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The contact force and the real contact area between rough

surfaces are important in the prediction of friction, wear,

adhesion, and electrical and thermal contact resistance. Over

the last four decades various mathematical models have been

developed. Built on very different assumptions and underlying

mathematical frameworks, model agreement or effectiveness

has never been thoroughly investigated. This work uses several

measured profiles of real surfaces having vastly different

roughness characteristics to predict contact areas and forces

from various elastic contact models and contrast them to a de-

terministic fast Fourier transform (FFT)-based contact model.

The latter is considered “exact” because surfaces are analyzed

as they are measured, accounting for all peaks and valleys

without compromise. Though measurement uncertainties and

resolution issues prevail, the same surfaces are kept constant

(i.e., are identical) for all models considered. Nonetheless,

the effect of the data resolution of measured surface profiles

will be investigated as well. An exact closed-form solution is

offered for the widely used Greenwood and Williamson (GW)

model (Greenwood and Williamson, Proceedings of the Royal

Society of London A, vol. 295, pp. 300–319), along with an

alternative definition of the plasticity index that is based on a

multiscale approach. The results reveal that several of the the-

oretical models show good quantitative and qualitative agree-

ment among themselves, but though most models produce a

nominally linear relationship between the real contact area and

load, the deterministic model suggests otherwise in some cases.

Regardless, all of the said models reduce the complicated sur-

face profiles to only a few key parameters and it is therefore un-

realistic to expect them to make precise predictions for all cases.
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INTRODUCTION

For practicing engineers in industry it is important to have

closed-form, easy-to-use equations that can be used to predict

the real contact area and relate it to the friction, wear, adhesion,

and electrical and thermal contact resistance. The ability to ac-

curately predict real contact area as a function of load for rough

surface contact is a difficult task due to the complex nature of

real surfaces. Many models have been proposed over the years

for the prediction of the real area of contact between rough sur-

faces. One of the very first of these models is that by Archard (1),

who showed that although single asperity contact might result in a

nonlinear relation between area and load, by incorporating multi-

ple scales of roughness the relationship becomes linear. Archard

(1) used a concept where spherical asperities are stacked upon

each other, each with a smaller radius of curvature. This stacked-

type model had largely been abandoned after the statistics-based

Greenwood and Williamson (2) (GW) model was published in

1966. Since then, that model did not have a closed-form solution

because of the complexity of carrying out the integrals when a

Gaussian distribution is used to describe surface roughness.

Later researchers thought that the multiple scales of asperities

present on surfaces needed to be considered, so fractal method-

ologies have been formulated (Majumdar and Bhushan (3); (4);

Warren and Krajcinovic (5); Willner (6); Yan and Komvopou-

los (7)). However, fractal models were also found to have defi-

ciencies. For example, the most notable deficiencies of the Ma-

jumdar and Bhushan (3) (MB) fractal model are that the contact

area is calculated from truncation and that it predicts less plastic

deformation with increasing loads. Hence, a few other methods

that consider multiple scales of roughness have been proposed

(Ciavarella and Demelio (8); Ciavarella, et al. (9); Bora, et al.

(10); Jackson and Streator (11); Persson (12)).

A handful of these models will be implemented in the cur-

rent work and compared to a deterministic elastic contact model

that uses a fast Fourier transform (FFT) to improve computa-

tional efficiency (Stanley and Kato (13)). The deterministic model

is considered exact because surfaces are analyzed as they are

without compromising the details. That is, every single peak is

considered in the progression of contact. The surfaces analyzed
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On the Modeling of Elastic Contact between Rough Surfaces 301

NOMENCLATURE

A = Area of contact between local asperities

An = Nominal contact area

Ar = Real contact area between rough surfaces

a = Nondimensional distance between the mean asperity height

B = Ratio of surface amplitude to wavelength, 1/λ

C = Critical yield stress coefficient

D = Fractal dimension

d = Separation of mean asperity height

E = Elastic modulus

E′ = Equivalent elastic modulus [(1− v2
1)/E1 + (1− v2

2)/E2)]−1

erfc = Complementary error function

F = Contact force

f = Frequency of sinusoidal surface (reciprocal of wavelength, 1/λ)

G = Fractal roughness

gn = Fractal geometric parameter

H = Hardness

h = Separation between the mean surface height

I = Modified Bessel function of first kind

Iea = Elastic contact area integral for the GW model

Iep = Elastic pressure integral for the GW model

K = Modified Bessel function of second kind and hardness factor

m̄ = RMS surface slope

mn = nth Spectral moment of the surface

N = Number of surface data points

Pr = Real contact pressure (average pressure over Ar)

p∗ = Pressure amplitude or average pressure required to obtain

complete contact

p̄ = Average pressure over the nominal area of contact of a local

asperity

pe = Average pressure over the nominal area of contact between

rough surfaces

R = Radius of hemispherical asperity

Sy = Yield strength

x = Lateral location on surface

ys = Distance between the mean asperity height and the mean

surface height

z = Height of asperity measured from the mean of asperity heights

α = Nondimensional statistical variable

β = Nondimensional product of the statistical values, ηRσ

0 = Gamma function

1 = Amplitude of sinusoidal surface

η = Area density of asperities

θ = Nondimensional statistical variable

λ = Wavelength of sinusoidal surface (reciprocal of frequency, 1/f )

