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Abstract

Mechanical seals, rotors, and wobbling bodies whirl about a point and are characterized by a kinematical constraint
that prevents them from having integral motion with respect to the axis of whirl. A valid kinematical model is a prerequi-
site to subsequent dynamic analyses. Three previous works have suggested distinctly different kinematical models for the
same problem. The analysis herein presents yet another kinematical model that preserves (actually enforces) the proper
kinematical constraint. Interestingly, it is found that although no integral rotation is allowed about the axis of whirl,
the wobbling body possesses a sustained nonzero angular velocity about that axis. The derivation is done for any finite
nutation angle and only final results are being degenerated to small tilt angles. The outcome reaffirms the results of a pre-
vious work. For this time-invariant problem the notion of virtual velocity and virtual power emerges, and the equations of
motion are derived using Lagrange’s equations to complement results obtained previously by Newton–Euler mechanics.
Ó 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The vast majority of mechanical seals have typically at least one element flexibly mounted; it is either the
stator or the rotor. Fig. 1a shows a schematic of a flexibly mounted stator (FMS) seal where the ring (stator) is
supported by springs and a secondary seal, both of which provide the necessary flexibility for the ring to track
a misaligned seat (rotor). Depending upon the application (specifically in high temperature environments)
metal bellows are used instead of elastomeric secondary seals. In seal applications it is necessary to prevent
the ring from being dragged about the axis of rotation. Bellows accomplish this inherently, because the bellows
structure is sufficiently stiff in the circumferential direction, but it is very flexible in the axial direction. The
same anti-rotation can be accomplished also by the elastomeric seals (e.g., O-rings), provided that the squeeze
in the secondary seal is sufficiently high to prevent ring drag. Metal bellows or O-ring seals are axisymmetric
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structures and are, therefore, indifferent about which transverse axis the stator may tilt. Frequently anti-rota-
tion pins or positive drive devices are added to ensure that the flexibly mounted element is not being dragged
around relative to the housing. Such pins protrude from the housing (or retainer) into machined slots in the
ring as shown in Fig. 1b that depicts a flexibly mounted rotor (FMR) seal. Here the rim or frame that houses
the rotor rotates with the shaft while the stator is fixed. In which case, the pins act as positive drive devices.
From a kinematical point of view the FMS configuration is a special (degenerate) case of the FMR case
because by letting the rim speed in the latter go to zero, one obtains the desired results for the former. In either
case the flexibly mounted element may have only limited motion where a complete (integral) rotation relative
to the frame is prevented by the anti-rotation mechanism. This kinematical constraint must, therefore, be reck-
oned with in the derivations of the equations of motion.

The equation of kinematical constraint is defined by the nature of the anti-rotation device. Flywheels,
impellers, magnetic disks on spindles, pin-on-disk testers, etc., can all be described fundamentally as rotating
discs that are typically attached to shafts by some mechanism that allows them to tilt about an axis perpen-
dicular to the shaft, and whirl about the center point. Attachment mechanisms may be keyways, press fits,
bolts, welding, etc. Once again, although these mechanisms allow some flexibility in a tilt mode they do
not allow the disc to complete an integral revolution about that point relative to the shaft. Had there been
an integral (complete) rotation, regardless of the application, the anti-rotation devices (pins, keys, etc.) would
shear off, a condition which is not permitted in a functional system (and in the current analysis). All machine
elements that obey such a constraint are classified as wobbling bodies.

Generally the ‘‘point’’ about which tilt takes place and motion is transmitted, in a basic sense, represents a
joint (e.g., Cardan suspension, Hooke joint, or a constant velocity joints). However, the locking devices men-
tioned above are only a few out of the numerous mechanisms that fulfill the same or similar function. As indi-
cated for seals, instead of pins there can be bellows, piston rings, or O-rings that support the flexibly mounted
element. Likewise, other machine elements, e.g., welding, bolts, or press fits are frequently being used to attach
rotors to rotating shafts. Since anti-rotation pins allow free rotation (tilt motion) only in a prescribed order,
they are not axisymmetric joints. On the other hand bellows, O-rings, welds, and press fits do not impose any
preferential order on rotations and can be considered axisymmetric (isotropic) joints. Clearly it is impossible
to account for all mechanisms in a single kinematical model without compromise. If, however, one accepts the
fact that tilts are limited to small angles, a single kinematical model is possible. There is one constraint,
though, that cannot be violated. This is the fact that as long as the locking devices are functional, no shearing
can take place between the wobbling body and the housing or shaft upon which the body is attached. This
leads to a transmission law that must be satisfied. Note that this work is limited to rigid bodies, i.e., flutter
that may be caused by elastic modes is not considered. Also, even though ‘‘seal’’ terminology is used and ref-
erence is made to a ‘‘seal ring,’’ or a ‘‘flexibly mounted rotor,’’ the analysis is valid for all wobbling bodies
which have whirl motion including flywheels, impellers, tilted rotors, etc.

