a value for the load, resulting imding a rigid

max pressures
L. = critical load for 0.2% equivalent plastic straih

Elastic constants

v = Poisson ration

E = Young modulus, Pa

E’ = equivalent Young modulus, Pa

Geometry
R; , R =radius of body 1 and 2, respectively, m

R = equivalent radius, m

LOAD-DRIVEN (LD) VS. DISPLACEMENT-DRIVEN (DD)
FORMULATIONS

In order to simulate the rolling/sliding contact, ld
formulation was first used by applying a normaldgaertical
loading) prior to the tangential displacement & kbad (rolling
load). In such a formulation one may consider atifrhless
contact, see for example [5, 6, 9], as well as dffect of
friction which often tends to overload the nearface area [7,
11]. This formulation is well adapted when consiadgrthe
whole contact between two bodies pressed agaimst ether
with a prescribed load. On the other hand, whendimg the
analysis to the contact between two single aspsriked on
opposite surfaces which are in relative motionis itlear that
this localized interaction is more related to aidridody
displacement (interference) producing a transiesrmal and
tangential loading when asperities collide. It ddolbe noted
that the tangential load is here defined as theefdhat acts
opposite to the relative velocity, which is not iled to
frictional effects since the contact surface isebaparallel to
the relative velocity between the contacting swefad his is the
reason why a friction coefficient is purposely dett in this
study, in order to uncouple tangential effects cwtl by
mechanical deformations, and the ones induceditjofn. The
mechanism at the origin of the tangential load tbwhen two
asperities tug each other is similar to the onendoduring
ploughing when a normally loaded rigid indentetrenslated
on the surface of a deformable media.

A realistic application of the sliding between tasperities
with a fixed value of the interference could be #iding of a
projectile between two rails in an electromagné&timncher for
example, since the projectile is sliding on twolsrahat are
fixed in distance.

The model is based on the work of Polonsky and K&ler
that developed a load driven formulation for thenmal contact.
In their formulation, they used the CG method amal MLMS

technique to accelerate the computation speed.dBasethe
same formulation but using a different numericalgedure, i.e.
using the DC-FFT technique instead of the MLMS teghe,
Liu et al. [12] found a better convergence rate angdroved
accuracy [4].

Basically the load driven formulation shows veryodo
results in terms of convergence rate and accubatythe user is

o
body displacement after computation. As said eartids is £
convenient for the resolution of the whole contdmtt not to §
describe the tugging between two single asperilibgreafter §
are presented the contact algorithms first for Itieed driven 3
formulation and second for the displacement drivén
formulation.

Bipawse//:

Elastic contact problem
The pressure distribution in the contact conjuncticeates

a composite displacemenfx,y) which is the summation of theg
two displacements on the surface of each bodyeaptint of
coordinatgx,y), given by:

u(xy)==[[K(x=x,y=y)p(x,y)dxdy
SQ
In this expression, is the grid area anld(x, y) stands for
the surface deflection distribution produced byoacentrated
normal contact load of unit magnitude acting atdhigin of the
domain. For a pair of homogeneous elastic solidoirtact, the
kernelK(x,y) is given by the Boussinesq formula [13]:

1-v? 1-v2 1
K , - 1 2
(X y) ( 7E1 + 7E2 j lxz+y2

whereE; andE; are the Young moduli of the two solids, and
andv, are their Poisson’s ratios. The grid aBas divided into
N rectangular surface elemerfis centered at the grid nodesg
The length and the width of each element are egutile grid
spacings in thex and y-directions, respectively. The contac;f?
pressure distribution is approximated by a piecevasnstant
function, uniform within each surface element. Dienwpl, the
set of all nodes in the grid, Eq. 1 can be re-amits:

U =-— ZKi—k,j—I Pu s (i’j)Dlg
(kg

where u; is the surface deflection at node (i, P is the
uniform pressure acting on the element centerawbdée (k,l),
andKj are the influence coefficients, given by:

