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Abstract The coefficient of restitution (COR) is a

pragmatic analytical tool needed to solve impact

problems. The coefficient is customarily obtained

empirically by executing experiments intended to

mimic actual collision situations. The coefficient

depends on many parameters, some of which are the

colliding bodies’ structures, their material properties,

the impact velocities, friction and spin, surface

roughness, contamination, and in some cases even

adhesion. A comprehensive model that encompasses

all parameters is understandably elusive, but if the

problem is limited to co-linear impact between two

smooth elastic or elastoplastic bodies, particularly two

spheres or a sphere and a plate, then a few analytical

models are available to predict the COR. A recent

model (Jackson et al. in Nonlinear Dyn 60:217–229,

2010) has specifically targeted the elastoplastic defor-

mation caused by the collision while excluding other

effects. Other models (notably by Zener (Phys Rev

59(8):669–673, 1941)) do not consider the elastoplas-

tic deformation, focusing only the ensuing elastic

waves instigated in a perfectly elastic collision. The

said two models may rest at the outermost ends of the

effects that influence the apparent coefficient of

restitution. The subject of this work is to investigate

the interplay of these two models and fuse them into a

single model that include both effects of elastic waves

in the presence of elastoplastic deformation and vice

versa. Then, the new model is compared to recent

experimental results by Higgs, et al. (2013, 2018) as

well as their FEA simulations (2017). It is shown that a

straightforward use of the new model herein predicts

quite accurately the apparent coefficient of restitution,

where a very good agreement is found between the

predictions and the results obtained from experiments

and FEA simulations. The comparison is performed

for a wide variation of material property combinations,

plate thickness-to-sphere diameter ratios, and impact

speeds.
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Abbreviations

C Poisson’s ratio coefficient, Eq. (2)

E Elastic modulus

d Sphere diameter

e Coefficient of restitution

F Contact force according to Zener

h Half plate thickness

k Proportionality coefficient between F and s

m Mass

P Contact force

R Radius

r Sphere radius (Zener’s notation), d/2

Sy Yield strength
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s Relative displacement (interference), z-U

T Time parameter according to Zener

t Plate thickness, 2h

V Velocities at initiation and end of contact

U Surface displacement

v Velocity

z Absolute degree of freedom

ey Yield strength-to-elastic modulus ratio, Eq. (3)

k Zener’s ‘‘inelasticity’’ parameter

m Poisson’s ratio

q Density

r Nondimensional relative displacement, Eq. (9)

s Nondimensional time, Eq. (9)

x Interference between sphere and surface

Subscripts

0 When s = 0 (and r = 0)

1 Value before impact

2 Value after impact

a Sphere

b Plate

c Critical value

e Elastic regime

ep Elastoplastic regime

o Impact velocity according to Zener

y Yield

ze According to Zener

Superscripts

‘ Equivalent, Eq. (1)

* Normalized by a critical value

1 Introduction

The coefficient of restitution (COR) is a necessary ad

hoc concept, which once interjected, provides the

missing information (i.e., an equation) to complement

the conservation of momentum and readily solve

impact problems. The utility of the COR is vast in

solving problems of engineering, science, sports, and

recreation. In its most basic form the COR is a ratio

between two impulses: the restitution impulse and the

deformation impulse [1]. Upon using the equivalence

between impulse and momentum, the COR emerges

also as the ratio between the relative velocity of

separation after impact and the relative velocity of

approach before impact.

The difficulty, however, is that the COR is a

parameter that needs to be obtained or estimated

somehow. The customary way to determine the COR

is by running experiments that mimic actual condi-

tions of the collision and then to offer empirical COR

values. Of course, this process is laborious, but in

many cases, it is necessary. Under some constraints,

the alternative is to estimate the CORs from models

that are available. At the conditions of co-linear

collision of spheres against each other or of a sphere

against a flat surface, various models have been

offered over the years. This study specifically focusses

on five works. The historic work by Zener [2] offers an

analytical solution for the COR of an elastic sphere

pinging a thin elastic plate. This model is briefly

summarized herein; however, some clarifications are

made to qualify some of Zener’s definitions. Most

notably, his estimation of the COR is dependent upon

the ratio of the sphere’s diameter to the thickness of

the plate (among other parameters). That COR

estimation appears to fit reasonably well with the

experimental results and analysis offered by Raman

[3]. Tsai et al. [4] recast Zener’s work to offer an

approximate solution for the force–time collision

curve between the sphere and plate as a function of

Zener’s ‘‘inelasticity’’ parameter; however, the issue

of the COR is not addressed. There are other recent

publications on impact calculations including wave

propagation in both colliding bodies [5–8]. These

usually require expensive computational effort and

they are alternative approaches to the classical

approach taken here.

The works by Jackson et al. [9] and Higgs et al.

[10–12] have each detailed substantial literature

coverages, along with the extensive literature review

on impact problems and COR models by Banerjee

et al. [13]. These are quite recent and relevant. A

massive literature coverage is therefore redundant and

is not repeated. Herein, just the utmost relevant models

are recast and summarized while adding important

new insights. This work provides a simple yet accurate

empirical expression to calculate Zener’s COR. The

JGM model by Jackson et al. [9] is recast, and fused

together with Zener’s model to provide one effective

model for the calculation of the COR which accounts

for both elastoplastic deformations and wave propa-

gation for any plate thickness-to-sphere diameter ratio.

The new model is compared against recent experi-

mental and FEA simulation results offered by Higgs
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et al. [10–12], and conclusions regarding its effective-

ness, accuracy, and utility are drawn. Lastly, the

interplay of the various parameters that comprise the

new model are investigated and discussed.