(a) Flexibly mounted stator configuration (b) Flexibly mounted rotor configuration 
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Fig. 1. Schematic of mechanical face seals.
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2. Kinematical models

Fig. 2 presents a kinematical model for a flexibly mounted element that is constrained by two anti-rotation
pins. Its angular position is described by the three Euler angles, i.e., precession, w; nutation, c and spin, /.
Moments are sought in a rotating coordinate system, xyz, which precesses relative to coordinate system
XYZ that is attached to the outer rim (or housing).

System XYZ (attached to the housing) is either rotating with the shaft, having a velocity x = const about
axis Z (FMR), or as a special degenerate case, x = 0 (FMS). System xyz is whirling (wobbling) within XYZ

such that x is the axis about which the nutation (tilt) occurs, z is the out-normal axis about which the relative
spin X ¼ _/ takes place, and y points toward the point of maximum separation between planes xy and XY.

Had the rotor been a free rotating body, e.g., a sleeping top, then the three Euler angles {c,w,/} would
have been kinematically independent. The case at hand, however, is not such. The anti-rotation devices impose
a rotational limitation on the rotor and, hence, the Euler angles are not all independent, i.e., they are related
through an equation of kinematical constraint. A special but common case is that of precession at steady nuta-
tion, i.e., c = const. In which case, after a complete cycle of wobble has completed, each point in the rotor
returns precisely to its initial state. This renders a relationship between the spin and the precession, given
in a functional form as / = /(w,c), where c is a parameter. Since the final objective is to obtain the equations
of motion, it is necessary to obtain the relationship between _/ and _w, the ratio of which, T r ¼ ÿ _/= _w, is defined
as the transmission law. Clearly the kinematical constraint, or transmission law, must hold for any nutation
value, c, whether it is finite or small. Hence, the analysis herein is done first for any angle c, and only the final
results are degenerated to ‘‘small angles’’.

Three different works have proposed kinematical constraints for mechanical seals that are fundamentally
different. The earliest kinematical models with transmission laws are given by Green and Etsion [1]. For a case
where the suspension is perfectly axisymmetric and tilt can take place about any axis orthogonal to the whirl
or precession axis, for example, bellows, O-rings, press fit, the constant velocity joint provides an ideal (iso-
tropic) transmission law,

T r ¼ ÿ _/= _w ¼ 1: ð1aÞ

In the case where the order of tilts is important, such as in anti-rotation or positive drive pins, a Hooke joint
provides a suitable non-isotropic model. For which case Ref. [1] derives for small tilts,

Fig. 2. A kinematical model for a seal wobbling element.
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T r ¼ ÿ _/= _w ¼ 1þ sin2
wÿ

1

2

� �
c2 ÿ

c_c

_w
sinw cosw: ð1bÞ

Later work by Lipschitz [2], proposes a transmission law given by

T r ¼ ÿ _/= _w ¼ 1= cos c; ð2Þ

where recently Xiong and Salant [3] propose yet another transmission law, given by

T r ¼ ÿ _/= _w ¼ cos c: ð3Þ

Note that since the kinematical constraint under consideration is between XYZ and xyz, it renders the issue of
whether XYZ is inertial or rotating as immaterial. The above transmission laws are identical only for the triv-
ial case when c = 0, but are distinctly different otherwise.

It is useful to introduce yet another mechanism which guarantees (in fact, enforces) that any point in the
body shall return to its original position after completing one cycle of wobble. This model consists of two iden-
tical cones, as shown in Fig. 3. By definition, the space cone is stationary where the body cone wobbles in pure
rolling motion about the space cone. The two cones can be considered to consist of two identical bevel gears,
where the curved arm generates the precession (input), while the body cone as it whirls around, spins at a rate
_/ about its own axis z (output). The absolute angular velocity,~k, acts along the instantaneous axis of rotation,
which coincides with the cones common generator. Since the cones are identical and motion is constrained to
pure rolling, after a half cycle, w = p, points B and B 0 shall coincide, and after a complete cycle, w = 2p, point
A (on the body cone) shall return to the same location as it is shown in Fig. 3. Note also that under pure roll-
ing all points along the instantaneous axis of rotation have zero velocity, where specifically~vA ¼ 0.