Kj :J.J'K(xi —x',yj—y')dx'dy', (i,j)DIg

In the case of homogenous elastic solids, the iciafts
Kj can be easily calculated using the well-known exieform
solution for a patch load acting on an elastic -spHce [13].
The calculation of the elastic displacement in Bqgis done
using the DC-FFT method, as introduced by Liu [4].
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Taking into account the expression of the elastic
displacement in Eq. 3, the contact problem candseribed by
the following system of equations and inequalities:

W%ﬁwkmm=m+m (i, 5)o1, (5)
p, >0, (i,j)01, (5b)
(k,uz)u:|:<i_k’j_' po2h +a, (i,j)01; (5¢)
p, =0 (i,i)01; (5d)

yZm‘% (5e)

(i,j)0g

wherea is the rigid body approach (interference) betwten
two solids,a, anda, are the grid spacings in x and y directions
respectively, Py is the total normal loadhy; is the total
separation between the two solids dpdenotes the set of all
grid nodes that are in contact. In the case ofdibplacement
driven contact problem, the load is unknown, then &e is not
valid any longer. Since one equation has been rethogne
unknown — the interference — should also be removed from
the set of unknowns in the numerical procedure.

Solving the elastic contact using CGM and DC-FFT

Hereafter the elastic contact algorithm used fdahlbd and
dd formulations is briefly presented. Differences the
algorithm due to the formulation chosen are oudinEor a
more complete description of the algorithm and
assumptions, the reader may refer to [2].

At first, an initial value of the pressure mustfbeed and
Egs. 5b, 5d and 5e have to be verified. In orderetify Egs.
5b and 5d it is required to choose non-negativeiesfor the
discrete pressure. For Eg. 5e, for simplicity, epomt of the
surface is assigned a value of the pressure camdsm to the
total load divided by the surface area, i.e. thenlper of grid
points multiplied by the elementary surface ai€a= g« a,. It
is to be noticed, though, that the pressure digioh can be
taken arbitrarily as long as it obeys Eq. 5e.

For the displacement driven formulation, the load i
unknown, but could be estimated at the initialestat using the
Hertz theory, see for example [14]:

P, = g E'VR(a)*? (6)

In this expressiorRR is the equivalent radius given in Eq. 7
andE’ is the equivalent Young modulus given by Eq. 8.

1_1 .1
_1.1

R R

1-vf

the

Q)

1-v2

El E2
Two other variables are introducedl,and G,q4 that are
initialized by settingI=0 andGgq = 1

R
1= ®)
E

The displacements; are then computed and the iteration
can start. The first step is the calculation of ga@g. For the
load driven formulation, it gives:

g =-u, —h, (,i)o1, (9)

3=\ Yo, @)
(ke

gy <90, (i j)DI (11)

where N is the number of points in the contact area, whi
means all the grid points where the pressure isnilobut
positive.

For the displacement driven formulation, the caltioh of
the gapg gives:

9, =—u, —h, —a, (i,j)01, (12)
Oncegj is calculated is computed as follow:
G= > ¢ (13)
(i.)ore
G,y =G (14)

%u&o‘ewse'uouoauo:neuﬁgpswsen:duu woly pep@_umoa

G andG,y are used for the calculation of the new conjug
directiont;:

y - g, +8(6/G ). (L1)TL a9
t, =0, (i,j)Ol.. (16)

In order to calculate the length of the step thiltbe made
in the directiort;, r,, is calculated as follow:

ZK| -k, s (|1J)|:|Ig
(k1)

Since Eqg. 17 is a convolution product, the cal¢oitabf
ther; is done using the DC-FFT method [4], the same asy
the elastic displacements were calculated in Eq. 3.

For the load-driven formulation, the residuglis adjusted
to deal with the interference calculation enforcetme

17

=Nt D o (18)
kIEII
R ( j)DI (19)

This step is not required for the displacement alriv
formulation since the interference is known.

