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A Finite Element Study of the
Residual Stress and Deformation
in Hemispherical Contacts
This work presents a finite element model (FEM) of the residual stresses and strains that
are formed after an elastoplastic hemispherical contact is unloaded. The material is
modeled as elastic perfectly plastic and follows the von Mises yield criterion. The FEM
produces contours for the normalized axial and radial displacements as functions of the
removed interference depth and location on the surface of the hemisphere. Contour plots
of the von Mises stress and other stress components are also presented to show the
formation of the residual stress distribution with increasing plastic deformation. This
work shows that high residual von Mises stresses appear in the material pileup near the
edge of the contact area after complete unloading. Values are defined for the minimum
normalized interference, that when removed, results in plastic residual stresses. This work
also defines an interference at which the maximum residual stress transitions from a
location below the contact region and along the axis of symmetry to one near to the
surface at the edge of the contact radius (within the pileup).@DOI: 10.1115/1.1843166#
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Introduction
The case of an elastoplastic hemispherical contact with a r

plane has important engineering applications in both the ma
and microscale. The current model is normalized to be valid
both scales~i.e., the hemispherical radius,R, can assume any
value, and as long as the material can still be modeled as a
tinuum!. It has been well established that asperities will defo
plastically during the contact of rough surfaces. It is also clear t
in many applications the load will periodically be removed
cycled. This action makes it desirable to know the effect the c
tact has had on the surface material and the geometry thro
plastic deformations and residual stresses. Such information
be useful in analyzing the friction, wear and deformation of co
tacts, as for example, in microswitches, boundary lubrication, r
ing element bearings, metal forming, fretting, and shot peenin

Jackson and Green@1#, Kogut and Etsion@2#, and Mesarovic
and Fleck@3# provide results for the loaded condition case. As
continuation of these previous results, the current work is focu
on the residual stress and deformation, which remain after
interference has been removed~see Fig. 1!. The model by Jackson
and Green@1# is regenerated to simulate the loaded condition a
the unloaded condition. The von Mises yield criteria is used
indicate whether the hemisphere material is deformed elastic
or plastically. The material is assumed to act elastic perfectly p
tic, so that there is no strain hardening effect.

Experimentally, Johnson@4# observed the contact of bronze an
steel spheres pressed against a steel flat. In order to make
surements of the deformation, he also unloaded the spheres.
unloaded, he observed permanent indentation of both the sp
and the flat surface, along with a pileup or crown of raised ma
rial around the contact area. These findings match those fo
through finite element model~FEM! simulation in this work. Ta-
bor @5# also recognizes the need to consider these effects w
measuring the hardness of a surface using an indentation tes

Kral et al. @6–8# modeled the inverse case of a repeated el
toplastic contact of a rigid sphere against a nonlayered and lay
half-space using FEM. Although based on a different ca
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their model produces qualitatively similar results to the one pre-
sented here. While Kral et al. apply a load up to 300 times the
initial load to cause yielding~critical load!, the current work more
than doubles this value by modeling a load of 750 times the criti-
cal load. Practical experience indicates that in applications such a
shot peening, EHD, and other forms of contact, large amounts o
deformation can occur far into the elastoplastic regime. In the
asperity contact between rough surfaces, some very high asper
ties or peaks are likely to be heavily loaded.

Ye and Komvopoulos@9# also simulate the contact in a layered
deforming half space and a rigid sphere, although they manually
apply a hydrostatic residual stress prior to contact. These applie
residual stresses model surface treatments such as shot peeni
They then attempt to quantify the effect of the applied residual
stresses on the contact deformation and stresses. In addition, th
also investigate the effect of sliding on the resulting stresses. De
spite these works and other previous works, there is currently no
in depth analysis of the residual stresses and deformations of a
unloaded elastoplastic spherical contact against a rigid flat.

In the previous model by Jackson and Green@1#, the model was
simulated under the loaded conditions for many interferences an
five steel materials, during which the hemisphere deforms in the
elastic, elastoplastic, and fully plastic regimes. The following defi-
nitions are given for the regimes:~1! the elastic regime considers
deformation absent of plasticity,~2! the elastoplastic regime con-
tains plastically deformed material but the contact area still con-
tains an elastic region, and~3! the fully plastic regime defines the
case of a contact whose area of normal pressure yields entirel
The measurement of hardness requires that the contact reaches
fully plastic regime, where the average contact pressure has trad
tionally been regarded as the hardness. However, the hardne
should not be implemented as a material property, as it also varie
with deformation, geometry, and material properties such as yield
strength, Poisson’s ratio and the elastic modulus~see Ref.@1#!.
The nomenclature here conforms with the said work.