2 The elastoplastic JGM model

The model developed by Jackson et al. [9] to calculate

the COR is one of the two corner stones in this study,

and it is now summarized. Based on the JG model [14]

to calculate the elastoplastic deformation between a

sphere and a half-space flat, reference [9] offers

empirical equations for the COR. The deformation

phase is based upon [14], where two options are

offered for the calculation of the restitution phase

according to [15] and [16]. Starting with the equiva-

lent elastic moduli of the contacting bodies (see also

definitions in the nomenclature):

E0 ¼ E
0
aE

0
b

E0
a þ E

0
b

@ E
0

i ¼
Ei

1� m2i
i ¼ a; b ð1Þ

In this work, in most cases, at least one of the

contacting materials is ductile. When both bodies are

ductile and also have different material properties,

particularly if the yield strengths, Sya, and, Syb, are

dissimilar, then it is imperative to use the procedure

detailed by Green [17] to calculate the forthcoming

critical parameters (significant errors will ensue

otherwise). Briefly, in normal elastic contacts, Green

[17] defined the ratio between the maximum contact

pressure, po, and the maximum von Mises stress, re-
max, to be C = po/re-max, a ratio found to solely

dependent upon the Poisson ratio. A rather accurate

curve-fit to a numerical solution of a transcendental

equation renders for 3D contacts, C(v) = 1.295

exp(0.736m). Abiding by the von Mises yielding

criterion, re-max = Sy at yielding onset, such that the

product C(m)�Sy gives the corresponding critical con-

tact pressure, (po)c:CSy, for each material. For

dissimilar materials (as are many of the cases inves-

tigated herein), Green [17] teaches that the smallest

between these two possibilities decides which of the

contacting bodies yields first. Hence:

CSy ¼ min½CðmaÞSya;CðmbÞSyb� @
CðmÞ ¼ 1:295 expð0:736mÞ ð2Þ

The equivalent strain at yielding, ey, is needed in the
upcoming COR expressions. It follows the same logic

as above, complementing Eq. (2):

ey ¼
Sya
E0 $ CðmaÞSya �CðmbÞSyb

ey ¼
Syb
E0 $ CðmaÞSya [CðmbÞSyb

ð3Þ

The critical interference, xc, and the critical load,

Pc, are also derive in [17]:

xc ¼
p � CSy
2E0

� �2

R ð4Þ

Pc ¼
4

3

R

E0

� �2 p
2
CSy

� �3

ð5Þ

where R is the composite radius calculated according

to 1/R = 1/Ra ? 1/Rb. For the current case, the plate’s

radius Rb ? ?, so R:Ra is the sphere’s radius. The

critical velocity is derived in [9] by equating the

critical strain energy stored (as derived in [17]),

Uc = (p�CSy)5R3/(60E’4), with the impacting sphere

kinetic energy at yielding onset, maVc
2/2. After

simplifications, along with Eqs. (4) and (5), we have:

Vc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4xcPc

5ma

r
ð6Þ

Specifically, Vc is the initial impact velocity of ma

causing the onset of yielding (in the sphere and/or the

plate), causing a critical interference, xc, and produc-

ing a critical contact force, Pc. Any impact velocity,

V1, that is smaller than Vc would not cause plastic

deformation for which, by definition, the COR = 1.

Defining a normalized impact velocity, V1
* = V1/Vc,

and skipping all the details in [9], only the bottom-line

results are of interest here. So, for 0\ (V1)
*\ 1, the

COR is e = 1. Note that because reference [9] permits

two restitution phase models [15] and [16], two

expressions are conceived for the predicted COR at

circumstances of elastoplastic impacts. The first model

is:

e44 ¼ 1� 0:1 ln V�
1

� � V�
1 � 1

59

� �0:156

$ 1\V�
1 � 60

e44 ¼ 1� 0:1 ln 60ð Þ � 0:11 ln
V�
1

60

� �
V�
1 � 60

� �2:36ey$ 60\V�
1 � 1000

ð7Þ
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The subscript 44 is appended to collectively signify

that these expressions appear in Eqs. (43) and (44) of

Ref. [9], and are given piecewise for two nondimen-

sional velocity ranges. The second model is given by a

single equation for the entire nondimensional velocity

range:

e45 ¼ 1� 0:0361 ey
� ��0:114

ln V�
1

� �
V�
1 � 1

� �9:5ey
$ 1\V�

1 � 1000

ð8Þ

Again, the subscript 45 signifies that this is Eq. (45)

in Ref. [9]. As Ref. [9] builds upon Ref. [14] it inherits

its assumptions. Namely, that impact occurs between a

sphere and a half-space. So clearly, this model and

these equations are impervious to the thickness of a

‘‘plate.’’ Practically, though, these expressions may be

applied for spheres impacting ‘‘finite thickness’’ plates

when the plate thickness-to-sphere diameter ratio is

above a finite value, (which is not necessarily ‘‘very

large,’’ as shall be seen herein). In the following, either

Eq. (7) or (8) will be referred to generically as eep.

3 The zener model

The model developed by Zener [2] to calculate a COR

is the second corner stone of this work. It deals with

the conditions that Ref. [9] does not consider.

According to Zener’s model, the COR is the outcome

of an elastic wave instigated in a plate by an impacting

sphere. On the wave rebound, the plate ejects the

sphere from its surface after some elapsed time from

the instant of impact. As was done in the previous

section, a summary of Zener’s model is recast with a

few new observations that are necessary. For consis-

tency and clarity in this section, Zener’s original

nomenclature for variables is adhered to. Explicitly,

t is time, and 2h is the plate thickness.

