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ABSTRACT 

The first part of the paper proposed a semi-analycal 
method for the tridimensional thermal-elastic-plastic contact
between two hemispherical asperities. The algorithm has been
described for both the load-driven (ld) and the displacement-
driven (dd) formulations, and validated through a nano-
indentation test simulation. The way to consider rolling and 
sliding motion of the contacting bodies consists of solving the
elastic-plastic contact at each time step while upgrading the
geometries as well as the hardening state along the moving 
directions. The derivations concerning the interference
calculation at each step of the sliding process are then shown
and an application to the tugging between two spheical 
asperities in simple sliding (dd formulation) is made. The way
to project the forces in the global reference is outlined, 
considering the macro-projection due to the angle between the
plane of contact and the sliding direction, and the micro-
projection due to the pile-up induced by the permaent 
deformation of the bodies due to their relative motion. Finally a
load ratio is introduced and results are qualitatively compared
to a two-dimensional FEM analysis presented elsewhere. 

INTRODUCTION 
This paper deals with the rolling and sliding contct 

between two asperities. Jacq et al. [1] first introduced a Semi
Analytical Method (SAM) to study the rolling of a normal load
over a surface defect. Following the same method, Liu et al. [2] 
built a model that deals with normal thermal-elastic contact
calculation. In combining these two formulations, Boucly et al.
[3] developed a new code that allows studying thermal-elastic-
plastic (TEP) contacts. All these formulation are based on the
use of numerical accelerating techniques, making transient
analysis affordable including when a fine mesh is required.
Most commonly used numerical techniques are the Conjugate 
Gradient (CG) method first introduced by Nogi and Kato [4], 
later used by Polonsky and Keer [5], the Multi Level Multi 
Summation (MLMS) technique first implemented by Lubrecht 
and Ioannides [6], and the Discrete Convolution and Fast 
Fourier Transform (DC-FFT) used by Nogi and Kato [4] and 
later by Liu et al. [7] combined to the CGM. The applications of 
this formulation are various, such as the determination of the 
micro-yield stress profile in a nitrided steel by nano-indentation 
[8], the rolling of a load on a smooth, dented or rough surface 
[1, 9], the vertical and tangential loading [10], the simulation of 
fretting wear [11], and the running-in or wear of initially smooth 
or rough surfaces [12]. 

This paper is focused on the simulation of asperites 
tugging in simple sliding motion. For that purpose the TEP 
contact model [3] was improved in several ways [13]. It should 
be pointed out that the displacement-driven (dd) formulation is 
well adapted to the localized contact between two opposite 
asperities since the load distribution between asperities for real 
rough surfaces is not known a priori. 

Sliding contacts are present in many mechani
components. They are also observed in human joints, as pointed 
out by Chen et al. [14], where a 2D simulation has been 
performed using the Finite Element Method (FEM). This 
modeling is similar than the one used by Vijaywargiya and 
Green [15]. The later are the first researchers that uncoupled the 
effect of mechanical deformation and the effect of friction in 
sliding contacts. Previous researchers tried to model sliding 
contact, but they actually studied the effect of an increase in the
friction coefficient on the contact between a sphere and a rigid 
flat [16, 17, 18] or between two spheres [19], the later showing 
extremely long execution times. Nosonovsky and Adas 
simulated the contact between two cylinders [20] whose surface
is not smooth. 

The current paper then focuses only on the mechanal 
deformation involved in sliding contact in order to uncouple the 
phenomenon. Compared to previous researcher’s models, the 
1 Copyright © 2006 by ASME 
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proposed method could be applied either to statistical or 
deterministic approaches, in order to study the rolling and 
sliding thermal-elastic-plastic contact between real 3D rough 
surfaces. It is to be noted that the bodies in contact can follow 
any hardening law, i.e. they are not restricted to be perfectly 
plastic. 