This work defines the interference depth,v, as the distance the
original hemisphere shape is pressed into the rigid flat~see Fig. 1!.
The normalized interference depth,v* , is defined as

v* 5
v

vc
(1)

wherevc is the critical interference and is given by Jackson and
Green@1# as

Au-

4;
idle.
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Fig. 1 Diagram of loaded „b… and unloaded „c… contact of deforming elastoplastic hemispheres
and a rigid flat
di-
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2E8 D 2

R (2)

The corresponding critical contact radius is

ac5AvcR (3)

where C51.295exp(0.736n), Sy is the yield stress,E8 is the
equivalent elastic modulus, andR is the equivalent radius. When
v*,1 then the hemisphere deforms in elastic regime. Wh
v*.1 the deformation is in elastoplastic regime. At approx
mately 70<v*<110, the deformation reaches the fully plastic r
gime @1,2#. For residual stresses and strains to remain once
hemisphere is unloaded, av* greater than one must be applie
~see diagram in Fig. 1!. The critical contact radius,ac , defines the
radius of the area of contact at an interference depth ofvc . From
this point forward residual stress and residual displacement
refer to stress and displacement that remain in the elastopla
hemisphere after the load is completely removed.

Finite Element Model
There are two ways to simulate this contact model. In the fi

approach, the force is applied to the hemisphere and then
displacement is computed. In the second approach an interfere
v, is applied and the contact force is calculated. In this work, t
second approach is used because the solution converges more
idly than the first one. The contact forces are determined by su
ming the reaction forces on the base nodes of the hemisphere

The finite element solution is generated by the Ansys™ so
ware packages. To increase the efficiency, a two-dimensional~2D!
axisymmetric model is used. Several mesh refinements have b
performed to reduce the errors in the residual stresses~see Fig. 2
for example mesh!. For this investigation ANSYS element type
plane 82, contact 169, and contact 172 are used. The fine are
the mesh near the tip of the hemisphere is varied in order
encompass the region of high stress near the contact. The me
constructed using eight node solid elements and 100 contact
ments at the area of contact. The meshed contact area is
varied to ensure that at least 30 contact elements are in contac
each applied interference~maximum contact radius error of
3.3%!. The resulting mesh consists of over 11,101 elements. T
mesh has extensively been verified for model convergence
Jackson and Green@1# and Quicksall et al.@10#.

As shown in Fig. 3, constraints in thex andy directions were
applied to the nodes on the base, while a radial constraint is
plied to the symmetric axis. This boundary condition may be va
for the modeling of asperity contacts for two reasons:~1! The
asperities are actually connected to a much larger bulk materia
the base and will be significantly restrained there, and~2! since
the high stress region occurs near the contact, the boundary
dition at the base of the hemisphere will not greatly effect t
solution because of Saint Venant’s Principle. On sample proble
given in Ref.@1#, the change in results between the said bound
Journal of Tribology
en
i-

e-
the
d

will
stic

rst
the
nce,
he
rap-
m-
.
ft-

een

s
a of
to

sh is
ele-
also
t for

he
by

ap-
lid

l at

con-
he
ms

ary

conditions and one in which the nodes along axisx are allowed to
translate radially, have shown only marginal difference~less than
3% difference in area, and less than 1% in load!. In principal,
however, when large deformations are imposed, boundary con
tions may significantly influence the results. Also in this case, th
rigid contact line is constrained in thex ~radial! direction, while
the interference,v, is applied as a displacement in they ~axial!
direction.

A large range of interferences are applied to the FEM mod
and then the contact force, stress tensor, von Mises stresses,
the displacement in both the radial and axial directions are r
corded. After the loaded condition has been simulated~giving the
same results as in Ref.@1#! the solution is then restarted and

Fig. 2 Example of used FEM mesh

Fig. 3 Schematic of the coordinate system and boundary con-
ditions used in the FEM
JULY 2005, Vol. 127 Õ 485
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Table 1 The material properties and critical interferences for aluminum and steel

Material

Young’s
modulus (E)

GPa
Poisson ratio

~n!

Yield
strength (Sy)

~GPa!