ν = Poisson’s ratio

σ = Standard deviation of surface heights

σs = Standard deviation of asperity heights

ϕ = Distribution function of asperity heights

ψ = Plasticity index

ψm = Alternative multiscale plasticity index

ω = Interference between hemisphere and surface

Subscripts and Superscripts

c = Critical value at onset of plastic deformation

max = Maximum value over all scales

∗ = Normalized by σ

here are taken from actual measurements and used throughout.

The purpose is to examine model effectiveness and evaluate their

common agreement to lend confidence in their results. Other re-

searchers have also made comparisons but not always using real

surface data and not considering as many models as are in the

current work. McCool (14) made an early comparison between

the GW (Greenwood and Williamson (2)) model and the Bush,

et al. (15) model and concluded that the GW model is the more

effective of the two. Persson, et al. (16) compared their elastic

diffusion–based contact model to numerical predictions. A com-

parison between various statistical models was made by Jack-

son and Green (17). Additionally, a comparison between frac-

tal and statistical models was made by Kogut and Jackson (18).

Hyun, et al. (19) also performed an elastic finite element method

(FEM) model of rough surface contact between artificially gen-

erated self-affine surfaces and made comparisons to Persson (12)

and Bush, et al. (15) that showed agreement within an order of

magnitude, with Persson’s model performing the best.

Similar to the ubiquitous GW model (Greenwood and

Williamson (2)), the current work focuses only on the elastic

regime of contact. As presented in the GW model, the range

of model validity (caused by the likely occurrence of plastic

deformation under heavy loads) is delegated to a plasticity in-

dex, which has become a popular way to determine the relative

amount of plastic deformation occurring in a rough surface con-

tact. The GW plasticity index is based on a single scale of the sta-

tistical parameters. The main objective of the current work is to

make a comparison of several elastic rough surface contact mod-

els (in addition to GW) using measured data of real surfaces and

compare the results to an FFT-based deterministic model. The

current work complements the GW model by offering for the first

time an exact closed-form solution for that model when a Gaus-

sian distribution is used, along with an alternative method to de-

fine a plasticity index that is based on a multiscale approach to

rough surface contact (see Appendix). With this in mind, that is,

that the analysis is limited to purely elastic surfaces, the range of

deformation is rather a moot point, and excluding the intricacy of

plastic deformation allows for a straightforward comparison be-

tween the various elastic contact models. Nonetheless, there are

some surfaces, such as rubber, that will deform entirely in the

elastic regime even at high loads. The intent here is also to eval-

uate the effects of data resolution on the various models that are

built on very different assumptions and underlying mathematical

frameworks.

METHODOLOGY

This section describes the methodology used to make predic-

tions of the real contact area and the contact force using five dif-

ferent contact models as they are applied to the contacting rough-

ness of three real surfaces measured by a laser profilometer. The

models are the following:

1. Stanley and Kato’s (13) FFT deterministic elastic contact

model
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302 R. L. JACKSON AND I. GREEN

2. Closed-form solutions to the GW contact model (with a Gaus-

sian distribution)

3. Bush, et al.’s (15) statistical contact model

4. Persson’s (12) diffusion contact model

5. Stacked multiscale model (Jackson (20))

Each of these models is discussed in more detail in the fol-

lowing sections. Nevertheless, for more details (such as complete

derivations) the reader is referred to the original papers. The cur-

rent work will also make comparisons for different surface mesh

densities.

FFT Deterministic Elastic Contact Model

In this section, an existing FFT-based rough surface contact

model is summarized and its predictions are verified by compar-

ing results to a known analytical solution. Stanley and Kato (13)

(SK) presented a simple algorithm to model rough surface con-

tact using an FFT. This method is used here because it provides

for a faster computational solution than a conventional FEM

model would. The contact pressure is first transformed into the

frequency domain. Then the deflection is solved in the frequency

domain by multiplying the pressure by an appropriate stiffness

matrix and transforming it back using an inverse FFT. The de-

tails of the model can be found in Stanley and Kato (13). The

work is implemented here in 3D and validated by comparing to

a 3D model of elastic sinusoidal contact (Johnson, et al. (21)).