Zener solves the acoustics problem by starting off

with the equation of motion (EOM) for an elastic thin

plate being pinged by an elastic sphere. The second

EOM is that of the sphere, and both EOMs are then

coupled by a purely elastic Hertzian contact force

acting between sphere and plate. On the rebound,

separation occurs when the Hertzian force returns to

zero. That force is proportional to the relative coor-

dinate, s = z-U, i.e., between the sphere degree of

freedom, z, and the plate displacement of its surface at

the point of contactU(x = 0, y = 0, t). Thus, s signifies

the interference. Conveniently, Zener defines dimen-

sionless variables that allow the immediate interpre-

tation of the solution. These are:

s ¼ Tv0r ; t ¼ Ts ð9Þ

where T is a constant with the dimensions of time, and

v0 (using Zener’s notation) is the sphere impacting

velocity. He found that T ¼ ðm=kv1=2
0

Þ2=5, where m is

the sphere mass, and k is the proportionality coeffi-

cient between the force, F, and the interference, s, in a

Hertzian nonlinear relationship, F(s) = ks3/2, such that

k = (4/3)r1/2E’ (while, k is constant, it ought not be

regarded as a ‘‘linear spring stiffness’’—see the

Appendix for additional discussion). An ordinary

differential equation (ODE) is developed for the

nondimensional relative coordinate between sphere

and plate, r, where s is a nondimensional time [2]. The

nonlinear ODE is:

d2r
ds2

þ 1þ k
d

ds

� �
r

3
2 ¼ 0 ð10Þ

An expanded form of which is given in the

Appendix. The equation is subject to the initial

conditions:

r ¼ 0

dr
ds

¼ 1

9=
; at s ¼ 0 ð11Þ

The nondimensional parameter, k, in Eq. (10) is

identified by Zener as the ‘‘inelasticity parameter,’’

and it is given by:

k ¼ p
3
5ffiffiffi
3

p d=2

2h

� �2
v0
v0

� �1
5 qa

qb

� �3
5 E

0
a

E
0
a þ E

0
b

� �2
5

ð12Þ

The impacting sphere velocity, vo, is normalized by

the speed of sound in the solid plate:

v0 ¼

ffiffiffiffiffi
E

0
b

qb

s

Being a nonlinear equation, Zener integrated

Eq. (10) numerically with k as a parameter. Figure 1

shows the numerical solution for three values of the

parameter, k = {0, 0.75, 1.5}. It should be noted that

the ordinate in Fig. 1 is proportional to the contact

force because via Eq. (9), F(r) = k(Tv0)
3/2r3/2. Clearly

upon the rebound, when r = 0 also F(r) = 0, i.e.,
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contact is undone, signifying the onset of separation.

As indicated by Zener, the COR is the value of

r’ = dr/ds upon the return of r to zero. However,

since r is defined in the same direction of the sphere

initial velocity, vo, a correction is needed: the COR

must be the value of –r’ upon r returning to zero.

Unfortunately, solutions for Eq. (10) are given in

[2] for only four values of k. Hence, that equation is

integrated herein numerically for a very dense set of k
(of over 500 values), in the range 0� k� 1:5. At the

instant when r returns to zero, the value of -r’ is
recorded as the COR for that value of k. An

exponential fit is then applied to that numerical data,

giving,

eze ¼ expð�1:68374kÞ ð13Þ

The Appendix discusses Eq. (13) further and shows

plots of the fit along with the numerical data. The fit

mean error is a mere 0.5% with a standard deviation of

0.35%. Equation (13) is a robust analytical represen-

tation of Zener’s COR as a function of k.
To complement the analysis, also the total normal-

ized elapsed time, s0, is recorded during the process

above. So s0 represents the nondimensional time at the

instant when r returns to zero on the rebound, i.e., it is

the total nondimensional time that the sphere and plate

are in compressive contact. That time is also fit as a

function of k with similar accuracy as above, but it is

found to essentially increase exponentially with k3/2

according to:

s0 ¼ 3:215 expð0:318k3
2Þ ð13aÞ

Equation (13) and (13a) are both functions of the

parameter, k, the locus of which is also shown in

Fig. 1, effectively representing Zener’s COR as a

function of s0. The locus curve (i.e., the COR) can also
be obtained by eliminating k between the said

equations to yield:

eze ¼ exp �3:61402ðln s0 � 1:16783Þ
2
3

h i
@ s0 � 3:215

ð13bÞ

where according to Eq. 13a, for k = 0, the smallest

nondimensional contact time is s0 = 3.215. See the

additional discussion in the Appendix.

The analysis presented by Zener is not free of

assumptions. First, it is assumed that the plate is wide

enough so that reflected waves from the boundaries

would not affect the ejection of the sphere. Secondly, it

is important to note that the ‘‘inelasticity parameter,’’

k, as identified by Zener [2] (and so referenced

repeatedly by others) has nothing to do with inelas-

ticity. All of the variables in its definition (see

Eq. (12)) are unrelated to yielding, plasticity, or

permanent set. To the contrary, the parameter k
contains elasticity parameters. The consequence is

that upon impact completion, i.e., after the sphere is

ejected from the plate, their surfaces remain unblem-

ished (regardless of Zener’s COR value). Actually, the

COR predicted by this theory is the result caused by

the plate surface to elastically rebound, and after the

passage of a time delay, s0, eject the sphere at either

the same speed (if k = 0), or a reduced speed (if k[ 0)

compared to the initial condition (i.e., impacting

speed). This is similar to the action of a trampoline.

Further examination of the parameter k, as given by
Eq. (12), is when d/(2h) ? 0 (i.e., when the plate

thickness approaches a half-space), then k ? 0, and

Fig. 1 Numerical solutions

of Eq. (10) for three values

of k, and the solution of

linearized Eq. (14) for k = 0

(the solid lines are for the

normalized relative

coordinate, r(s); the dashed
lines are for the normalized

negative relative velocity,

-r’(s))
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the COR ? 1, indicating a perfectly ‘‘elastic’’ impact.

Observing in Fig. 1 the nonlinear solution for r when

k = 0, it seems that the plate surface and the sphere

undergo a motion that exhibits a nearly classical half

harmonic cycle. So, this condition is examined further.

Letting k = 0 in Eq. (10) removes one of the nonlin-

earities. Noting also in Fig. 1 that the nonlinear

solution for max(r) is about one unit, so linearizing

the power of (3/2) (originating with the Hertzian

model) would have a somewhat lessened effect.