Critical
interference

(vc /R) gc /vc(R51)

Aluminum 70 0.33 0.310 1.033 1024 1.693 1023

Steel 200 0.32 1.619 3.503 1024 3.123 1023
unloaded completely to simulate the residual stresses and the
placements. Since the problem is nonlinear, small load steps
used to increment toward a solution in both loading and unloa
ing.

Results and Discussion
The results are presented for a range of normalized interf

ences,v* , from 0.571 to 171. The material properties used are f
a steel material~extracted from Ref.@11#! and presented in Table
1. These material properties allow for effective modeling of all th
elastoplastic contact regimes. The computation time is about
hour for small interferences and 2–3 h for large interferences on
3.2 GHz PC.

As an additional check of the model’s validity, the contac
forces during the unloaded conditions are calculated. Based on
force balance solution, once the contact is completely unload
the reaction force should be identically zero. This trivial conditio
is consistently satisfied with an eight-node FEM model whic
computes the reaction force to be about ten orders of magnitu
smaller than the load originally applied to the hemisphere.

Displacement. The axial and radial surface displacements o
the nodes on the hemisphere surface are monitored in order
investigate the deformation of the hemisphere. As shown in Fig
the axial and radial directions correspond to they- and x-axis,
respectively. Whilevc effectively normalized the axial displace-
ment,Uy , it is ineffective in normalizing the radial displacement
Ux . It is found ~see the Appendix! that to some degreeUx is
effectively normalized bygc5(1/6)@(vc)

3/2/AR# which is the
relative radial displacement of the critical contact radius befo
and after loading. In this section plots of the normalized axial an
radial displacements,Ux /gc andUy /vc , with respect to the nor-
malized radial distance,r /ac , are presented for both the loaded
and unloaded conditions~see Figs. 4–7!. Note thatr is the radial
distance from the axis of symmetry~y axis! to a point on the
surface. Thus,r is analogous to thex coordinate of a location on
the hemisphere surface. The displacements are presented rela
to the hemisphere surface, such that curvature is mitigated.
though the main focus of this work is the unloaded case, t
surface displacements for the loaded case are also presented
though, Fischer-Cripps@12# has provided results for the purely
elastic case of Hertz contact.

The current results have also been compared to the analyt
predictions of Kogut and Etsion’s@13# given for the separation
between the deformed sphere and the rigid flat. The results
compared at benchmark values ofv*54.29 andv*5100 ~near
the benchmark values ofv*54 andv*5110 used in their work!.
When the deformation is nearly elastic atv*54.29, the results are
almost exactly equivalent until approximatelyr /ac55. Past this
value the results differ significantly. For the elastoplastic deform
tion atv*5100, the results differ significantly afterr /ac increases
past a value of approximately 14. The reason for these differen
is likely because Kogut and Etsion’s equations are based on
perfectly elastic contact solution given in Muller et al.@14#.

Loaded Displacement. Figures 4 and 5 show the surface dis
placement in both the axial (Uy /vc) and radial (Ux /gc) direction
for the loaded hemisphere. These plots show the evolution
hemisphere surface deformation with increasing interferences.
expected, the displacements increase with the normalized inter
Õ Vol. 127, JULY 2005
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ence depth. The boundary between the contact region and the free
boundary of the hemisphere can be clearly seen through the sharp
changes of the slope in the radial displacement plot~see Fig. 4!. In
the low interferences, the surface displaces radially in mostly the
negative direction. This is because at the small normalized inter-
ferences most of the material in the hemisphere is deforming elas-
tically and allowed to compress. As the interference significantly
increases past the critical interference, the hemisphere increas-
ingly deforms plastically and the material in the contact region
increasingly displaces outward into the positivex direction. This
bulging occurs because as the deformation increases, yielded ma-
terial flows plastically, and is assumed incompressible abiding by
a Poisson’s ratio effectively equal to 0.5@15#.

Unloaded Displacement. In this section the unloaded or re-
sidual displacement along both the radial and axial direction
(Ux /gc andUy /vc) of the hemisphere are monitored with respect
to the normalized radial distance,r /ac ~see Figs. 6 and 7!. The
residual displacement is defined here as the displacement on the
surface which remains after the hemisphere is completely un-
loaded from a normalized penetration depth,v* . The residual
displacements occur when the hemisphere has plastically de-
formed and does not fully recover to its original shape~see sche-

Fig. 4 The normalized radial surface displacement vs the nor-
malized radial distance in the loaded condition for „a… small and
„b… large normalized interference depths
Transactions of the ASME



matic in Fig. 1!. The displacements are also labeled for each n
malized penetration depth,v* , from which the hemisphere is
unloaded.