The problem can be approached from the perspective of an observer that is attached to the rotating system
xyz (i.e., the curved arm). Relative to himself the observer sees the space cone as having a precession, j _wj,

Fig. 3. Identical space and body cones kinematical model.
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about negative bZ , the body cone spins at _/ about ẑ (direction is yet to be determined), and point A has a veloc-
ity relative to xyz directed into the page (i.e., negative x̂Þ. In a mathematical form

vAjrel ¼ rA _/ ¼ RAðÿ _wÞ:

Since geometrically RA = rA, then
_~/ ¼ ÿ _wẑ, and thus

T r ¼ ÿ _/= _w ¼ RA=rA ¼ 1:

Evidently, this transmission law is identical to that derived in Ref. [1] and given in Eq. (1a), and thus the mech-
anism in Fig. 3 has effectively characteristics of a constant velocity joint. The analysis herein renders an unwa-
vering result: for a wobbling body, which does not have an integral rotation about the axis of wobble (axis Z),
the geometrical condition required is rA = RA. It should be noted that from a kinematical point of view the
cones are in fact virtual, where the wobbling body center of mass is positioned at point O (the apex). Super-
imposing Fig. 2b upon Fig. 3 (by overlaying points O, and axes y and z, respectively) renders the ultimate
kinematical model for the body wobbling in conical motion.

The angular velocity of the coordinate system xyz (shown in Fig. 3) takes place about axis Z, and it is given
by

~xxyz ¼ _wbZ ¼ _wðsin cŷ þ cos cẑÞ:

The angular velocity of the body cone is directed along the instantaneous axis of rotation, defined by the com-

mon generator of the two cones. This velocity is given by~k ¼ ~xxyz þ ~X ¼ ~xxyz þ _/ẑ. Hence, with
_~/ ¼ ÿ _wẑ (see

above) we have,

~k ¼ _w sin cŷ þ ð _w cos cþ _/Þẑ ¼ _w½sin cŷ þ ðcos cÿ 1Þ̂z�:

Note that the angle between~k and ŷ can easily be verified to be cosÿ1½ŷ �~k=jŷjj~kj� � c=2, and more importantly,
the projection of ~k upon bZ is given by

kZ ¼~k � bZ ¼ _w½sin cŷ þ ðcos cÿ 1Þẑ� � ðsin cŷ þ cos cẑÞ ¼ _wð1ÿ cos cÞ:

Clearly this component does not vanish for any non-trivial angle c 5 0 (large or small). Hence, it is concluded
that even though integral rotation of a wobbling body is not permitted about axis Z, the body’s angular veloc-
ity component about this axis, kZ, has a sustainable non-vanishing value.

The kinematical model presented above using a fixed angle c is done for convenience in illustration and for
establishing the concept. It is clear that Tr for an isotropic joint is independent of the tilt (nutation), c, i.e., it is
valid for any arbitrary angle, c, as long as the two virtual cones remain identical. Therefore, the above trans-
mission law holds true also when the angle c varies in time. Hence, for every point in a wobbling body to
return to its original position after completing one cycle of whirl (abiding by the anti-rotation devices, gear
teeth, etc.) the joint imposes

1

2p

Z 2p

0

T rdw ¼ 1: ð4Þ

Simply by inspection it is evident that Eq. (1a) fulfills this condition for an isotropic joint. Just as well, Eq. (4)
is satisfied also for a non-isotropic (Hooke) joint given by Eq. (1b) that does depend upon the nutation angle.
The transmission laws given by Eqs. (2) and (3), however, do not obey Eq. (4), and thus are not applicable to
wobbling bodies under the said constraint. This conclusion is further reinforced in the Appendix by additional
mathematical and physical details. The analysis that follows uses the axisymmetric constraint of Eq. (1a);
however, when simplification is done for small angles, the final results are just as well applicable to a kinemat-
ical constraint given also by Eq. (1b) because of the aforementioned line of reasoning.

3. Flexibly mounted rotor

It should be noted that the kinematical model above is relative to the rotating housing or the retainer (see
Fig. 2a) which rotates with the shaft at x. This rotation is now being added to the model. The angular velocity
of the coordinate system xyz, is
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~xxyz ¼ _cx̂þ _wr sin cŷ þ _wr cos cẑ;

where the nutation angle is being relaxed to assume time dependency, and _wr ¼ _wþ x is the absolute preces-
sion rate about axis bZ . Since scalarly _/ ¼ ÿ _w then _/ ¼ xÿ _wr. As previously, adding the spin to ~xxyz gives the
angular velocity of the rotor,

~k ¼ ~xxyz þ _/ẑ ¼ _cx̂þ _wr sin cŷ þ ½ _wrðcos cÿ 1Þ þ x�̂z: ð5Þ

This, again, inherently contains the effect of the kinematical constraint. It is apparent that from the FMR case,
Eq. (5) degenerates to the FMS case by setting x = 0 (see previous result above).