The asymptotic solutions of 3D sinusoidal contact were found by

Johnson, et al. (21) (referred to as JGH) and are given as:

r For
p̄

p∗
approaching 0:

(AJGH)1 =
π

f 2

[

3

8π

p̄

p∗

]2/3

[1]

r For
p̄

p∗
approaching 1:

(AJGH)2 =
1

f 2

(

1−
3

2π

[

1−
p̄

p∗

])

[2]

where p∗ is the average pressure to cause complete contact

between the surfaces and is given by Johnson, et al. (21)

as:

p∗ =
√

2πE′1f [3]

and p̄ is the average pressure over the nominal area of contact

of a local asperity. Then, based on numerical and experimen-

tal data provided by JGH and Krithivasan and Jackson (22), an

equation is fit to bridge the gap between the solutions of Jackson

and Streator (11) and Krithivasan and Jackson (22)). Hence, it is

given as:

r For
p̄

p∗
< 0.8

A= (AJGH)1

(

1−
[

p̄

p∗

]1.51
)

+ (AJGH)2

(

p̄

p∗

)1.04

[4]

r For
p̄

p∗
≥ 0.8

A= (AJGH)2 [5]

A 3D sinusoidal surface is substituted into the Stanley and

Kato (13) model and the resulting prediction of contact area ver-

sus pressure is compared to the above 3D sinusoidal model (see

Fig. 1). The two models are in close agreement, which confirms

the validity of the FFT model. For comparison with the other

models, actual measured surface data are then input into the

Stanley and Kato (13) model and the contact area is predicted

for various loads. The only manipulation of the surface data is

Fig. 1—Comparison of elastic 3D sinusoidal contact and FFT deterministic model predictions.
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On the Modeling of Elastic Contact between Rough Surfaces 303

that they are leveled (the overall tilt is removed) before being en-

tered into the code (the surfaces in contact are nominally flat).

The contact area is simply calculated by taking the ratio between

the nodes with positive forces and those with zero force (no con-

tact). The real contact pressure is calculated by averaging all of

the positive pressures on the surface.

Closed-Form Solutions to GW Contact Model (with a

Gaussian Distribution)

The fundamental GW model (Greenwood and Williamson

(2)) contains summations (i.e., integrations) to accumulate sta-

tistically properties of the rough surfaces for load and real area

of contact. Because of the complexity associated with the Gaus-

sian distribution, users of the model have commonly calculated

the various integrals numerically. To bypass such cumbersome

numerical integrations, the Gaussian distribution has frequently

been replaced with simplified exponential distribution functions

to allow for closed-form solutions (see the original work by

Greenwood and Williamson (2); Etsion and Front (23); Poly-

carpou and Etsion (24); Hess and Soom (25), (26); and Liu, et

al. (27)). Then, the GW model laid the foundation for elastic–

plastic contact models, one of which is the model by Chang,

et al. (28) (CEB). Again, the integrals are commonly calcu-

lated numerically. A successful attempt was given by Green (29),

who provided closed-form solutions to the CEB model. In the

elastic range the solution is based on the mean value theorem,

whereas in the plastic range the solution is mathematically exact.

Because the current work is limited to the elastic deformation

only, plasticity is moot. Hence, the solution provided by Green

(29) cannot be used because of the unlimited range of the elas-

tic deformation. Because the current work focuses on closed-

form models, here for the first time, closed-form solutions to the

original integrals of the venerable GW model (Greenwood and

Williamson (2)) are provided; that is, (1) the Gaussian distribu-

tion is not compromised (i.e., not simplified nor replaced), (2)

the integration results are obtained for the entire deformation

range, and the expressions provided are mathematically exact.

That is, the solution here makes any approximation of the Gaus-

sian distribution (as mentioned above) or numerical integration

unnecessary.

This work adheres to the definitions and nomenclature of

CEB (Chang, et al. (28)) and Etsion and Front (23), and the

reader is referred to these works. Hence, β = ηRσ, where η is

the areal density of asperities, R is the asperity radius of curva-

ture, and σ is the standard deviation of surface heights. Further,

h∗ = h/σ is the dimensionless mean separation, σ∗s = σs/σ is the

dimensionless standard deviation of asperity heights, and y∗s =
ys/σ is the dimensionless distance between the means of asper-

ity and surface heights. Following Green (29), the average elastic

contact pressure is p̄ = F/An, where F is the total external force

(or load), and An is the nominal (or apparent) contact area. The

pressure, p̄ is further normalized by the equivalent modulus of

elasticity. Likewise, the elastic real area of contact, Ar, is nor-

malized by the nominal area, An. Both are given, respectively,

by,

p̄

E
′ =

4

3
β

( σ

R

)1/2
Iep [6a]

Ar

An

= πβ Iea [6b]

where

Iep =
∫ ∞

a

(z∗ − a)3/2 ϕ∗ (z∗) dz∗ [7a]

Iea =
∫ ∞

a

(z∗ − a)ϕ∗ (z∗) dz∗ [7b]

The integrals contain a lower bound having the following defini-

tion a = h∗ − y∗s . The Gaussian distribution is given by

ϕ∗ (z∗) =
1
√

2π

(

σ

σs

)

exp

[

−0.5

(

σ

σs

)2
z∗

2

]

[8]

The integrals of Eqs. [7] are the subject of the discussion above.