As seen from the normalized residual displacement plots~Figs.
6 and 7!, once the hemisphere is loaded tov*.1 ~which marks
the transition from the elastic to elastoplastic regime! and then
unloaded, the residual displacements tend to increase with
magnitude of the removed load~see Fig. 6!. Comparing Figs. 4~a!
and 6~a!, at small normalized interferences the trends between
loaded and unloaded cases are very different. After a small
malized interference is removed, the hemisphere is still mo
elastic, with only a small region of plastic deformation. Most
the hemisphere material then tries to restore its original sha
while only a small portion resists. In the radial and axial directi
this results in regions of negative and positive deformation wh
the hemisphere is unloaded. The negative deformation oc
above the plastic core, while the positive deformation occ
mostly outside of this region. This phenomenon is known a
residual pileup, which is further enhanced for larger deformatio
The curvature of the hemisphere has the effect of negating
material pileup so that the unloaded hemisphere is essentially
tened, resulting in ‘‘out-of-roundness’’ for the hemisphere.
dimple or indentation will form on a surface with little curvatur

After large interferences are removed, the plastic regions do
nate, and the material remains more in the plastically deform
geometry@see Figs. 6~b! and 7~b!#. In contrast to smaller residua
deformations@Figs. 6~a! and 7~a!#, the residual surface displace
ments after large loads mimic the deformations of the load

Fig. 5 The normalized axial displacement vs the normalized
radial distance in the loaded condition for „a… small and „b…
large normalized interference depths
Journal of Tribology
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hemisphere@see Figs. 4~b! and 5~b!#. However, there are some
regions which still remain elastic and tend to return to their unde-
formed shape when unloaded. Therefore, the overall magnitudes
of the residual displacements are less than that of the loaded con-
ditions. Also, the residual displacements in the axial direction tend
to change direction when unloaded and cause a crown of material
to rise around the unloaded contact region~see Fig. 7!. This oc-
curs near the edge of the contact area and is referred to as the
previously mentioned residual pileup. The peaks of deformation in
both thex andy direction are located at the samer /ac and corre-
spond to the residual pileup. As the load that the hemisphere is
unloaded from increases, the pileup acquires a sharper edge.

The residual pileup marks the sharp transition from the contact
region to the free boundary and it also increases in magnitude
with the normalized interferences from which the hemisphere is
unloaded. Kral et al.@6–8# and Ye and Komvopoulos@9# also
confirm the occurrence of pileup during the FEM analysis of the
repeated indentation of a half-space by a rigid sphere. Johnson@4#
also experimentally confirms the existence of a residual pileup.
Residual pileup readily occurs during indentation type hardness
tests after unloading, and must be accounted for when making
hardness measurements@5#.

These deformations change the surface profile of the hemi-
sphere. Also, the contact of the asperities on rough surfaces is
commonly modeled by hemispherical contact. This indicates that
the surface topographies of heavily loaded rough surfaces will
also change after the load is removed. The current analysis sug-
gests that after a rough surface is unloaded from plastic deforma-
tion, the surface asperities will be flattened and have a pileup

Fig. 6 The normalized radial residual displacement vs the nor-
malized radial distance of the hemisphere unloaded from „a…
small and „b… large normalized interference depths
JULY 2005, Vol. 127 Õ 487
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region around each contact. If the asperity has a large radiu
curvature in relation to the contact radius, the pileup may a
cause an indentation in the surface. These changes in topog
are important in such cases as boundary lubrication and sli
friction. The changes in the surface profile will also affect heav
loaded ball bearings. For ball bearings to operate properly,
balls must be as close as possible to spherical in shape. This
shows that after unloading from heavy loads, the balls may
their original spherical shape and have the potential to cause
ing failure.

Stress Formation. Since the stresses of loaded spherical c
tacts deforming elastically and plastically are well documen
they will not be presented in detail here. Extensive analyses o
stress evolution in loaded hemispheres are given in Refs.@16#, @1#,
@2#. However, in order to understand the residual stress evolu
it is important to understand how the stresses originally develo
during the loading of the hemisphere. For this reason a brief s
mary of the stress evolution during loading is given next.