The length of the step can now be calculated, giving fo
both formulations:

295
p=tile (20)

2.t
(ii)ore

Before updating the pressure, the current presslue is

stored for the error calculation:
old _— HE

plj pij ’ (|7 J)D I g (21)

The new pressure distribution is then calculatadguthe
previous calculated step and direction:
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mapping algorithm with an elastic predictor/plastiarrector
scheme and a von Mises criterion has also beeremited,
improving the plasticity loop, see [11]. This impgement in the
numerical algorithm increases the computing spagdficantly
and shows a much better convergence and accuraty. A
overview of the algorithm is given in Fig 1.

Starting from an initial state which is the appflioa of a
load P or an interference;, any initial geometry, some plasti

Py < Py —Tt, (I1J)D|c (22)
After this step, Eq. 5d must be verified. Then, &irthe

grid nodes where the pressure is found negativel, \alue is

enforced:

if p; <O then p, =0 (23)
Denotingly the set of nodes where there is no contact and

where the surfaces overlap, i.e.

&

Lo ={(i’j)|:||g: P; =0, g; <O} (24)

theno set equal to unity if, = &. Otherwiseg is set to zero

and the pressures are corrected where the sudaedap:

Py < Py — 70, (i’j)Dlol

(25)

In the case of the load-driven formulation, Eq.ibstill to

be verified. To do so, the force balance condiienforced,

and the pressures are corrected as follow:

P=aa, > p;
(5)ng

Py < (P/Po)p”-, (i1j)D|g

This step is not required for the displacement alriv

(26)

(27)

formulation, since Eq. 5e is not part of the pratle
Finally the error is computed as follow:

old

Pi — By

e=aa,P™* )

(i)

and a new iteration is performed, unless convergersc

(28)

reached, i.es < ¢, With o the prescribed error.

strains and a hardening state, a first residugllatiement is
calculated, see [5, 6] for calculation details. Tiastic strain
incrementse® and the residual displacement increméuitare
initially set to zero. The thermal-elastic contaist then
calculated using the method proposed in the previaction,
but replacingu; by the displacement calculated in Eqg. 29 a
replacing by by the updated geometry calculated in Eq. 3
which takes into account the residual displacerfeumd at the
previous step of the iteration process.

For a more detailed description, the reader isrmedeto
[6].
u; =uf +u; (29)
with u; the total displacement the elastic displacement ag
expressed in Eq. 1, aru‘jj the thermally induced displacemeng
[12]. 8
h, « h; +u; (30)
with h; the updated geometry, anfg the residual displacement.g
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return mapping scheme, based on the Newton Raphstirod.
The algorithm used is presented by Fotiu and Neé¥aatser in

€//0182592/6€./826521/90020.

Application to the thermal-elastic-plastic formulat ion [15], and applied to the current model in [11].
The next step is the calculation of the residuspldicement
Initial state Thermal-elastic contact increment [5] which is added to the initial georyiatr Eq. 30
Pora , H(x1,%), €, N p+3p=f(P+3P ora+da, H’, U, du') . . . . .
Material hardening ! v until convergence is reached. At this point, forvertical
U (1, x2)=F(e") E — loading, either the loa® or the interference is increased by &
3eP=0 : 3u'=0 ' Plastic strain increment . . . . . =
’ ' 3eP=f(p-+3p) an increment, and the iteration procedure is caroa. For g
E I rolling loading in the Id formulation, the load kept constant g
' . . . @
5 Residual displacement increment whereas thg hardening state a_nd the _pl_asnc st&_n_mslpdated g
' Bu'=f(8e) after each increment. For rolling / sliding loading the dd
E l formulation, the interference, the hardening ssaie the plastic 2
! strains are updated before the next step of thatibe process.

|
Relaxation

Bus" = dug" + A(dug" - dua™)

Convergence test
| BU3" - 5us"|

— <eps
max pus'|

e No | ves and a rigid punch (nano-indentation test), the J{daden
Hardening evolution formulation has been validated with the Finite Ebatsoftware
gszp:%*.ég‘urzo Yes Abaqus, and also experimentally, see [5]. For $sulation,