Hence, for k = 0, and upon linearization of the power,

Eq. (10) simplifies to:

d2r
ds2

þ r ¼ 0 ð14Þ

having the same initial conditions as given by

Eq. (11). The numerical solution of Eq. (14) is also

shown in Fig. 1 (by the only lines spotted with the

dotted symbols); noting that indeed the linear and

nonlinear solutions for r are close, the velocities, r’,
seem even closer, andmost importantly, r’ = 1 in both

cases upon the return of r to r = 0. That is, both

Eqs. (10) and (14), nonlinear and linear, respectively,

result in the identical COR = 1. A mechanical equiv-

alent that is governed by Eq. (14) is easily envisioned,

and it is shown in Fig. 2, where mb represents an

equivalent plate inertia (the plate elasticity may be

conferred to a spring stiffness, if desired). The

Appendix offers additional useful discussions. That

mechanical equivalent is serving us next.

4 The fusion of JGM’s and Zener’s models

Consider the mechanical equivalent model in Fig. 2.

Suppose first that the only COR existing between

sphere, a, and plate, b, is the result of an elastoplastic

impact as obtained by JGM [9]. That COR is

designated by eep. Initially, before impact, ma has a

velocity va1, while mass mb is stationary, i.e., vb1 = 0.

Immediately following impact, massmb is disturbed to

gain a velocity vb2, while mass ma acquires a new

velocity va2. Velocities are defined positive in the

direction of va1. In the absence of any external forces,

linear momentum is conserved before and after

impact:

mava1 þ mbvb1 ¼ mava2 þ mbvb2 ð15Þ

The classical definition of the COR is:

eep ¼
vb2 � va2
va1 � vb1

ð16Þ

Solving these two equations simultaneously for the

unknown velocities after impact gives:

va2 ¼
ðma � eepmbÞva1

ma þ mb

vb2 ¼
ð1þ eepÞmava1

ma þ mb

ð17Þ

Suppose a diagnostics system (e.g., a high speed

camera such as in [10, 12]) is focused solely onma and

thus reporting measured data only on its two veloc-

ities, va1 and va2. Using va2 from Eq. (17), the apparent

COR resulting from the said measurements is (without

a subscript):

e ¼ � va2
va1

¼
eep � ma

mb

1þ ma

mb

ð18Þ

Equation (18) is consistent also with Zener’s COR

definition because it is similarly based on two

observations of the sphere’s velocities before and

after impact (see the discussions following Eq. (14) in

Ref. [2], and Eq. (12) herein). Zener’s analysis,

however, pertains to perfectly elastic conditions

between the sphere and the plate, i.e., eep = 1. While,

the mass of the sphere, ma, is obvious, the effective

plate mass, mb, is now determined by allowing e

mimic Zener’s COR, eze. Hence, solving Eq. (18)

under the conditions, eep ¼ 1; and e � eze, results in:

mb ¼
ð1þ ezeÞma

1� eze
ð19Þ

Substituting Eq. (19) back into Eq. (18) produces

the ultimate apparent COR,

e ¼ 1

2
eep þ eze þ eepeze � 1
� �

ð20Þ
Fig. 2 Actual and equivalent systems
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This equation encompasses two effects: the out-

come of the elastoplastic deformations and the elastic

waves. Equation (20) provides the apparent COR

based on only two observations, i.e., the two velocities

va1 and va2, which are reported by a diagnostics

system. This equation is entirely analytical and simple

to employ. Both CORs, eep, and, eze, are of equal

weight. It is easily verified that at the limiting case

when there is no elastoplastic damage, say, an impact

between two perfectly brittle materials, where eep = 1,

Eq. (20) results in e = eze, as expected. That result will

pan out later, and seen in Fig. 3d.

The other limiting case, is when the plate is a half-

space where according to Eqs. (12) and (13), respec-

tively, k ? 0, and, thus, eze ? 1, leading Eq. (20) to

approach e ? eep. To accentuate this point, when

eze ? 1, mb? 1 (see Eq. (19)), causing vb2? 0 see

Eq. (17)), i.e., mb that was stationary before impact,

remains so after impact, as expected from an ‘‘in-

finitely heavy’’ inertia of the half-space. Then, indeed,

all CORs in Eqs. (16), (18), and (20) converge to the

same, e � eep. That infers that the only effective COR,

is that caused by the elastoplastic deformation, which

is where this section IV starts. Practically, though, it

will be seen in the following from the experimental

and FEA results, as well as from Eq. (20), that

e approaches asymptotically eep even for plates of

finite thickness with ratios of thickness to sphere

diameter in the order one unit (i.e., such plates depart

Fig. 3 Comparison between experimentally obtained CORs in Ref. [10] and those calculated herein by Eq. (20). Case numbers (#) are

consistent with the list in Table 1. In subfigures (a)-(c) at least one of the materials is ductile. In subfigure (d) both materials are brittle
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considerably from the definition of a ‘‘half-space’’).

That will be seen later in Fig. 6.

It is also important to qualify the limits and

conditions under which Eq. (20) may render unusual

results. First, note that Zener’s range for k is {0, 1.5}.

The upper limit, k = 1.5, already renders a very low

COR, eze = 0.066, in a process that requires a longer

time to eject the sphere, s0 = 5.8 (the values are

obtained from the simulation data of Eq. (10) or

calculated by Eq. (13a), with results shown in Fig. 1).

For any k[ 1.5, eze swiftly approaches zero (see

Eq. (13)), while requiring even longer ejection times,

s0 (according to Eq. (13a)).When any one of the CORs,

eep or eze, approaches zero, Eq. (20) may well render

negative values for the apparent COR, e. The physical

meaning is that the sphere continues its motion after

impact in the same direction of its pre-impact

approaching velocity. Cases like that cannot be phys-

ically precluded, however, they are extreme and

extraneous to either model, JGM [9] or Zener [2].

Another aspect to consider is that Zener’s analysis is a

time-dependent process (via the time integration of

Eq. (10), with results shown in Fig. 1), while JGM’s

analysis is time-independent where the rebound veloc-

ity is determined from work-energy principles. It is,

therefore, important to recognize that for Eq. (20) to

hold, the underlying physical processes of both models

must occur concurrently. Said conditions or oddities

ought to be monitored and reconciled as necessary.