For conciseness, only the final results of the closed-form solutions

are given. Using the definitions α = a/σ∗s and θ = α2/4 we have

Iep =































σ∗s
√

ae−θ
[

(1+ α2)K1/4(θ)−α2K3/4(θ)
]

/(4
√
π) for a > 0

0(5/4) (σ∗s )3/2
/
(

21/4
√
π
)

for a = 0

(σ∗s /4)
√
−ae−θ

√

π
2

[(

1+ α2
)

I−1/4(θ)

+(3+ α2)I1/4(θ)+ α2 (I3/4(θ)+ I5/4(θ))
]

for a < 0

[9a]

Iea =
√

1

2π
σ∗s e -α2

/

2 −
a

2
erfc

(

α
√

2

)

[9b]

where 0(·) is the gamma function; I(·) and K(·) are the modi-

fied Bessel functions of the first and second kinds, respectively;

and erfc(·) is the complementary error function. Substitution of

Eqs. [9] into Eqs. [6] provides the desired closed-form solution to

the GW model (Greenwood and Williamson (2)). Interestingly,

when an exponential distribution is adopted (instead of a Gaus-

sian distribution), the original GW model suggested that there is

a linear relationship between contact area and load, but this solu-

tion (Eqs. [6] and [9]) suggests otherwise. The solution given by

Eqs. [6] and [9] is used throughout this work and is referred to in

the figures as “G&W Gaussian.”

Because this is a statistical method, it hinges upon obtaining

statistical parameters, η, R, and σ, described above. To find these

parameters, the spectral moments can be employed:

mo =
1

N

N
∑

n=1

(z)2
n [10]

m2 =
1

N

N
∑

n=1

(

dz

dx

)2

n

[11]

m4 =
1

N

N
∑

n=1

(

d2z

dx2

)2

n

[12]

where N is the total number of data points on the surface and z is

the surface height relative to its mean. The derivatives in Eqs. [11]

and [12] are calculated using a centered finite difference scheme.

It should be noted that Eqs. [10–12] are for two dimensions. In

this work, the 3D data are split into individual 2D rows. Each
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304 R. L. JACKSON AND I. GREEN

row of data is used to calculate m2 and m4. The average value

for all the rows is then calculated. Columns of data perpendicular

to these rows are also used with no significant change in the pre-

dicted values of m2 and m4. The moment m0 is simply the square

of the root mean square (RMS) surface height, σ. The radius of

curvature, R, and the areal asperity density, η, are then calculated

by using spectral moments (Eqs. [10–12]) and the methods given

by McCool (30). Hence,

σ =
√

mo [13]

η =
(

m4

m2

)(

1

6π
√

3

)

[14]

R = 0.375 ·
(

π

m4

)0.5

[15]

Bush, et al.’s Statistical Contact Model

In this section, the popular model by Bush, et al. (15) (BGT)

is summarized. BGT essentially extended the GW model (Green-

wood and Williamson (2)) to consider not only a distribution of

the surface asperity heights (as was also investigated by Jackson

(31) and Onions and Archard (32)) but also a distribution of the

asperity curvatures and asperities that do not possess a constant

radius of curvature (elliptical). Because this model is supposedly

more general, some claim that it is more accurate than the GW

model (Hyun, et al. (19)). Interestingly, they found that the real

contact pressure is related solely to the elastic properties and the

RMS slope of the surface (m̄). Note that m̄= √m2 (see Eq. [11]).

The equation given by Bush, et al. (15) as an asymptotic solu-

tion to their complete model for large surface separations that

will used in this work is

Ar =
√
π

F

E′m̄
[16]

This asymptotic solution to the Bush, et al. (15) model also pre-

dicts a linear relationship between the contact area and load.

In response to claims that the BGT model (Bush, et al. (15)) is

more accurate than the GW model (Greenwood and Williamson

(2)), Greenwood formulated a similar but more simplified ellip-

tical model (Greenwood (33)). For typical surfaces, the Green-

wood elliptical model finds that the real area of contact is nearly

identical to the BGT model.

Persson’s Diffusion Contact Model

The diffusion-based rough surface contact model by Persson

(12) is summarized in this section. Because surfaces are struc-

tured with successive and perhaps a continuous layering of as-

perities at various scales, Persson (12) used a diffusion theory

to model rough surface contact. Although admittedly Persson’s

theory is fairly difficult to follow and implement, Hyun, et al.