Enc

Fig. 1 — Thermal-elastic-plastic algorithm

The elastic contact solver is one part of the (tfad)-
elastic-plastic contact code. For a complete desori of the
problem, the reader is referred to both [5] and B]return-

Validation of the dd-driven algorithm
In the case of the contact between an elasticiplasidy

nuepr 9o uo Jasn ABojouyoa] jo aynynsu] eibl

the elastic-plastic body is a flat made of steeldus aeronautic 3
applications. The elastic properties of this swelE=210GPa 3
for the Young modulus, ang=0.3 for Poisson ratio. The Swiftg
law is used to describe the hardening behaviorEspe81 and
the chosen parameters 8e1240MPa,C=30, andn=0.085. It
is to be noted that the equivalent plastic straithis expression
is expressed in microdef (f0def). These values are taken
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according to El Ghazal [16] and correspond to tteeemental As it can be seen, a very good agreement is fofanda

data presented in [5]. comparable time computation with for the mesh-size,
_ o) dx=0.6pum, dy=1.2um, dz=0.3um i.e. 31 x 17 x 44 7128
Oy = B[ﬁgfe ) . . (31) points in the plastic zone and with a total of 2®etstep
For the rigid punch, a sphere with radius 105 pehissen increments for loading / unloading (about 25 misuter the
(nano-indenter tip). The load is progressively apluntil whole loading / unloading process on a 1.8 GHz iRenM
0.650 N and then the two bodies are unloaded natitontact personal computer).

OCcurs anymaore.

MODELING OF THE CONTACT BETWEEN TWO
ELASTIC-PLASTIC BODIES

This paragraph deals with the contact between tastie-
plastic bodies. The current assumptions are tlatwo bodies
have the same initial geometry with identical etaptoperties
and hardening behavior. In order to validate the peoposed
algorithm, a comparison with a Finite Element sitioln is
made through the normal contact between two sphéies
differences between the case of an elastic plastidy in

0 100 200 300 400 contact with another elastic plastic body, and ¢ase of an
Interference (nm) elastic plastic body in contact with a pure elabiicly will be
Fig. 2 — Load (mN) vs. interference during the load  ing outlined.
/ unloading phases. Max load 0.650 N / Max
interference 372 nm Improved algorithm

The algorithm has been improved to deal with twastit-
plastic bodies in contact. The only change in ttevipus model
is in Eq. 30. Indeed, when the initial geometryufated, it
1 oo takes into account the change in both bodies gagra¢tthe
same time sincdy; is actually the surface separation. At th
beginning of each new increment, the pressurelisileded, and
ROy this pressure repartition is applied on both caustafaces.
\ X Then, the residual displacement calculated at ik &f the
o // :Eenz \\ increment is added to the initial geometry. If @iehe bodies
02 —dd is elastic, then the residual displacement is bégiadded to

éf 5& the initial geometry, see Fig. 4. Though, if thelies are both
0 elastic-plastic and have the same hardening behatien the
h ' T y/a ' surface separation in Eq. 30 becomes:

r
Fig. 3 — Pressure distribution at the end of the lo  ading hiJ' - hiJ' + 2uij (32)
phase, in the plane y=0. Load 0.650 N because of the symmetry about the plane of corgaeetFig. 4.

12
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Figures 2 and 3 present a comparison between #w o
driven and the displacement-driven formulations.

Figure 2 gives the evolution of the load versus the
interference during loading and unloading. It iseted here
the influence of both plasticity and conformity olga due to
permanent deformation of the surface, since theresurare
really different for the loading and the unloadipdases. Elastic-plastic Elastic-plastic
Plasticity is a phenomenon that depends on thargddstory.