At low interferences a high stress region starts to form be
the contact interface. Eventually the material yields in this h
stress region and a plastic core forms. The plastic core is
rounded by elastic material, which diminishes as the hemisp
is subjected to larger interferences. At higher interferences
plastic core expands in a three-dimensional~3D! fashion to the
surface, and also inward toward the center of the hemisphere
reason the plastic region expands is because the material i
hemisphere that is flowing plastically can no longer resist ad
tional load. Therefore, any additional load is carried by the s
rounding elastic regions. At aboutv*58 the plastic core reache

Fig. 7 The normalized axial displacement vs the normalized
radial distance of the hemisphere unloaded from „a… small and
„b… large normalized interference depths
488 Õ Vol. 127, JULY 2005
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the surface near the edge of contact~see Ref.@1#!. Then there is an
elastic core below the contact area that is surrounded by plas
cally deforming material. At a much higher load, anywhere within
70<v*<110 ~depending on the material properties!, the plastic
region covers the entire contact area and occupies a large porti
of the space in the hemisphere. This is known as the fully plasti
regime. As mentioned earlier, the average contact pressure in t
fully plastic regime is traditionally defined as the hardness. Th
hardness, however, is not a material property and varies with th
undeformed and deformed geometry as predicted by Tabor@5# and
numerically verified by Jackson and Green@1#.

Residual Stress Formation. The value of the von Mises
stress is used in this analysis to predict yielding of the hemisphe
material. However, by calculating the von Mises stress some in
formation about the material stress tensor is lost. The von Mise
stress shows how ‘‘intense’’ the stress state is relative to the yiel
strength. However, as a positive quantity it does not reveal if th
material is in tension, compression, undershear, etc. In the stud
of crack initiation and propagation it is important to know the
orientation of stress in relation to a crack and if stress is tensile o
compressive@17#. Thus, it is important to first understand the
distribution of the complete stress tensor throughout the hem
sphere.

When the plastically deformed hemisphere is unloaded, th
elastic material attempts to restore its original shape. However, th
plastically deformed regions inhibit this since the material
‘‘memory’’ or ‘‘state’’ has changed. This results in regions of ten-
sion and compression, even though the overall force applied to th
system sums to zero. The plots of the 3D stress tenso
(sx ,sy ,sz ,txy) for a hemisphere unloaded fromv*53.92 show
clearly these regions of tension and compression~see Fig. 8!.
Since the problem is axisymmetric the shear stressestxz andtyz
are identically zero. These results are also given for a hemisphe
unloaded fromv*535 in Fig. 9.

The distribution ofsx shows compressive and tensile radial
stress regions. Figure 8~b! shows the interesting distribution of
stresses in they direction. Near the plastic coresy is tensile and
sx is compressive. Forsy there is a band of compressive stresses
below the edge of contact and also along the axis of symmetry b
closer to the center of the hemisphere. The differing stress distr
butions ofsx andsy will contribute to larger von Mises stresses
in certain regions. For instance, a region will have higher von
Mises stresses and be closer to yielding if orthogonal norma
stresses differ in sign or magnitude.

Figure 8~c! depicts stress contours for the residual hoop stres
sz . If the stress values are followed along the axis of symmetry
it is apparent that it switches between tension and compressio
several times. As mentioned, this results in complex formation o
the von Mises stress.

The contour plot of the residual shear stress (txy) in Fig. 8~d!,
for a hemisphere unloaded fromv*53.92, shows an interesting
distribution. Near the edge of unloaded contact, there is a regio
of positive shear stress close to the axis of symmetry that lies ne
to a region of negative shear stress. The shear stress seems to p
at points away from the axis of symmetry, thus forming hoops o
high shear stress around the circumference of the hemisphe
This shear stress amplifies the von Mises stresses within the hem
sphere.

The various stress contours which map the complete stress te
sor throughout the unloaded hemisphere are also presented fo
hemisphere unloaded from a larger interference depth ofv*535.0
in Fig. 9. In comparison to Fig. 8, these contour plots show how
the residual stresses evolve and spread through the hemisph
with increasing plastic deformation. Clearly, the stress distribu
tions can change significantly as load and plastic deformation a
increased. Although the residual stresses still exhibit similar re
gions of tension and compression as shown forv*53.92 in Fig. 8.