In the following sections the predictions of the

apparent CORs as calculated by Eq. (20) are compared

against CORs reduced from experiments [10, 12], and

those calculated by full featured FEA simulations [11].

These works by Higgs et al. are chosen because they

provide a meticulous description of the diagnostics

system (specifically, the high speed camera, as

discussed previously), along with all the necessary

data to execute Eq. (20) with ease.

Before going to the comparisons, it is important to

discuss a few findings by Higgs et al. First they

conclude that Zener’s CORs do not match the

experimental results at all (as their Fig. 6 in [11]

shows vast deviations). The same is reported in Ref.

[10] (see Fig. 5 there). Based on the discussion above,

without the accounting of elastoplastic deformation in

the impact, such deviations are not surprising. Also of

Table 1 Material properties for the spheres used in the experiments of [10] and target plates (see also Table 2)

No. Sphere material Yield strength Sy (Pa) Sphere diameter ds (m) Density q (kg/m3) Poisson’s

ratio m
Plate material

1 Aluminum, 110-H16a 1.03E ? 08 0.00635 2710 0.33 S7 Tool Steel

2 Borosilicate glassb 1.00E ? 12* 0.00476 2214 0.30 S7 Tool Steel

3$ Borosilicate glassb 1.00E ? 12* 0.00476 2214 0.30 Borosilicate glass

4 Borosilicate glassb 1.00E ? 12* 0.00635 2214 0.30 S7 Tool Steel

5$ Borosilicate glassb 1.00E ? 12* 0.00635 2214 0.30 Borosilicate glass

6 Brass, alloy 260b 3.93E ? 08 0.00476 8525 0.35 S7 Tool Steel

7 Brass, alloy 260b 3.93E ? 08 0.00635 8525 0.35 S7 Tool Steel

8 Chrome Steela 1.38E ? 09 0.00476 7700 0.30 S7 Tool Steel

9 Chrome Steela 1.38E ? 09 0.00476 7700 0.30 Stainless Steel

10 Low Carbon Steelb 3.03E ? 08 0.00476 7833 0.30 S7 Tool Steel

11 Low Carbon Steelb 3.03E ? 08 0.00635 7833 0.30 S7 Tool Steel

12 NiTiNOL 60c 1.00E ? 12* 0.00635 6700 0.34 S7 Tool Steel

13$ NiTiNOL 60c 1.00E ? 12* 0.00635 6700 0.34 NiTiNOL 60

14 S2 Tool Steelb 2.00E ? 09 0.00635 7861 0.30 NiTiNOL 60

15 S2 Tool Steelb 2.00E ? 09 0.00476 7861 0.30 S7 Tool Steel

16 Tungsten Carbidea 1.72E ? 09 0.00476 14,950 0.18 S7 Tool Steel

17 Tungsten Carbidea 1.72E ? 09 0.00476 14,950 0.18 Stainless Steel

aSmall Parts,Inc., bMcMaster-Carr, cNASA Glenn Research Center, dPrecision Associates, Inc., $Brittle materials for both sphere and

plate, *For all brittle materials, the ‘‘yield strengths’’ are pretended to have a very large value of 1012 Pa to ward off ‘‘yielding’’ in

calculations
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note, is that in Fig. 6 of Ref. [11], the couple of

experimentally obtained CORs agree rather well with

the predictions given by the JGMmodel [9], which are

recast herein by Eqs. (7) and (8) even though the plate

thickness-to-sphere diameter ratios (as seen in Ref.

[11]) are about 0.8, and 1.0, i.e., being far from a ratio

approaching infinity that represents a half-space. It

shall be seen in the coming sections that the fusion of

the two models by Zener [2] and by JGM [9] together

into a single expression, Eq. (20), shall provide a

remarkable agreement with the CORs given in the

three works by Higgs et al. [10–12].

5 Comparison with experimental results

The data for the spheres, plates, and impact velocities

are verbatim taken from the work by Marinack et al.

Table 2 Material properties for the target plates used in the experiment of [10]

Plate material Yield strength Sy (Pa) Density q (kg/m3) Poisson’s ratio m

Borosilicate glassb 1.00E ? 12* 2214 0.30

NiTiNOL 60c 1.00E ? 12* 6700 0.34

S7 Tool Steelb 5.52E ? 08 7760 0.30

Stainless Steel 440Cb 4.48E ? 08 7750 0.30

Same footnote as for Table 1

Fig. 4 The calculated

CORs using Eq. (20) herein

for four cases listed in

Table 3 given in Ref. [12].

Same symbol shapes

represent a given case in

Table 3; smaller symbols are

the outcome of

d = 4.76 mm; larger

symbols are the outcome of

d = 6.35 mm
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[10]. Tables 1 and 2 provide the material properties for

the spheres and plates along with the combinations

that have been used. Note that for case numbers 3, 5,

and 13 (designated by the added symbol, $) both the

spheres and the plates are brittle. For brittle materials

ostensibly (extremely) high values of ‘‘yield

strengths’’ are assigned to preclude yielding in the

calculations, effectively enforcing eep = 1. The results

for these cases will be shown separately from the other

cases comprising of at least one ductile material.

While all the information to execute Eq. (20) is

provided in [10], unfortunately the final values for the

CORs are not given. Hence, these values had to be

extracted by visual inspection from Figs. 3 and 4 in

Ref. [10]. Understandably, some inaccuracies might

have occurred in that process. The apparent CORs for

all cases in Table 1 are calculated by Eq. (20) using

eep = e45 (given by Eq. (8)), and the comparison is

shown in Fig. 3. The same shape markers and colors

belong to the same case, where the open markers are

connected by lines to indicate the calculated predicted

values by Eq. (20). In some cases, the agreements are

just excellent, where in other cases the absolute errors

range between 4.5–5.6% with a mean of 5.2%, and the

standard deviation ranges between 6.7–7.5% with a

mean of 7.2%. In Fig. 3(d) it is obvious that for purely

brittle impacts (i.e., purely elastic impacts) the CORs

are by and large close to unity, as expected. For such

impacts, eep = 1, and Zener’s COR predictions are

sufficiently accurate. In all cases the CORs decrease

with the impact velocities as is predicted by JGM [9],

in a tendency that is further explored herein in

Section 7. Using eep = e44 instead of e45 produces

smaller values for the CORs than e45, adding about

another 5% to the errors. For the rest of this work e45 is

used.