The pressure distribution in the plane y=0 (lordjital
plane) for the maximum load of 0.650 N at the effidhe

Elastic Elastic-plastic

120z Atenuer 9o uo Jasn ABojouyoa] jo aynysu e1b10as) Aq jpd-|

loading phase, is given in Fig. 3. The pressuréridigion is a) b)

found flattened compared to the Hertz solution.sTisi due Fig. 4 — Updating of the initial geometry withu " at the
mostly to hardening of the elastic-plastic mateviaich tends beginning of a step. a) Elastic body against elasti  c-
to increase the contact area. There is also a litfluence of plastic body, b) Contact between 2 elastic-plastic

the geometry change due to permanent deformatiothef bodies

surface.
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Results

A simple example is proposed which correspondshe t
simulation of the normal contact between two spheferadius
15 mm. The spheres are made of AlSI 52100 beatédd, svith
elastic propertieE=210GPafor the Young modulus, ang0.3
for the Poisson ratio. The hardening law is describy a Swift
law, as in Eqg. (31), with parameteBs=945MPg C=20, and
n=0.121 Here againg® is expressed in microdef.

Hertz
——Cc E

Abaqus
—E_EP
—+—EP_EP

SAC
E_EP
—=—EP_EP

x/a

Fig. 5 — Pressure distribution at the end of loadin g in
the plane y=0. Load 11,179N, i.e. P ,=8GPa and
hertzian contact radius a=817um.

In order to compare the results for the loaded,dapae 5
shows the pressure repartition at the end of thditg with a
normal load of 11,179N corresponding to a hertpigssure of
8GPa. The pressufeis normalized by the hertzian pressufe P
and the abscissa by the hertzian contact radis The
axisymmetric FE model consists of 40,247 elememype(
CAX4R) with 81,128 dof. Two EP (Elastic-Plasticjusitions
are presented, the first one with only one inalastidy (E_EP),
the second one when both bodies are inelastic (EPwith the
same hardening law). As it can be seen, a very ggogement
is observed between the results provided by Abamqds the
ones from the Semi-Analytical Code (SAC).

In order to compare the results for the unloadesa ciigure
6 shows this time the evolution of the hydrostatiessure as
defined in Eq. 33 versus the depth, in the samditons as
before, i.e. at the end of the loading and with g@me
hardening law. Again, the hydrostatic pressureoisrmalized by
the hertzian pressurg,Rand the depth by the hertzian contact
radiusa.

1
I:)hydro = 5(0-11‘ + 0-; + 0.;;) (33)
with ¢'1, 6’5, ando's the principal components of the residual
stress tensor.

As it can be seen again, a very good agreemeihtsisreed
between the results provided by Abaqus and the fsoesthe
Semi-Analytical Code (SAC).

One may observe two regions where the residuabksstre

state is compressive: at the hertzian depth antieasurface,
whereas two tensile regions are found: one betweeisurface
and the hertzian depth, but very close to the sarfand one far

below the hertzian depth.

One may also observe that the maximum compressive v

is found at depth z/a=0.68, i.e. deeper than thizibe depth
(z/a=0.48).
Almost no variation difference is found in the témgones,

whereas an important difference in the compresaive at the

hertzian depth is found, the minimum value beingl&n when
one of the bodies is considered as elastic. Forenmesults
concerning the hydrostatic pressure, and the inflaeof the
friction coefficient on its evolution, the reademcrefer to [7].
Figure 7 gives the maximum contact pressure and
corresponding maximum equivalent plastic strainswsrthe
normal load at the center of the contact. The diaghindicates
the plasticity threshold in term of equivalent piasstrain
commonly used to define the yield stress, ég= 0.2 % that

will be used later to define the critical load &etonset of

yielding. To find the aforementioned critical valuea
polynomial interpolation is used:

n
L —
PH (=2 R (% (34)
j=1
where x is equal to 0.2 %, and WhemL are the Lagrange
polynoms expressed as follows:
n
X_
PH9= 9]y @)
4 X~ X%

k# j
wherex; are the values of the equivalent plastic straamsly,
the values of the loads.

0.02

Abaqus
—>—E_EP
——EP_EP

SAC
E_EP
—E-EP_EP

Phydro / Ph

z/a

Fig. 6 — Hydrostatic pressure at the end of loading at
the center of the contact. Load 11,179N, i.e. P ,=8GPa
and hertzian contact radius a=817pm.