Interestingly, in Figs. 9~a! and 9~c! there are regions of high
tensile stresses in thex and z direction at a point near to the
Transactions of the ASME
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Fig. 8 Contour plots of the complete stress tensor for a hemispherical
contact unloaded from v*Ä3.92: „a… radial stress, sx ÕSy , „b… axial stress,
sy ÕSy , „c… hoop stress, sz ÕSy , and „d… shear stress, txy ÕSy
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unloaded edge of contact. These stresses correspond to the
tion of the residual pileup identified earlier. It seems that when
hemisphere is unloaded, the yielded material, in conjunction
the elastic restoring effect, push the pileup area upward in ty
direction. This action causes tensile stresses in thex andz direc-
tions.
f Tribology
loca-
the
ith
e

Contour plots of the residual von Mises stress~Figs. 10–11! are
also generated in order to monitor the intensity of the residua
stress formation in the hemisphere. Figure 10 shows purely elast
residual von Mises stress distributions while Fig. 11 shows the
onset and formation of plastic regions. The plots display the re
sults for a hemisphere unloaded from a range of 2.14<v*<100.0.
Fig. 9 Contour plots of the complete stress tensor for a hemispherical
contact unloaded from v*Ä35.0: „a… radial stress, sx ÕSy , „b… axial stress,
sy ÕSy , „c… hoop stress, sz ÕSy , and „d… shear stress, txy ÕSy
JULY 2005, Vol. 127 Õ 489
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Fig. 10 Contour plot of the normalized elastic residual von Mises stress
„svm ÕSy… at various unloaded normalized interferences: „a… v*Ä2.14, „b…
v*Ä3.92, „c… v*Ä5.71, and „d… v*Ä15.00
-
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As the plastic deformation within the hemisphere increases du
larger interferences and is then unloaded, the residual stress
crease and migrate. This migration causes the maximum
Mises stress to move from one location to another. The maxim
127, JULY 2005
e to
es in-
von
um

stress location then transitions from a point on the axis of sym
metry to a point near the surface at the edge of the unloade
contact area. The maximum stress location after the shift corre
sponds to the location of the residual pileup seen in Fig. 7. Tabl
Fig. 11 Contour plot of the normalized residual von Mises stress „svm ÕSy…

at various unloaded normalized interferences at the onset and formation of
plastic residual stresses: „a… v*Ä25.0, „b… v*Ä40.0, „c… v*Ä68.6, and „d…
v*Ä100.0
Transactions of the ASME
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2 shows the location of the maximum residual stress for he
spheres unloaded from various normalized interferences.

The value (R-y)/vc is the normalized depth of maximum vo
Mises stress from the contacting tip of the hemisphere andr /ac is
the normalized distance of the maximum von Mises stress toy
axis. Examining the values ofr /ac and (R-y)/vc in Table 2, the
normalized location of the maximum von Mises stress shifts f
the axis of symmetry to the surface for a hemisphere unloa
from normalized interferences between 3.57 and 3.92. This
signifies the migration of the residual stresses from one locatio
the plastic core to the residual pileup at the edge of unloa
contact. However, once the material remains plastic after unl
ing there is no single point of maximum von Mises stress s
regions of plasticity are formed~see Fig. 11!. The maximum von
Mises stress normalized by the yield stress is plotted in Fig. 12
hemispheres unloaded from increasing values ofv* . This plot
also shows how the maximum von Mises stress levels off to
yield strength for a hemisphere unloaded from a normalize in
ference within 25<v*<30. This value signifies a threshold th
indicates residual plastic stresses. In other words, this value m
the minimum load that when removed, a region in the hemisp
has a high enough residual von Mises stress to remain pla
Then the region of plastic residual stress grows at the edg
contact when the hemisphere is unloaded from increasing va
of normalized penetration depth,v* ~see Fig. 11!. The plastic

Table 2 The location and value of the maximum von Mises
residual stress for various normalized interference depths

Normalized
interference
depth~v* !