(19) provided a simplified form that is of the same form as the

BGT model (Bush, et al. (15)) and Greenwood’s elliptical model

(Greenwood (33)):

Ar =
√

8

π

F

E′m̄
[17]

However, Carbone and Bottiglione (34) provided a different and

more accurate version of Persson’s (12) model:

Ar

An

= erf

(

F

AnE′m̄

)

[18]

Equation [18] will be used in the current work to consider Pers-

son’s (12) model. Interestingly, the models given by Bush, et al.

(15); Greenwood (33); and Persson (12) are within an order of

magnitude of agreement. Hyun, et al. (19) and Pei, et al. (35) also

showed that the models by Bush, et al. (15) and Persson (12) ap-

pear to agree fairly well with deterministic finite element models

for artificially generated fractal surfaces.

Stacked Multiscale Model

A recently published stacked multiscale model (Jackson (20))

is summarized in this section. Archard (1) first showed that a lin-

ear relationship between the real contact area and load is pre-

dicted by using a stacked asperity approach to rough surface con-

tact. However, Archard’s (1) model is built upon the concept of

stacked asperity scales, each with asperities all with the same ra-

dius of curvature, and provides no practical methodology for ex-

tracting this information from a measured surface profile. This

might be one reason why the Greenwood and Williamson (2)

model later gained much more popularity. Much later, Ciavarella

and Demelio (8) and Ciavarella, et al. (36) used the Weierstrass

surface profile to define the different scales of asperities present

on the surface and then implemented Archard’s (2) stacked scale

model. They found that for a self-affine surface, as described by

the Weierstrass–Mandelbrot function, the contact area will be

zero with infinite pressures present at each asperity. Jackson and

Streator (11) (JS) used a similar methodology except that all the

scales are described by the Fourier series extracted from the sur-

face. They found that for some surfaces the area did converge to

a finite value (the surfaces were apparently not self-affine). Al-

though it is somewhat a deterministic type model, the JS model

also predicted the nearly linear relationship between real contact

area and load.

The stacked multiscale model (Jackson (20)) used in this work

is a simplified solution of the full multiscale model presented by

Jackson and Streator (11). In addition, the new versions (Jackson

(20); and Wilson, et al. (37)) employ sinusoidal shaped asperi-

ties instead of the popular assumption of using spherical-shaped

asperities. The real contact pressure is defined by the pressure

required to obtain complete contact at the scale with the largest

ratio between amplitude and wavelength [Bmax = (1/λ)max] over

a spectrum taken of the surface profile. Then the area of contact

is given by (Jackson (20)):

Ar =
F

√
2πE′Bmax

[19]

This is also analytically derived in Jackson (20). Bmax is calculated

by taking the FFT of each 2D row of the 3D surface and then av-

eraging the results. Columns of data perpendicular to these rows

are also used with no significant change in the predicted value of

Bmax.
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On the Modeling of Elastic Contact between Rough Surfaces 305

Fig. 2—Measured profile of surface 1.

Other Models

There are, of course, other contact models available; how-

ever, the authors chose those that have gained sufficient practical

acceptance (the GW model; Greenwood and Williamson (2)) and

some most recent and relevant models. An attempt was made to

also use the fractal-based model by Majumdar and Bhushan (3);

however, curve fitting of the real surfaces’ characteristics resulted

in unrealistic fractal parameters, and hence that model was aban-

doned. There are also various elastic–plastic contact models, but

the current study is concentrated on elastic contact only. Future

work may focus on elastic–plastic contact.

RESULTS

Effects of Mesh Densities

In this section, the effect of the mesh density of the surface

profile on the different model predictions is investigated. For

this purpose a polished surface is investigated (see Fig. 2). Al-

though this surface is very smooth, there are still some noticeable

scratches on the surface. In addition, one can see that the sur-

TABLE 1—THE VARIATION OF SURFACE PARAMETERS WITH SCALE

FOR SURFACE 1

Parameter 1,001 × 1,001 100 × 100

σ (µm) 0.4057 0.3925

R(µm) 4.816 466.6

η (109/m2) 20.38 0.2106

m0 (10−12 m2) 0.9808 0.1541

m2 0.0715 0.0002951

m4 (1012 m−2) 0.04944 0.000002029

Bmax 0.0293 0.0031

face is not perfectly flat, which would be true of most surfaces in

practical applications. Other than that, there do not appear to be

any noticeable patterns, structures, or irregularities on the sur-

face. There is roughness, but it appears to be at a very small scale

because the surface is polished so finely. The profile of the surface

is measured using a Taicaan laser profilometer with a vertical res-

olution of 10 nm. The measurement is made over a 1 mm× 1 mm

rectangular area with a lateral resolution of 1,001 × 1,001 nodes

(i.e., 1 µm mesh resolution). The same data are used for the 100

× 100 mesh, except that every tenth data point is used to provide

a courser mesh (i.e., 10 µm mesh resolution). The statistical and

other surface parameters needed to predict the real area of con-

tact for each of the models are given in Table 1 for each mesh. The

applied force was not controlled when solving the problem (i.e., it

was an output of the model); however, the range of contact areas

for all three surfaces is approximately the same (10−3 < Ar/An <

10−1). This is a range typical for contact between surfaces.