More experimental results are given by Patil and

Higgs in [12]. That work compares the experimental

results given in their Fig. 14, with FEA simulations of

[11] (which is discussed in detail in the next section).

Table 3 is taken verbatim from Ref. [12]. Experiments

were performed with two sizes of sphere diameters

d = {4.76, 6.35}mm. The plates are squared-shape

with sides of 152.4 mm, made of aluminum 6061, but

having varying thickness values, t = {1.6, 3.18, 4.76,

6.35, 9.53, 12.7}mm. The sphere impact velocity is

reported to be 2.3 m/s for all cases. For clarity, Patil

and Higgs [12] left out the results of the aluminum and

low carbon steel spheres; hence, these are not shown

here either. The results from using Eq. (20) are shown

in Fig. 4. A symbol of the same shape represents a

specific material case in Table 3, where the smaller

symbols belong to d = 4.76 mm, and the larger

symbols belong to d = 6.35 mm. Clearly the symbols

for the same material case (i.e., symbols of the same

shape) trend together as they represent a certain case in

Table 3, specifically at the said impact velocity.

Actually, these symbols trend continuously (i.e., on

lines) as functions of ratio of t/d, which can accom-

modate any combination of t and d. Impact velocities

higher, or lower than the said 2.3 m/s, would lower, or

elevate the lines in the plot, respectively. (This is

discussed in a subsequent Section 7.) The most

profound finding in Fig. 4 is that now the apparent

COR as predicted by Eq. (20) is varying with the ratio

of plate thickness to sphere diameter. Such a behavior

is lacking from the JGM model [9] (i.e., from either

Eqs. (7) and (8)), but now that behavior is inherited

from the Zener model [2] (via Eqs. (12) and (13)).

Again, the numerical values for the CORs are not

given in [12] but close inspection of Fig. 4 herein, and

Fig. 14 in [12], reveals not only the same trends, but

Table 3 Material properties from [12]

Material Geometry Elastic modulus (GPa) Poisson’s ratio Yield strength (GPa) Density (kg/mm3)

Brass alloy 260 Sphere 103 0.35 0.393a 8525

Aluminum 1100-H16 Sphere 70 0.33 0.103 2710

Tungsten carbide Sphere 621 0.18 1.720a 14,950

S2 tool steel Sphere 207 0.30 2.00a 7861

Low carbon steel Sphere 200 0.30 0.303a 7833

Borosilicate glass Sphere 63 0.20 N/A 2214

Aluminum 6061 Plate 69 0.33 0.290 2700

asignifies a hardened material
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more importantly shows that they are very close (if not

indistinguishable) in their numerical values. For

Borosilicate glass case in particular, but also for the

other cases, the results in Fig. 4 herein match better the

experimental results in [12] than their own simulation

results for t/d[ 1. Another important observation is

that the CORs approach asymptotic values as t/d

increases. That is because at large enough t/d values,

Zener’s CORs approach unity, and the apparent CORs

as seen from Eq. (20) asymptotically approach the

values predicted entirely by the JGM [9] model (that

corroborates the discussion following Eq. (20) above).

That asymptotic trend is visible at t/d ratios that are not

necessarily ‘‘infinitely’’ large, seemingly that happens

anywhere in the range between t/d = 1 to 3 depending

on the specific parameters of an impact case.

6 Comparison with FEA simulation results

The last comparison of the CORs predicted by Eq. (20)

is done against full-scale FEA simulations as detailed

in [11]. In that work a parametric FEA study is done on

nonreal materials to mimic very wide (and even

extreme) ranges of material properties as possible

pairs for the impacting sphere and the plate. The

material combinations are given in Table 4.

For all materials in Table 4 the Poisson ratio is

taken as 0.3, all are assumed ductile, and for all cases

the impacting velocity is 5 m/s. As detailed in the said

reference [11], it is noted that the sphere with highest

value of density and elastic modulus, and the plate

with the lowest value of density and elastic modulus,

represent one of the extreme cases for the sphere–plate

impact scenarios, which are cases A (i.e., cases A1-

A4). And vice versa is the other extreme in cases B

(i.e., cases B1-B4).

Physically, cases A represent the impact of the

heaviest and stiffest sphere on the lightest and most

deformable plates, whereas cases B represent the

impact of the lightest and most deformable sphere on

the heaviest and stiffest plates (see Table 4). For both

cases, the plate yield strength values vary from the

weakest or ‘‘softest’’ to the strongest or ‘‘hardest.’’ In

the said simulations [11], the sphere is assumed

elastic; herein, however, that assumption is not

necessary as all materials are considered to be ductile,

capable of yielding and transition to plasticity. That

Table 4 Material combinations for the FEA simulation cases in [11]

Case Sphere density q
(kg/m3)

Sphere elastic modulus, E

(Gpa)

Plate density q
(kg/m3)

Sphere elastic Modulus

(Gpa)

Plate yield strength, Sy
(Mpa)

A1 15,000 800 2000 10 10

A2 15,000 800 2000 10 100

A3 15,000 800 2000 10 1000

A4 15,000 800 2000 10 10,000

B1 2000 10 15,000 800 10

B2 2000 10 15,000 800 100

B3 2000 10 15,000 800 1000

B4 2000 10 15,000 800 10,000

Fig. 5 Calculation of the CORs using Eq. (20) herein for the

cases in Table 4 taken from Ref. [11]
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characteristic is straightforwardly accommodated by

Eqs. (2) and (3). The results stemming from Eq. (20)

are shown in Fig. 5.