NOMENCLATURE 

(Thermal-)Elastic-Plastic contact 
p = pressure, Pa 
α = interference, m 
ur = residual displacement, m 
ε

p = plastic strain tensor, - 

Elastic constants 
ν = Poisson ration 
E = Young modulus, Pa 
E’ = equivalent Young modulus, Pa 

Geometry, sliding contact 
R1 , R2 = radius of body 1 and 2, respectively, m 
R = equivalent radius, m 
ω = global center separation, m 
ω’ = local center separation, m 
(X,Z) = global reference 
(x’,z’) = local reference 
d0 = initial distance before sliding, m 
d = sliding distance, m 
∆ = shifting distance, m 

∆
)

 = corrected shifting distance, m 
θ = angle of the plane of contact, rad 
FX, FY, FZ = tangential loads and normal loa

respectively, N 
FX/FZ = load ratio, - 
θpx, θpy = pile-up angles, rad 
Sy = yield strength, Pa 
αc = critical interference, m 
Pc = critical load, N 
Uc = critical potential (strain) energy, N.m 
C(ν) = Critical yield stress coefficient, - 
U = potential (strain) energy, N.m 

MODELING OF THE ROLLING / SLIDING CONTACT 
BETWEEN TWO (THERMAL)-ELASTIC-PLASTIC 
ASPERITIES USING THE DD FORMULATION 

The analysis of the contact between two asperities requires 
considering a relative velocity between the bearing surfaces. In 
addition when the tugging asperities bear only a small portion 
of the total load, it is clear that this transient contact will be 
better described by the dd formulation than by the ld one since 
both the subsequent localized normal and tangential loads will 
quickly change from zero to a maximum and then go back to 
zero (meaning no contact). A schematic view at the beginning of 
the collision is shown in Fig. 1 when one of the asperities is 
 

being translated along the rolling/sliding direction relatively to 
the other one. 

In the current incremental procedure, the normal contact is 
solved at every step, following the procedure described in [13]. 
The geometry, the hardening state as well as the plastic strains 
are updated at the end of each step for each Elastic-Plastic (EP) 
body. When the asperities are moving the geometry change 
includes the permanent deformation of the surface of the EP 
bodies. Special care to the effects of sliding will be given since
it is a more complex problem than the pure rolling situation. 
Finally, some results on how both the normal and the tangential 
loads vary during a single tugging between two interfering 
asperities in rolling / sliding contact will be presented. 

Body 1 

Body 2 

R2 

R1 

C2 

C1 

Z (application of the 
load or interference) 

X (rolling / sliding direction)  

Plane of contact 

 
Fig. 1 – Schematic view of the tugging between two 

interfering asperities in rolling / sliding 

Update of the geometry, hardening and plastic strai ns 
The first step in transient contact calculation is to compute 

the static normal contact. If one of the bodies is considered 
elastic, then at the end of the first contact calculation, one has
the situation presented Fig. 2a. For the next step, the residual 
displacement, the hardening state and the plastic strains are 
simply shifted from a value noted ∆ and the new contac
calculation can be processed, see Fig. 2b. As a general 
comment, this “updating” is only possible with the assumption 
that both bodies are considered as half spaces, to be coherent 
with the SAM used and its limitations, see [1] and [3]. 

If both bodies are considered elastic-plastic, the pure 
rolling and the rolling plus sliding situations should be 
differentiated. For the pure rolling case, starting from the initial 
configuration given Fig. 3a, the problem is very similar to the 
contact between an elastic body pressed against an elastic-
plastic body, except that (i) the hardening state and the plastic 
strains are simply shifted for both bodies after each step; (ii) 
whereas the residual displacement is doubled, as seen Fig. 3b. 
The new contact calculation can then be processed. 

For the (rolling plus) sliding contact the situation is more 
complicated. Starting from the initial configuration described in 
Fig. 4a, where the hardening state and the plastic strains are 
2 Copyright © 2006 by ASME 
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simply shifted, it is clear that the residual displacement history 
should be considered individually for each surface, as it can be 
seen Fig. 4b. 

Elastic 

Elastic-plastic 

ur 

    εp 

Elastic 

Elastic-plastic 

ur 

    εp 

∆ 

 
 a) time t b) time t+∆∆∆∆t 
Fig. 2 – Updating at the end of the first loading s tep if 

one the bodies is elastic. 
 

 
 a) time t b) time t+∆∆∆∆t 
Fig. 3 – Updating at the end of the first loading s tep if 
both bodies are elastic-plastic. Case of pure rolli ng. 

 
 

Elastic-plastic 

Elastic-plastic 

2ur 

    εp 

    εp 

 

Elastic-plastic 

ur 

    εp 

    εp 

Elastic-plastic 

ur 

 
 a) time t b) time t+∆∆∆∆t 
Fig. 4 – Updating at the end of the first loading s tep if 

both bodies are elastic-plastic. Case of rolling pl us 
sliding contact. 