4. Lagrange’s equations

The work by Green and Etsion [1] also provides the dynamic moments about xyz using Newton–Euler
mechanics. Ref. [4] attempts the same but it uses instead the Lagrange equations; however, the outcome is
enigmatic since the aforementioned kinematical constraint is unaccounted for. A classical way to include kine-
matical constraints would be through Lagrange multipliers. In the following derivation, however, a direct
approach is taken where the Lagrange equations shall account for the kinematical constraint because, as
noted, the angular velocity given by Eq. (5) inherently contains the said constraint. System xyz (Fig. 2) is prin-
cipal for the wobbling body, possessing correspondingly inertia values {I, I, Iz}, where I and Iz are the trans-
verse and polar moment of inertia, respectively. Using the angular momentum {h} = [I]{k}, and noting that
the center of mass, which is coincident with the origin point O, is stationary, leads to the kinetic energy,

T ¼
1

2
~h �~k ¼

1

2
I _c2 þ I _w2

r sin
2
cþ I z _wrðcos cÿ 1Þ þ x

h i2� �
: ð6Þ

The Lagrange equations are

d

dt

oT

o _qj

� �
ÿ

oT

oqj
¼ Qj; ð7Þ

where index j = 1, 2, 3, signifies respectively the generalized coordinates fq1; q2; q3g , fc;wr; hg, and
_h ¼ x.

Similarly, let the index i = 1, 2, 3, signify respectively the axes x, y, z, about which the moments are desired.
It is obvious that the moment in the tilt direction Mx = Qc because by definition the generalized coordinate, c,
takes place about (i.e., its direction is along) axis x. However, My is not along any of the generalized coordi-
nates, qj, and thus it requires some special treatment. To obtain the generalized forces, a consistent formula-
tion is used (see Ginsberg [5], pp. 257–269),

Qj ¼
X

i

F i �
ori

oqj
: ð8aÞ

Here, however, the constraint is readily available in its time rate of change, _~r ,~k, rather than by its integral
form, ri. Hence, further derivation is necessary. Consider general (rheonomic) constraints of the form ri =
ri(qj, t), where qj = qj(t), and t is a parameter (namely time). The time rate of change of ri = ri(qj, t) is

_ri ,
driðqj; tÞ

dt
¼

X

j

ori

oqj
_qj þ

ori

ot
:

Taking the derivative of the above with respect to _qj (and noting that ri = ri(qj, t) is not a function of _qjÞ gives

o_ri

o _qj
¼

o

o _qj

X

k

ori

oqk
_qk þ

ori

ot

" #

¼
ori

oqj
:

Substituting the above in Eq. (8a) results in

Qj ¼
X

i

F i �
ori

oqj
¼

X

i

F i �
o_ri

o _qj
¼

X

i

M i �
oki

o _qj
: ð8bÞ
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If commonly the first term in the generalized force is derived from principles of ‘‘virtual displacement’’ and
‘‘virtual work,’’ then effectively the second term may be interpreted as if it had been derived from principles
of ‘‘virtual velocity’’ and ‘‘virtual power.’’ Substituting now Eq. (5) in (8b), and cycling j = 1, 2, 3, results in

Qc ¼ M x;

Qwr
¼ M y sin cþM zðcos cÿ 1Þ;

Qh ¼ M z:

ð9Þ

Applying Eq. (7) to (6), and with the aid of (9), the equations of motion expressed in system xyz are obtained
for finite angles,

I€cÿ I _w2
r sin c cos cþ I z½ _wrðcos cÿ 1Þ þ x� _wr sin c ¼ M x;

I €wr sin
2
cþ 2I _wr _c sin c cos cþ I zf½€wrðcos cÿ 1Þ ÿ _wr _c sin cþ _x�ðcos cÿ 1Þ

ÿ ½ _wrðcos cÿ 1Þ þ x� _c sin cg ¼ M y sin cþM zðcos cÿ 1Þ;

I z½€wrðcos cÿ 1Þ ÿ _wr _c sin c� ¼ M z:

ð10Þ

Simplifying these equations for small angles, where sinc = c + O(c3), and cosc = 1 ÿ c2/2 + O(c4), yields
ultimately,

M x ¼ Ið€cÿ _w2
rcÞ þ I zx _wrcþOðc2Þ;