Comparing Fig. 5 here with Fig. 7 in Ref. [11]

reveals a remarkable match for all cases but case A1.

Case A1 is an outlier among all cases in Table 4 by

having a very ‘‘weak’’ or ‘‘soft’’ plate as it is being

impacted by the mostly dense (i.e., ‘‘heavy’’) and

‘‘hard’’ sphere. For all cases A, some k values equal

1.67 increasing up to 6.68 especially for thin plates (t/

d\ 0.5). These values are outside, and quite far, from

Zener’s range, k = {0, 1.5}. Such higher values of k
require much longer contact times s0 (see Eq. 13a)

while the elastoplastic restitution process might have

already completed, ejecting the sphere quite sooner

than s0. Regardless, all cases asymptotically approach

the JGM model [9] as the ratio t/d increases (and that

behavior has already been discussed above). Because

cases A represent impacts of the heaviest and stiffest

sphere on the lightest and most deformable plates, the

transition with t/d is more gradual then cases B, which

represent impacts of the lightest and most deformable

sphere on the heaviest and stiffest plates. Hence, for

cases B the asymptotic values are reached at much

smaller values of t/d.

7 The interplay of parameters

Now that Eq. (20) has extensively been verified

against experimental and simulation results, it is

possible to change parameters to gauge their relative

effects upon the COR. For that purpose, the cases in

Table 3 are chosen, under the same conditions that

produced the results in Fig. 4, only that now Brass

alloy 260 is removed for clarity. The first change is

that of the impact velocity that is increased threefold.

The results are shown in Fig. 6, and as previously, all

COR values vary nonlinearly with the ratio, t/d.

Serving as references for comparison, the solid lines

Fig. 6 The apparent CORs
using Eq. (20) for three

cases listed in Table 3. Same

symbol shapes represent a

given case in Table 3.

Smaller and larger symbols

belong to d = 4.76 mm, and

d = 6.35 mm, respectively.

Solid lines belong to

vo = 2.3 m/s, where dashed

line belong to vo = 6.9 m/s.

Zener’s COR values, eze,
using Eq. (13) are shown by

the dotted lines for

vo = 2.3 m/s
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belong to the previous impact velocity of 2.3 m/s, and

of course they are identical to those in Fig. 4. The

dashed lines correspond to the increased impact speed

of 6.9 m/s. It is immediately noticeable that the latter

COR values are significantly smaller than the refer-

ence benchmarks. The reason is that the added kinetic

energy of the sphere, induces additional plastic

deformation and damage, causing eep to decrease

(seen by the asymptotic values in Fig. 6). Also, in the

Zener model, higher impact velocities, vo, cause

increases in the k values (see Eq. (12)), resulting in

lower values of eze (see Eq. (13)). Physically, as the

deformations of the plate and/or the sphere increase

with higher impact velocities, vo, the elapsed times for

the surfaces to recover and rebound are longer, thus

causing lower eze values. The combined drops in both,

eep and eze, lead yet to smaller values of the overall

apparent CORs, e, as calculated by Eq. (20).

The second comparison revealed in Fig. 6 is for the

pure Zener model of Eq. (13), eze, at the impact

velocity of 2.3 m/s, without any consideration given to

elastoplastic deformation or permanent set. The results

are depicted by the dotted lines in Fig. 6. Clearly,

Zener’s model cannot solely represent the apparent

COR values in collisions of ductile materials. Note

also that at the ratio of about t/d = 1, Zener’s COR

values, eze, are about 0.8 or above, and the apparent

COR values, as calculated by Eq. (20), continue the

increase with t/d but more gradually. At about t/d = 2,

eze ! 1, and the apparent CORs have nearly com-

pleted the asymptotic approach to the values predicted

by JGM [9] (as discussed previously). Definitely, the

ratio of t/d = 2 is far from representing a half-space.

Yet, the COR values predicted by JGM [9], which are

based upon a half-space model, are nevertheless borne

out. That is not surprising as an impact between a

sphere and a plate is a highly localized contact

phenomenon. Evidence of such localization can also

be found elsewhere, e.g., [18] and [19]. In conclusion,

Zener’s model comes into play at t/d\ 2, instigating

more profound effects as t/d decreases. For the cases

studied, the COR values predicted by JGM [9] are

sufficiently accurate for t/d[ 2.

To gauge the effects of impact velocities while

holding all of the other parameters constant, the case

of S2 tool steel (being at an intermediate range of COR

values in Fig. 4) is selected for further investigation

while purposely holding t/d = 1. The impact velocity

is now varied from 0.1 to 10 times the velocity of

2.3 m/s (the one used previously for the analysis of

Fig. 4). The critical velocity calculated by Eq. (5) is

Vc = 0.0265 m/s. Figure 7 shows the three COR

models, as functions of the normalized impact veloc-

ity, V�
1 ¼ vo=Vc. The effects of Zener’s Eq. (13), and

JGM’s Eq. (8) are shown separately from each other

by the dotted and dashed lines, respectively. Then they

are combined together into the current new model

given by Eq. (20), and shown in Fig. 7 as well by the

Fig. 7 The various COR

models as functions of the

nondimensional impact

velocity, V1
*, for S2 tool

steel, and a plate thickness-

to-sphere diameter ratio, t/
d = 1
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solid line. The nondimensional impact velocity case

that is specifically relevant to Figs. 4 and 7 is

V�
1 ¼ 2:3=Vc ¼ 86:9, which is identified by the verti-

cal dashed line at that specific nondimensional veloc-

ity value. The nonlinear decreases in eze, and e45 with

the increase of the impact velocity is moderate

according to Eq. (13), but steeper according to

Eq. (8), respectively, which is expected for ductile

materials. Indeed, the previous discussion on the

changes in the kinetic energy (portions of which are

absorbed in the collision) is reinforced by the trends

shown in Fig. 7. Specifically, at V1
*\ 86.9 the CORs

are larger than the reference case in Fig. 4, and at

V1
*[ 86.9 the CORs are smaller. Note that the COR

values in Fig. 3 also decrease with the impact velocity,

albeit the velocity range there is quite small.