Maximum
unloaded von
Mises stress
(svm /Sy) r /a r/ac (R2y)/vc

1.43 0.057 0.00 0.00 34.18
2.14 0.217 0.00 0.00 43.44
3.57 0.344 0.00 0.00 61.64
3.92 0.371 0.91 1.90 1.81
4.29 0.408 0.91 2.02 2.07
5.00 0.511 0.95 2.29 2.61
5.72 0.615 0.94 2.46 3.03
8.57 0.693 0.98 3.24 5.26

10.00 0.754 1.03 3.73 6.97
15.00 0.883 1.02 4.70 11.05
17.50 0.952 1.02 5.11 13.11
20.00 0.986 1.03 5.59 15.65
25.00 0.994 1.03 6.38 20.46
30.00 1.000 1.05 7.25 33.57
Journal of Tribology
mi-

n

e

om
ded
hift

n of
ded
ad-
ce

for

the
ter-
t

arks
ere
stic.

of
lues

residual stress appears to grow along the surface away from the
unloaded area of contact. Since the unloaded hemisphere’s loca-
tion of maximum von Mises stress transitions to the surface, the
location of plastic stress in the loaded and unloaded hemisphere
do not always correspond.

Comparison Between Aluminum and Steel. In order to
measure the effect of the material properties on the hemisphere
deformation, an aluminum hemisphere is also modeled for a hemi-
sphere unloaded from av* 5135. Table 1 shows the properties
used for aluminum as taken from Ref.@11#. As previously, the
radius,R, is held constant.

Figures 13 and 14 show the plot of the normalized axial and
radial displacement as a function of the normalized radial dis-
tance,r /ac , on both the loaded~Fig. 13! and unloaded~Fig. 14!
condition and for both materials. An inset is provided for a plot of
displacement normalized by the constant hemisphere radius,R.
From the plots, the deformation of the aluminum and steel hemi-
sphere tend to follow the same trend. However, the values of the
displacements normalized byR ~or by vc , which is not shown!
are quantitatively quite different. It appears that the normaliza-
tions (Ux /gc and Uy /vc) used are effective at generalizing the
results for the two different materials~see the Appendix!. As
stated in the previous section, the deformation of the hemisphere
also depends on the properties of the material as well as the in-
terference. Even though loaded to the same normalized interfer-
ence, the steel is compressed down with the real displacement of
4.7% of R, while the aluminum is compressed down with only
1.4% ofR. Without normalization, the differences in the interfer-
ence are significantly large, causing the differences in the dis-
placements to also be large. The residual pileup can still be spot-
ted for both materials, as the contact was loaded to the fully
plastic regime.

Repeated Contact. As elastic perfectly plastic theory sug-
gests, when an identical repeated load is applied to the hemisphere
after being unloaded from elastic perfectly plastic deformation,
the hemisphere returns to precisely the same loaded state as the
initial loading. FEM results confirm that the deformation returns
to exactly the same values with repeated contact of the same load.
This occurs because the material undergoes no strain hardening,
i.e., the load carrying capacity of the hemisphere material does not
change with contact, even though it has plastically deformed. In-
troducing history dependant strain hardening is expected to alter
these results. It should be noted, that in the contact of real rough
Fig. 12 The normalized maximum von Mises residual stress of the un-
loaded hemisphere as a function of the unloaded v*
JULY 2005, Vol. 127 Õ 491
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surfaces in which the asperities do not align, bulk materials
form, and there is slip or sliding, the asperity contacts may
align and behave as described earlier.

Conclusions
This work presents a FEM of the residual stresses and str

that are formed after an elastoplastic hemispherical contact is
loaded. The material is modeled as elastic perfectly-plastic
follows the von Mises yield criterion. A 2D axisymmetric finit
element model of an elastic perfectly plastic hemisphere in c
tact with a rigid flat surface is used to calculate the resid
stresses and deformations. At even light loads the residual str
and deformations change the surface geometry of the hemisp
significantly and must be accounted for in cases such as in in
tation tests and rolling element bearings. This effect can also
applied to the repeated contact of rough surfaces when the a
ment between them changes between load cycles.

The FEM produces contours for the axial and radial displa
ments as functions of the removed normalized interference d
and location on the surface of the hemisphere. The displacem
are given relative to the surface. The displacements show how
deformation changes from elastic to elastoplastic as the h
sphere begins to bulge outward instead of compress. A mat
pileup can clearly be seen in Fig. 7~b! of the residual axial dis-
placement of the hemisphere after it is unloaded. This occurre
is also verified experimentally by Johnson@4# and also by the
FEM analysis of Kral et al.@6–8# on the repeated indentation of
half-space by a rigid hemisphere. Still, Kral et al. simulates
contact for about half the range of the current work.