The results of the models for a 100 × 100 mesh are shown in

Figs. 3 and 4, and for a 1,001 × 1,001 mesh the results are shown

in Figs. 5 and 6. The resulting trends of all the models for the two

mesh densities are very similar; however, quantitatively the pre-

dictions are quite different (see Figs. 3 and 5). Most of the models

using either surface mesh appear to predict a nearly linear rela-

tionship between contact area and load (see Figs. 3 and 5) and

thus a nearly constant real contact pressure (see Figs. 4 and 6).

When the pressure is shown as in Figs. 4 and 6, the quantitative

differences are most noticeable. In addition, the deterministic and

GW model (Greenwood and Williamson (2)) appear to predict a

real contact pressure that is not exactly constant, and therefore

the relationship between load and contact area for these models

may not be linear. The models using the 100 × 100 mesh pre-

dict a real contact pressure of about 0.01·E, whereas the mod-

els using the 1,001 × 1,001 mesh predict about 0.1·E. The overall
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306 R. L. JACKSON AND I. GREEN

Fig. 3—Resulting model predictions of normalized real contact area versus normalized load for a 100 × 100 course mesh of surface 1.

Fig. 4—Resulting model predictions of normalized real contact pressure versus normalized load for a 100 × 100 course mesh of surface 1.
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On the Modeling of Elastic Contact between Rough Surfaces 307

Fig. 5—Resulting model predictions of normalized real contact area versus normalized load for a 1,001 × 1,001 fine mesh of surface 1.

Fig. 6—Resulting model predictions of normalized real contact pressure versus normalized load for a 1,001 × 1,001 fine mesh of surface 1.
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TABLE 2—STATISTICAL AND OTHER PARAMETERS FOR THREE SUR-

FACES USING A MESH OF 1,001× 1,001

Parameter Surface 1 Surface 2 Surface 3

σ (µm) 0.4057 2.397 15.01

R(µm) 4.816 0.6513 0.3558

η (109/m2) 20.38 20.59 9.088

m0 (10−12 m2) 0.9808 0.4242 225.3

m2 0.0715 0.1143 12.016

m4 (1012 m−2) 0.04944 0.07683 3.560

Bmax 0.0293 0.03970 0.1958

agreement between the analytical models and the deterministic

model also appears to be better for the 100 × 100 mesh than for

the 1,001 × 1,001 mesh. Actually, the model by Bush, et al. (15)

appears to agree best with the 100 × 100 mesh results, especially

at high loads.

Parameters of Three Different Surfaces

Next, the predictions of the various models will be compared

to each other and to the deterministic model for three different

surface profiles of various roughnesses and morphologies using

a lateral mesh of 1,001 × 1,001 nodes. Surfaces with very differ-

ent finishes are selected in order to observe the effect that these

geometrical differences have on agreement between the models.

All statistical and other geometrical quantities are listed in Table

2. This includes surface 1, which was discussed in relation to the

mesh density. For all the cases the effective elastic modulus, E′, is

set to 100 GPa. Because the results are normalized and all of the

models are dependent on E′ in the same way, the variation of E′

does not affect the results.

Surface 1 Results

Surface 1, which was discussed above (see Figs. 5 and 6), is

more closely examined. All the analytical model predictions are

in fairly good qualitative agreement, where for higher loads the

deterministic model also appears to come into good quantitative

agreement with the analytical models. The deterministic model

becomes more accurate when more nodes are in contact, be-

cause the stress is more evenly distributed across more asperities

(nodes) and the stress gradient across them is smaller. If the av-

erage contact pressure is plotted versus the normalized force, this

trend is apparent (see Fig. 6). For surface 1 it appears that the de-

terministic model predictions actually cross from Persson’s (12)

theory to the 3D stacked model and over all the other models in

between.

Surface 2 Results

In this section, the predictions of all the models for sur-

face 2 are compared. The 3D profile measured for surface 2

is shown in Fig. 7. The surface has some periodic structure

that is not present in surface 1. This surface is machined but

not polished. There are also some noticeable scratches or wear

scars on the surface that run mostly perpendicular to the pe-

riodic structure. Not only is surface 2 rougher than surface

1 but its structure also appears to be significantly different.

This will also be the case when it is compared later to surface

3.