M y ¼ Ið€wrcþ 2 _wr _cÞ ÿ I zx _cþOðc2Þ;

M z ¼ ÿI zð _wr _ccþ €wrc
2=2Þ þOðc2Þ � Oðc2Þ:

ð11Þ

These equations match identically those in Ref. [1] [see there Eq. (24)], which had been obtained by Newton–
Euler mechanics. To degenerate the results further to FMS, substitute x = 0, which nullifies the gyroscopic
terms in Eqs. (11) (and by definition also _wr � _w). It is worthy to note that Eq. (11) above have been further-
more transformed into an inertial frame [6], and have subsequently provided the foundation for deriving the
equations of motion in shaft fixed system for a whirling (overhanging) rotor [7].

5. Conclusions

A valid kinematical model that represents the physical constraint imposed by the anti-rotation or locking
devices is fundamental to the proper derivation of the equations of motion. A new kinematical model is pro-
posed which consists of two identical cones (a body cone and a space cone). With the constraint imbedded in
the angular velocity of the wobbling body the use of Lagrange’s equations affirms a previous result that had
been obtained by Newton–Euler mechanics. It is found that even though a wobbling body (body cone) has no
finite (or integral) rotation about the vertical axis Z, it does have a steady nonzero angular velocity about that
axis.
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Appendix. Kinematical models for Refs. [2,3]

A kinematical model is now sought (reversed-engineered) for the transmission laws introduced in Ref. [2].
We shall investigate the mechanism (kinematical model) shown in Fig. 4, where the body cone rolls upon the
semi-infinite plane, i.e., the space cone.

The rotating coordinate system, xyz, is consistent with the definitions herein, i.e., xyz is attached to the
curved arm as it precesses about axis Z relative to the inertial coordinate system XYZ. Note that the body
cone is free to spin within xyz about axis z. The angular velocity of the coordinate system xyz, which is entirely
about axis Z, is conveniently expressed also in xyz, giving

I. Green / Mechanism and Machine Theory 43 (2008) 909–917 915
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~x ¼ _wbZ ¼ _wðsin cŷ þ cos cẑÞ: ðA1Þ

The angular velocity of the body cone is directed along the instantaneous axis of rotation, defined by the com-
mon generator of the two cones. This velocity is given by

~k ¼ _w sin cŷ þ ð _w cos cþ _/Þ̂z; ðA2Þ

where _/ is the (yet to be determined) spin of the body cone about axis z. In this mechanism, since ~x and~k are
orthogonal to each other, then ~x �~k ¼ 0. This straightforwardly leads to the transmission law

T r ¼ ÿ _/= _w ¼ 1= cos c ðA3Þ

being identical to the one given by Eq. (2) and in Ref. [2]. Hence, it is proven that the mechanism in Fig. 4
provides a true representation of the transmission law proposed by Ref. [2].

Now it is useful to investigate that mechanism by a different approach. It is noted that under pure rolling all
points along the instantaneous axis of rotation have zero velocity, where specifically ~vA ¼ 0. An observer
placed upon the rotating system xyz sees (relative to himself) the following: the space cone has a precession,
ÿ _w, about the vertical axis Z; the body cone has a spin _/ about axis z; and that point A has a velocity relative
to xyz,

vAjrel ¼ rA _/ ¼ RAðÿ _wÞ:

Since geometrically RA/rA = 1/cosc, then with the aid of Eq. (A3), the apparent outcome is that Tr = RA/rA.
This is of utmost significance, since for this mechanism rA 5 RA. Hence, a point on the body cone, which at
some instant is positioned on the space cone at point A, shall not return to that point after the body cone has
completed one cycle of wobble because of the unequal circumferences (2prA 5 2pRA). Likewise, point B on
the body cone shall not contact the line AB 0 after half cycle, w = p, as point B advances on the semi-infinite
plane. This obviously violates the kinematical constraint imposed by anti-rotation devices. Noteworthy,
throughout this work, the analysis herein is not restricted to small tilt (nutation) angles, demanding that
the kinematical model be valid for any finite angle, c. Thus the kinematical condition given by Ref. [2], or
Eq. (2), cannot represent the problem at hand.

Similarly, it would not be difficult to construct a mechanism that provides RA/rA = cosc, as implied by the
transmission law of Ref. [3] and given by Eq. (3). For conciseness it is omitted because again 2prA 5 2pRA

Fig. 4. Cone on plane kinematical model.
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and by the aforementioned line of reasoning it is concluded that also Eq. (3) would likewise violate the kine-
matical constraint.
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