Calculation of the local interference  
A global and a local references will be considered to model 

the transient contact during tugging, as shown Fig. 5. The local 
referential (x’,z’) is linked to the plane of contact. A global
interference is first applied in the global reference, by 
maintaining the global center separation, ω, along the Z-
direction constant during tugging. Then one of the bodies is 
shifted of d in the perpendicular direction (X-direction). As a 
 

 

consequence, the local center separation, ω’ , along the z’-
direction of the local reference will be different at every step of
the computation. 

Body 1 

Body 2 

d 

ω’  

R2 

R1 

ω 

d0 

C2 

C1 Z 

X (sliding direction) 

x' 

z' 

 
Fig. 5 – Definition of the Global (X,Z) and Local ( x’,z’) 
references. Here the initial state when asperities start 

to tug each other is represented. 
 

The initial state is considered first, see Fig. 5. The global 
center separation ω is applied in Z-direction, and the two bodie
are put in contact. If d0 is the initial distance between the tw
centers C1 and C2 in X-direction, then the local cente
separation ω’  in z’-direction can be expressed as a function
the global center separation ω, d0 and d, the latter being the
sliding distance in X-direction, see Eq. 1, and d0 the distance 
defined by Eq. 2. 

( )2
0

22' dd −+= ωω  (1) 

with:     ( ) 22
21

2
0 ω−+= RRd  (2) 

Body 1 

Body 2 δd 

∆

θ 
C2 

C1 

2∆ 

 
Fig. 6 – Displacement δd of body 2 

 
In this formulation, the fixed value is the shifting value ∆ 

introduced in Fig. 2. As a consequence, it is required to express
the sliding distance d as a function of ∆. At any time, if one of 
the bodies is displaced from a value δd, its surface makes an
angle θ with the shifting direction, see Fig. 6. It is then possible 
to write: 
3 Copyright © 2006 by ASME 
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2 cosdδ θ= ∆ ⋅  (3) 

Considering the curvature of the bodies, a correction has to 

be made to the value δd. Denoting ∆
)

 the real shifted value, see
Fig. 7, and writing that: 

2'
tan

1−

∆=
iω

α  (4) 

ωi-1 being the previous local separation, δd can be corrected as
follows: 

2 cosdδ θ= ∆ ⋅
)

 (5) 

with: ( ) αω ⋅=∆ − 2'1i

) ( ) 






 ∆⋅=
−

−
− 2'

tan2'
1

1
1

i
i ω

ω  (6) 

  

θ 

α 
ωi-1’  / 2 

∆ 

∆ 

Plane of contact 

 
Fig. 7 – Correction of the term δd 

 

θi-1 ωi-1’ 
ω 

θi-1 

δdi 

ωi’ 

C2 

C1  
Fig. 8 – Representation of two consecutive states i -1 

and i for the determination of θi-1 

 
Then δd can be re-written as follows: 

1
1 1 1

1

' tan cos
' 2i i i

i

dδ ω θ
ω

−
− − −

−

 ∆= ⋅ ⋅ 
 

 (7) 

Now θ is determined, which is an unknown and varies w 
the sliding distance. Considering two consecutive states i-1 and 
i, see Fig. 8, one can write: 

'
cos

1
1

−
− =

i
i ω

ωθ  (8) 
 

Coupling Eqs. 7 and 8, it yields: 

1

1

2
tan

'i
i

dδ ω
ω

−

−

 ∆= ⋅  
 

 (9) 

The last step in the determination of the sliding distance d 
is the summation of all the sliding distance increments, i.e.: 

1

i

i k
k

d dδ
=

=∑  (10) 

i being the current state. The explicit form of di is then: 
1

1

0

2
tan

'

i

i
k k

d ω
ω

−
−

=

 ∆= ⋅  
 

∑  (11) 

Finally, combining Eqs. 1, 2 and 11, the local separation 
can be re-written as follows, at every step of the computation: 

( )210 ' RR +=ω  (12) 

:0>i  ( )
1/ 22

11/ 222 2 1
1 2

0

2
' tan

'

i

i
k k

R Rω ω ω ω
ω

−
−

=

   ⋅∆  = + + − − ⋅        
∑

(13) 

In order to relate the local center separation ω’  to the 
interference (rigid body approach) α used in the Semi-
Analytical Code developed previously, one can write: 

( ) '21 ii RR ωα −+=  (14) 