8 Conclusions

In this work an analytical expression to determine the

apparent COR is sought to fuse two existing models

where each separately accounts for different effects.

The earliest of the two models is that by Zener who

presented a theory of a sphere pinging a thin plate in a

purely elastic contact using the classical Hertz solu-

tion. An empirical, yet an accurate fit is provided

herein for Zener’s COR values. These stem from the

numerical integration results of Zener’s nonlinear

ODE. A mechanical equivalent is envisioned to mimic

the impact problem between a sphere and a plate. That

mechanical equivalent is fused with an available

model by JGM, which accounts for elastoplastic

deformation that is expected to occur in ductile

materials. The fused model is extensively verified

against data stemming from laboriously obtained

experimental results and FEA simulations. Overall,

the agreement for all cases is very good to spot-on,

with perhaps the exception of a couple of extreme

cases that show some discrepancies (as monitored and

analyzed herein). Those cases are most likely to

disobey certain assumptions of either or both of the

two models that comprise the analytical expression for

the apparent COR. Besides knowing the material

properties and geometries of the impacting bodies, all

that is needed is the sphere impacting velocity, and the

apparent COR is readily calculated by Eq. (20).
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Appendix

The Expanded Form of Eq. (10), its Linearization

and Limits

The expanded form of Eq. (10) is simply:

d2r
ds2

þ 3

2
k

ffiffiffi
r

p dr
ds

þ r
3
2 ¼ 0 ð21Þ

This equation is nonlinear because of Zener’s

selection of the Hertzian contact model. Indeed, that

model is suitable for the contact between a solid sphere

and a half-space, featuring a nonlinear force–displace-

ment relationship, F(s) = ks3/2. That produces nonlin-

ear exponents for r in Eq. (21). It is immediately

apparent that Eq. (21) would render a complex

solution if r is allowed to become negative. A

complex solution, however, is not physical for the

real problem at hand. Further discussion is offered

below.

Suppose that a linear force–displacement relation-

ship existed instead, where F(s) = ks. Applications

having such a relationship are: (i) impact (i.e., contact)

between a cylinder on its flat end, and an elastic half-

space, for which k = 2RE’, and (ii) impact between a

cylinder along its length, L, with an elastic half-space

that has k = pLE’/4. The parameter k may also differ

from Zener’s definitions, but regardless of the appli-

cation, r would still be raised to the first power, and

Eq. (10) would become:

d2r
ds2

þ k
dr
ds

þ r ¼ 0 ð22Þ
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This linear equation is fundamental in vibrations

theory, representing a homogeneous equation of

motion for a single degree of freedom system

consisting of a mass, a spring, and a damper (as seen

in Fig. 2(b)-the damper, though, is not shown).

Seemingly, k takes on the role of the damping

coefficient. Hence, Eq. (22) signifies a linearized

version of Eqs. (10), or (21). While Eq. (22) does

render real solutions even for r\ 0, those are

meaningless as they are still not physical (discussed

further below).

The analytical solution to Eq. (22) is well known,

and the extraction of the COR from that solution could

be obtained analytically. Alternatively, there is an

effortless way to achieve that. The same procedure

(i.e., computer code) that resulted in Eq. (13) is now

tasked with Eq. (22) as the objective (instead of the

previously used Eqs. (10), or (21)). The results are

shown in Fig. 8. The CORs as functions of k are shown
for two cases: (i) from the solution of the original

nonlinear Eq. (10), and (ii) from the solution of the

linearized Eq. (22). The CORs resulting from the two

solutions are nearly inseparable up to about k = 1. A

similar curve-fit procedure is performed here for the

latter case as well, resulting in:

ezeð Þlinear¼ expð�1:72847kÞ ð23Þ

Both Eqs. (13) and (23) are also shown by dashed

lines in Fig. 8, and by observation they can barely be

distinguished from each other, and from the data up to

about k = 1. The immediate conclusion is that Zener’s

predicted CORs are quite insensitive to the selection of

the contact model. It is also clear now that Eq. (14) is

only a special case of Eq. (22), and that in fact the latter

can replace the former for other values of k. This
further supports the use of the mechanical equivalent

of Fig. 2(b) for a range of k, certainly up to k = 1. A

universal expression of eze ¼ expð�1:7kÞ may collec-

tively be used with sufficient accuracy to represent

Zener’s CORs, regardless of the contact model

employed.

An important qualification (restriction) must be

recognized in regards to the force–displacement

relationship, whether it is nonlinear, F(s) = ks3/2, or

linear, F(s) = ks. Zener’s model of Eqs. (10), or (21),

and the linearized version of Eq. (22), are valid if and

only if the interference, s, is nonnegative so that F(s) is

a compressive contact force. Once s = 0 (or r = 0)

emerges on the rebound signifying ejection onset,

contact is lost, F(s) = 0, and that occurs at the

nondimensional instant of s � s0(see Eqs. (13), and

the pertinent discussion there). Equations (10), (21),

and (22), are irrelevant past any s[ s0; as the

impacting body (e.g., a sphere) is no longer in contact

with the plate, and it would be governed by different

kinetics after the rebound. Problems of reoccurring

impact, intermittent contact, and rubbing dynamics are

commonly handled by a Heaviside function or other

contact models as applied in [20–24]. In the

Fig. 8 Zener’s COR results

as functions of the parameter

k, for the nonlinear Eq. (10),
shown in solid blue, and the

linearized Eq. (22), shown in

solid red. Curve fits for both

Eqs. (13) and (23) are,

respectively, shown by the

dashed lines. The inset
shows the same in semi-log

scale
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framework of a single impact, undergoing only

compressive phases of deformation and restitution,

FðsÞ� 0; and s� so: These set validity limits on

Eqs. (10), (21), and (22), which ought to be

recognized.
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