The model predictions using surface 2 show some very inter-

esting trends (see Figs. 8 and 9). It appears that the deterministic

model agrees first with the G &W Gaussian model solution and

then with higher load shifts to agree better with the other mod-

els. This may be because at low loads the GW model (Green-

wood and Williamson (2)) might be better at modeling a few

Fig. 7—Measured profile of surface 2.
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Fig. 8—Resulting model predictions of normalized real contact area versus normalized load for a 1,001 × 1,001 course mesh of surface 2.

Fig. 9—Resulting model predictions of normalized real contact pressure versus normalized load for a 1,001 × 1,001 course mesh of surface 2.
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Fig. 10—Measured profile of surface 3.

isolated asperity contacts. Likewise, at higher loads and up to

complete contact, the 3D stacked model (Jackson (20)) and Pers-

son’s (12) model are supposed to give very accurate predictions.

The FFT deterministic model (Stanley and Kato (13)) predictions

must therefore be nonlinear to transverse between the different

linear models. This would also suggest that real surfaces might

not always produce linear relationships between the real contact

area and load. These results are also similar to those predicted

by the models using data for surface 1 because for that surface

the average pressure predicted by the deterministic model also

decreases with load and crosses over the predictions of several

different models.

Fig. 11—Surface 3 1,001 × 1,001 deformed profile.
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Fig. 12—Resulting model predictions of normalized real contact area versus normalized load for a 1,001 × 1,001 course mesh of surface 3.

Surface 3 Results

The final surface analyzed in the current work is also the

roughest and is labeled as surface 3, and likewise the predictions

of all models are compared. The measured profile of surface 3

is shown in Fig. 10. The roughness of surface 3 is more isotropic

than surfaces 1 and 2. There also appear to be fewer wear scars

or grooves on surface 3. Because of the apparent isotropic sur-

face structure, visually the asperities on the surface appear to be

somewhat spherical (which is a common assumption used in sev-

eral of the analytical models). Again, the roughness and surface

structure of surface 3 is much different than both surfaces 1 and 2.

A sample view of surface 3 after being loaded and deformed

by the opposing flat surface as calculated by the FFT determinis-

tic model is shown in Fig. 11. The flattened part of the asperities

is clearly shown because there are no asperities over the height of

the flat surface.

The predictions of the various contact models for surface 3

are shown in Figs. 12 and 13. As with the predictions of contact

area as a function of load for surfaces 1 and 2, there appears to

be a nominally linear relationship between the real contact area

and load for surface 3 (see Fig. 12). For this surface it appears

that the stacked multiscale model (Jackson (20)) shows the best

agreement with the deterministic model predictions, which might

be surprising because it assumes that all asperities are sinusoidal

in shape. The Bush, et al. (15) model appears to show the next

best agreement, and the remaining closed-form models, includ-

ing the GW model (Greenwood and Williamson (2)), appear to

be in relatively close agreement. It is uncertain why the stacked

model is in fairly good agreement with the deterministic results

for surface 3 but not as well with surfaces 1 and 2. From the plot

of the real contact pressure versus load shown in Fig. 13, it is clear

that all the closed-form models are within an order of magnitude

of agreeing with the deterministic model.

Although all the models appear to generate the same general

trends and also make predictions that differ by less than an or-

der of magnitude, from an engineering perspective these differ-

ences are still large. The reality of rough surface contact model-

ing is that any surface model that reduces the surface geometry

down to a few key parameters will result in merely an approxi-

mate prediction of the relationship between real contact area and

contact force. Real surfaces are complex and do not precisely

follow any mathematical structure (fractal, Gaussian, etc.). This

results in deviations of the actual surface contact from the pre-

dictions made by the models. Therefore, one might think that de-

terministic models provide the best alternative. However, due to

limitations of computational resources and therefore mesh densi-

ties, it is likely that the deterministic models may have limitations.

Even if an adequate mesh is obtained, the deterministic model

may take larger amounts of CPU time to reach a solution. This

is especially impractical if the predictions are being incorporated

into a larger and more extensive simulation. In addition, there can

be errors in the surface measurements from stylus tip geometry,

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
A
u
b
u
r
n
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
1
4
:
4
0
 
8
 
A
p
r
i
l
 
2
0
1
1



312 R. L. JACKSON AND I. GREEN

Fig. 13—Resulting model predictions of normalized real contact pressure versus normalized load for a 1,001 × 1,001 course mesh of surface 3.

instrument vibration, etc., that may result in errors in the deter-

ministic model predictions.

CONCLUSIONS

This work presents an FFT-based deterministic model of elas-

tic contact between rough surfaces, a new closed-form solution

to the Greenwood and Williamson (2) model, and a compari-

son of several closed-form elastic rough surface contact models

to the deterministic models. The deterministic model is based on

Stanley and Kato’s (13) FFT deterministic elastic contact model.

The other analytical models included in the comparison are the

new closed-form solutions to the GW model (Greenwood and

Williamson (2), with a full Gaussian distribution), the Bush, et

al. (15) statistical contact model, Persson’s (12) diffusion contact

model, and a stacked multiscale model (Jackson (20)).