One obtains then for the critical loadls, = 1649 Nfor the
case of the contact between an elastic and anicepdastic

)
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bodies, and_c = 1743 Nfor the case of the contact between

two elastic-plastic bodies. The latter value wil bised in what
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follows to present now the same results in a dimatess
form, see Fig. 8, the maximum contact presdemeax being
normalized by the Hertz pressupé and the normal load by
the critical loadLc=1743 N An increasing difference between
the two curves with increasing load can be seeninAsig. 7
one may also observed a pronounced reduction ahthémum
contact pressure when considering two EP bodiepaoed to a
purely elastic one against an EP one, up to 11%eahighest
load (see Fig. 9). Another interesting trend in.FRdgis the
discrepancy between the EP response compare tdidhiz
solution, at the critical load, i.e. L/Lc=1. Whesethe analysis
remains within the classical assumption of elasthavior,
since the plastic straiep does not exceed.2% it appears that
the real contact pressure is 5% lower than theZzHsstution
when considering two EP bodies. Note that the udiffee
between the E_EP and the EP_EP solutions is giv&igi 9 in
term of percentage as defined by Eq. 36.

‘ E_EP _ EP_EP‘
max max
0 ):
C (% e 100 (36)
max
Pmax (GPa) ep (%)
9 35
8 13
7
+ 25 Pmax
6 ——E_E
15 —8—E_EP
5 1 — ——EP_EP
41 +15 ep
E_EP
31 EP_EP
H1
2
1 +05
- 02%
0 & 0

6000 8000 10000

Load (N)
Fig. 7 — Maximum contact pressure P .« (GPa) and
equivalent plastic strain e ® (%) vs. the normal load
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Fig. 8 — Dimensionless contact pressure vs.
dimensionless load found at the center of the conta ct.

From Fig. 9 it can be concluded that for L/ 1, i.e.
4.5GPa for the hertzian pressure, the error madesis than
3%, if only one body behaves inelastically compatedwo
identical EP bodies in contact. It should be alsticed that, if
two different elastic-plastic hardening laws aresidered for
the bodies in contact, the difference between th&FREand
EP_EP solutions will be lowered, making more appete the
simplification of considering the harder materiad purely
elastic.

12

10 A

8 1

C (%)

0 1 2 3 4 5 6 7
L/Lc

Fig. 9 — Difference between the maximum contact

pressures obtained assuming an E_EP and EP_EP

behavior vs. the dimensionlessload L/ L

MODELING OF THE ROLLING / SLIDING CONTACT
BETWEEN TWO  (THERMAL)-ELASTIC-PLASTIC
ASPERITIES USING THE DD FORMULATION

This part is considered in a companion paper [kvVthe
current incremental procedure, the normal contactoived at
every step. The geometry, the hardening state disawethe
plastic strains are updated at the end of eachfetepach EP
body. When the asperities are moving the geometgnge
includes the permanent deformation of the surfdi¢kenelastic-
plastic bodies. Special care to the effects ofirgidwill be
given since it is a more complex problem than theepolling
situation as discussed earlier. Finally, some tesan how both
the normal and the tangential loads vary duringngle tugging
will be presented in [17].

CONCLUSION

For modeling an elastic-plastic rolling / slidingrtact, a
tri-dimensional thermal-elastic-plastic code hagrbadapted,
requiring some specific developments. Two formolagi have
been proposed to drive the computation, one by @imgothe
load and the second one by imposing a normal rigdy
displacement also call contact interference. Thamkke use of
optimized numerical techniques, which are the Cgeie
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Gradient and the Discrete Convolution and Fast iEours

Transform, the computation time remains very reabtm in
comparison to similar but 2D only analysis perfodny FEM,
and despite a large number of points in the plastice.

The contact between two identical elastic-plastidies has
been first analyzed. It has been shown a significashuction of

7 Copyright © 2006 by ASME



the contact pressure compared to the situation vehenrely
elastic body is in contact with an elastic-plasti®e. In order to
complete the study, the tugging between two siaglgerities is
then investigated in a companion paper [17].
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