Force calculation and results  
The first part of this section deals with the force calculation 

that is projected in the global reference. Some correction term 
will be added in order to take into consideration what the 
authors refer as “pile-up” phenomenon. Finally, some results 
will be plotted concerning the tangential and normal forces 
found during the sliding phase, as well as the energy loss in the 
sliding contact, and the residual deformation after unloading at 
the end of the sliding process. 
Force calculation in the global reference 

At anytime during sliding, it is possible to calculate the 
pressure distribution resulting from the normal contact in the 
local reference. As a consequence, the tangential and the normal 
forces in the global reference can be calculated by integrating 
the pressures on the X and Y axes for the tangential forces, and 
on the Z-axis for the normal force, i.e.: 

sin
c

X x y
I

F n a a p θ= ⋅ ⋅ ⋅ ⋅∑  (15) 

c

Y x y
I

F n a a p= ⋅ ⋅ ⋅∑  (16) 

cos
c

Z x y
I

F n a a p θ= ⋅ ⋅ ⋅ ⋅∑  (17) 

n being the number of nodes where the contact pressure is not 
nil, ax and ay the grid spacing in x’ and y’ direction respectively
(local reference), and Ic the set of nodes where the pressure
not nil. As an example, Fig. 9 shows how to obtain the projected 
forces at a point of the contact surface. Due to the symmetry of 
the problem, the projected force FY on the Y-axis is nil. 
4 Copyright © 2006 by ASME 
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Body 1 

d 

ω’  

R1 

Body 2 

ω 

R2 

C1 

p 

FX 

FZ 

C2 ini 
C2 

d0 

θ

 
Fig. 9 – Projection in the global reference of the force 

at a point of the contact surface  

 
Correction term induced by the “pile-up” 

The previous force calculation only takes into account the 
macro-scale projection. In order to include the effect of the pile-
up, it is necessary to study the micro-scale projection. Fig. 10 
shows a magnified view at the point where the pressure p is 
applied. The residual displacement ur has a slope that makes an 
angle θpx with the x’-axis and θpy with the y’-axis. 

 

θpx p 

ur 

θpy 

ur 
z' 

x' 

z' 

y' 

p 

 
Fig. 10 – Effect of the pile-up due to the slope of  the 

residual displacement  

 
From this observation, Eqs. 15, 16, and 17 can be corrected 

as follows: 

( )sin
c

X x y px
I

F n a a p θ θ= ⋅ ⋅ ⋅ ⋅ −∑  (18) 

( )sin
c

Y x y py
I

F n a a p θ= ⋅ ⋅ ⋅ ⋅ −∑  (19) 

( ) ( )cos cos
c

Z x y px py
I

F n a a p θ θ θ= ⋅ ⋅ ⋅ ⋅ − ⋅∑  (20) 

with:       








∂
∂= −

x

u r

px
1tanθ  (21) 

and          








∂
∂= −

y

u r

py
1tanθ  (22) 
 

From Eq. 8, θ can be expressed as: 

( )''
'

cos 1
1

−
− −⋅








= ii

i

sign ωω
ω
ωθ  (23) 

Results 
The next simulations have been inspired from the work of 

Vijaywargiya and Green [15] who modeled the sliding contact 
between two cylinders using a Finite Element model. For the 
current simulations, two spherical asperities will interact. The 
radius of the spheres can be taken arbitrarily, so R1 = R 2= 1 m 
has been chosen. The elastic properties are E1 = E2 = 200 GPa 
for the young moduli, and ν1 = ν2 = 0.32 for the Poisson ratios
The chosen hardening law holds for perfect plasticity with 
parameter Sy = 0.9115 GPa for the yield stress. 

In most of the results presented, values are normalized by 
the critical values defined by Green in [21] corresponding to the 
onset of yielding when plasticity just starts occurring: 

2

2 '
y

c

C S
R

E

π
α  

=  
 

 (24) 

( )3 2

26 '
y

c

C S R
P

E

π
=  (25) 

( )5 3

460 '
y

c

C S R
U

E

π
=  (26) 

with αc the critical interference, Pc the critical load and Uc the 
maximum potential energy stored during elastic deformation, 
equals to the work done. In these equations, parameter C is 
expressed in function of Poisson ratio [21]: 

( ) 21.30075 0.87825 0.54373C ν ν ν= + +  (27) 

Hereafter are plotted the reaction forces during the first 
sliding pass. The forces are normalized by the critical force 
found in Eq. 25, here Pc = 3.461.105 N, and the abscissa alon
the sliding direction by the equivalent radius in Eq. [28] i.e. 
R=0.5m. Figures 11 and 12 give the tangential and the normal 
forces, respectively. 