Fig. 13 The normalized surface displacement of aluminum
and steel hemispheres loaded to v*Ä135 vs the normalized
radial location
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Contour plots of the stress tensor components and the von
Mises stress show the development of the residual stress distribu
tion with increasing plastic deformation. This development results
in a high stress residual pile-up appearing near the edge of the
unloaded contact area. The approximate value for the minimum
normalized interference, that when removed, a region of the re-
sidual stresses in the hemisphere remains plastic is found to be
between 25<v*<30. This work also defines a normalized inter-
ference of about 3.57<v*<3.92 at which the maximum residual
stress transitions from a location below the contact region and
along the axis of symmetry to one near to the surface at the edge
of the unloaded contact radius~within the pileup!.

Finally, this work analyzes the effect of material properties on
the surface displacements. The deformation of the hemisphere is
dependent on the properties of the material and the interferences
With a difference in Young’s modulus, Poisson’s ratio, and yield
strength, the aluminum tends to deform differently from steel at
the same normalized penetration depth. It appears that the normal
ization used for the displacements is effective at generalizing the
results for both sets of material properties, and the given geometry
and boundary conditions shown in Fig. 3.

Nomenclature

C 5 critical yield stress coefficient
E 5 elastic modulus
P 5 contact force
R 5 radius of hemispherical asperity

Sy 5 yield strength
a 5 contact radius
r 5 radial distance from axis of symmetry

Fig. 14 The normalized residual surface displacement of alu-
minum and steel hemispheres unloaded from v*Ä135 vs the
normalized radial location
Transactions of the ASME
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g 5 radial displacement
v 5 interference between hemisphere and surface
n 5 Poisson’s ratio

Subscripts

c 5 critical value at onset of plastic deformation
o 5 original

vm 5 von Mises stress

Superscripts

8 5 equivalent or displaced
* 5 normalized

Appendix: Normalization of Displacement
It is useful to find an effective method of normalization for the

surface displacements so that the presented results may be app
to a general hemispherical contact with the boundary conditions
Fig. 3, a radiusR and material propertiesE, n, andSy . The ver-
tical displacementUy is effectively normalized byvc , which is
the relative distance that the contact point at the centerline trav
before and after loading is applied at the onset of plasticity@Figs.
13~b!, 14~b!#. A similar typical distance in the radial direction,gc ,
is sought for normalizingUx . The quantityac identifies the radius
of the contact at the onset of plasticity. To find out the distanc
that this point travels radially, its location before loading,aco , is
sought such thatgc5ac2aco . Finding this quantity results in the
normalization

Ux

gc
5

Ux

ac2aco
(A1)

By assuming no slip occurs between the hemisphere and
rigid flat, aco is easily approximated. As shown in Fig. 15 the
hemisphere surface essentially wraps onto the rigid surface. T
results in the arcAB& deforming into the segmentA8B8, such that
A8B85AB& . And sinceA8B85ac , AB&5ac . The angleu is then
calculated as

u5
AB&

R
5

ac

R
(A2)

Next, aco is calculated to be

aco5R sin~u!5R sinS ac

R D (A3)

Substituting Eq.~3! into Eq. ~A3! and simplifying results in

aco5R sinSAvcR

R D 5R sinSAvc

R D (A4)

Now gc is defined by

gc5ac2aco5ac2R sinSAvc

R D 5AvcR2R sinSAvc

R D
(A5)

Then factoring outR from the right side of the Eq.~A5! gives

gc5RFAvc

R
2sinSAvc

R D G (A6)

Letting x5Avc /R and using the approximation

sinx5x2
x3

3!
1

x5

5!
2

x7

7!
1 . . . (A7)

results in

x2sinx'
x3

3!
(A8)

after neglecting higher order terms. Then, Eq.~A6! is approxi-
mated using Eq.~A8!.
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gc'RF1

6 S vc

R D 3/2G5
1

6

~vc!
3/2

AR
(A9)

Equation~A9! is tried as an effective normalization ofUx by gc .
The results of steel and aluminum hemispheres loaded and u
loaded fromv*5135 are presented in Figs. 13 and 14. It appear
from the plots that the normalizations derived are effective t
some degree at generalizing the problem for the two different se
of material properties. The ratio ofgc /vc is also presented in
Table 1 for both materials. For both materials the value ofgc is
much smaller thanvc .
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Fig. 15 Schematic for the approximation of the location of the
critical contact radius before loading „solid line … and after load-
ing „dashed line …
JULY 2005, Vol. 127 Õ 493