First the effect of mesh resolution is studied for one surface

by skipping points of data on the surface. The two surfaces then

had a two orders of magnitude difference in the number of data

points (meshes of 100 × 100 and 1,001 × 1,001). It is found that

all the models are similarly affected by the scale of data that is

used. Specifically, all the models using the finer mesh (1,001 ×
1,001) predicted an average contact pressure approximately one

order of magnitude larger than when using the course mesh (100

× 100). This also results in the models predicting a smaller contact

area when the finer mesh is used.

The results for three very different surfaces show that all of

the remaining models produce nearly linear predictions of con-

tact area as a function of load and in some cases are even in quan-

titative agreement. This is reassuring because many of these mod-

els are based on very different mathematical foundations and as-

sumptions. It should be noted that because most of these closed-

form models reduce the complex surface profile to only a few

key parameters, they cannot be expected to make exact quan-

titative predictions of rough surface contact. However, they all

appear to be within an order of magnitude and for some cases are

even closer. An alternative definition to the plasticity index that

is based on a multiscale approach is discussed and presented in

the Appendix.
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APPENDIX

Greenwood and Williamson (2) define a plasticity index from

the surface properties and the critical interference, which is given

in a slightly different format by Kogut and Etsion (38) as:

9 =
√

σs

ωc

[A1]

The critical interference to cause plastic deformation for a spher-

ical Hertz contact is given by Jackson and Green (39) as:

ωc =
(

π · (CSy)

2E′

)2

R [A2]

According to Green [40] the value of CSy =min(C(v1) Sy1,C(v2)

Sy2), accounts for the possibility of contact between dissimilar ma-

terials, where C(v) = 1.295exp(0.736v). This is because the sur-

face with the minimum CSy value will be the first to yield. Note

that Eq. [A2] differs from the version offered by Chang et al. (28)

in that it is based on the well-defined yield strength rather than on

a loosely-defined hardness with a corresponding hardness factor.

Substituting Eq. [A2] into Eq. [Al] results in

ψ=
2E′

π · 1.295e0.736v · Sy

√

σs

R
[A3]

The plasticity index relates the critical interference and the

roughness of the surface to the plastic deformation of the surface.

According to Greenwood and Williamson (2), the critical value

of the plasticity index marking the boundary of predominantly

elastic contact and elastic-plastic contact is approximately unity.

A higher plasticity index indicates a surface whose asperities are
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more likely to yield. Asperities are thus more likely to deform

plastically on rougher surfaces with lower critical interference

values. Greenwood and Williamson (2) suggest that for real sur-

faces the plasticity index can range from ψ= 0.1 to ψ= 100. Since

the plasticity index is dependent on the rms roughness of the sur-

face peaks (σs ) it is also dependent on the scale of the employed

surface data [18]. However, from the multiscale surface contact

methodology set forth by Jackson and Streator (11) and devel-

oped further by Wilson et al. (37), an alternative plasticity index

can be derived. Wilson et al. expanded the multiscale methodol-

ogy by including an FEM elastic-plastic sinusoidal contact model

(22, 41). A critical amplitude,1c, is analytically derived using the

von Mises yield criteria below which a sinusoidal contact (1 <

.1c) will deform purely elastically and is given as

4c =
√

2Sye
2
3

v

3πE′f
[A4]

where 1 is the amplitude of the sinusoidal surface and f is the

frequency (the reciprocal of the wavelength, 1/λ). Again, when

(1 < 1c, a sinusoidal surface will always deform elastically only,

even to the point of complete flattening. B is now defined as the

ratio of the amplitude to the wavelength of a sinusoidal surface.

The critical value of B can then be calculated by

Bc =
√

2

3π

Sy

E′
e

2
3

v [A5]

Then Bc can be compared to the maximum amplitude to wave-

length ratio found from an FFT of a surface (Bmax). If Bmax < Bc,

then the contact is completely elastic over all loads. Therefore an

alternative plasticity index can be calculated by

ψm =
Bmax

Bc

=
3πE′

√
2e2/3v · Sy

(

1

λ

)

max

[A6]

Note that this does assume that the stresses of the different scales

of asperities do not influence each other. Comparing Eq. [A6] and

Eq. [A3], reveals clear similarities in form. It appears that there is

a correlation between the geometric nondimensional parameters
√

σs

R
and

(

1
λ

)

max
. Therefore when ψm is less than unity, Eq. [A6]

predicts that the surface is deforming perfectly elastically even

when the surfaces are in contact everywhere (complete contact)

and deforms purely elastically for all loads. Other versions of the

plasticity index are also provided in the literature that are aimed

to predict the importance of plasticity using a number of different

surface geometry parameters (33, 38, 42).
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