21

111

RRR
+=  (28) 

It can be seen in Fig. 11 that for small interference values, 
the tangential force is anti-symmetric, and vanishes when the 
asperities are perfectly aligned, i.e. for X/R = 0. On the other 
hand, for large values of the interference, one can see that the
curve is not anti-symmetric anymore. It means that most of the 
energy (area under the curve) is produced during loading, i.e. 
before the asperities are aligned, and just a small part of the 
energy is released during unloading, i.e. when the asperities are
repulsing each other. Also, the value of the force when the 
asperities are aligned does not vanish anymore; s 
phenomenon is due to plastic deformation. Indeed, the residual 
displacement on the surface of the bodies induces some pile-up 
5 Copyright © 2006 by ASME 
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since the normal contact plane is not parallel to the sliding
direction any longer. 

The normal force plotted in Fig. 12 is symmetric for low 
interference values. Then a slight asymmetry begins to appear
when increasing the interference, however less pronounced than
for the tangential force. Again, this phenomenon is due to
plasticity, since due to the permanent deformation of the surface
that take place during the first loading cycle the normal contac
plane and the sliding direction are not parallel. 

-2

-1.5

-1

-0.5

0

0.5

1

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

X / R

F
x 

/ P
c

α* = 1

α* = 2

α* = 4

α* = 6

α* = 9

α* = 12

α* = 15

α* = 20

 
Fig. 11 – Dimensionless tangential force during 

sliding vs. dimensionless sliding direction  
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α* = 9

α* = 12

α* = 15

α* = 20

Fig. 12 – Dimensionless normal force during sliding  
vs. dimensionless sliding direction  

To give an idea of energy loss during the sliding process,
figure 13 shows the evolution of the net energy normalized by
the critical energy found in Eq. 26, versus the dimensionless
interference. 

A load ratio is now defined as FX / FZ the ratio of the
tangential force over the normal one. Results are plotted in Fig.
14 versus the normalized sliding distance. It should be noted
that the current simulation was made under the assumption of 
frictionless contact, therefore the load ratio is only related here
to the ploughing or tugging phenomena. It can be seen that for
small interference values this ratio is almost perfectly 
 

antisymmetric. An increase of the load ratio is found at the
beginning of the tugging (left part of Fig. 14) when increasing
the interference. Conversely the Fx / Fz ratio tends to reach a
asymptotic value of 0.045 at the end of the contact (right part of
the curves). In addition, it can be observed that this ratio is no
nil anymore when the asperities are aligned, this offset 
increasing with the interference value. It is again assumed to b
due to plastic deformation inducing pile-up. 
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Fig. 13 – Dimensionless net energy vs. dimensionles s 
interference  
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Fig. 15 – Dimensionless residual displacement vs. 
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Another interesting result is the evolution of the permanent 
deformation of the surface. Figure 15 shows the maximum 
value of the residual displacement after unloading normalized 
by the critical interference given in Eq. 24, as a function of the 
interference. It shows a very significant residual deformation of 
the surface, up to 25% of the interference. 

Representative computation times corresponding to α* = 9 , 
for the mesh-size dx=3.85mm, dy=7.7mm, dz=1.925mm (i.e., 
33 x 13 x 31 = 13,299 points) in the plastic zone, and 25 time-
step increments to describe the relative motion, took about 25 
minutes on a 1.8 GHz Pentium M personal computer. 

CONCLUSION 
A novel way of modeling an elastic-plastic rolling / sliding 

contact has been presented. For that purpose a tri-dimensional 
thermal-elastic-plastic code has been adapted in a companion 
paper [13]. Two formulations have been proposed to drive the 
computation, one by imposing the load and the second one by 
imposing a normal rigid body displacement also call contact 
interference. The tugging between two single asperities has then 
been investigated. Results have shown that plasticity produces 
an asymmetry of the normal and tangential loading during the 
transient contact. A load ratio due to ploughing has been 
estimated. 

Compared to Finite Element modeling, the developed code 
allows the user to compute a rolling and sliding contact in very 
short CPU times. The current work provides the foundation to 
incorporate thermal-electrical-mechanical interaction between 
rough surfaces by progressively introducing the relevant 
physical phenomena. 
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