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Rotordynamic Analysis of
Rotor–Stator Rub Using Rough
Surface Contact
Undesirable rotor–stator rub is frequently observed in rotordynamic systems, and has
been the subject of many investigations. Most of these studies employ a simple piecewise-
smooth linear-elastic contact model (LECM), where the rotor switches between noncon-
tacting and contacting operation once the clearance is exceeded (various complications
have been incorporated, though the essential model premises endure). Though useful as a
first step, the LECM relies on an arcane contact stiffness estimate, and therefore does not
emulate the actual contacting surfaces. Consequentially, the LECM fails to elucidate how
real surface parameters influence contact severity and surface durability. This work
develops a novel model for rotor–stator rub which is commensurate with reality by treat-
ing the surfaces as a collection of stochastically distributed asperities. Specifically, the
elastoplastic Jackson–Green (JG) rough surface contact model is used to calculate the
quasistatic contact force as a function of rotor displacement, where bulk material defor-
mation and surface cumulative damage are ignored. A simple exponential fit of the con-
tact force is proposed to reduce computational burden associated with evaluating the JG
rough surface contact model at each simulation time step. The rotor’s response using the
LECM and JG rough surface contact model is compared via shaft speed bifurcations and
orbit analysis. Significant differences are observed between the models, though some sim-
ilarities exist for responses with few contacts per rotor revolution.
[DOI: 10.1115/1.4032515]

1 Introduction

Increases in turbomachine efficiency are often achieved via
higher operating speeds, lighter shafts, and precisely manufac-
tured bearings with reduced fluid film clearances. Unfortunately,
these changes increase the probability of machine faults such as
shaft fatigue cracking [1–3] and rotor–stator contact (i.e., rub)
[4,5]. Though rare, shaft fatigue cracking is extremely dangerous.
On the other hand, rotor–stator rub commonly occurs and can
result in decreased machine life via increased wear, heightened
susceptibility to fatigue, and adverse thermal effects, in addition
to decreased effectiveness of associated fluid-film triboelements.
Detecting and preventing rotor–stator rub require detailed knowl-
edge of the conditions precipitating and following the onset of
contact.

Rotor–stator rub occurs when the rotor’s deflection exceeds the
allowable clearance between the rotor and stator. Accurately sim-
ulating rotor–stator rub requires realistic and physically meaning-
ful contact models. The first analytic rotor–stator rub
investigations simulated rotor–stator rub by truncating the rotor’s
synchronous imbalance response [4,6]. The truncated waveform
was approximated using a Fourier series, which validated for the
first time an experimentally observed rotor–stator rub phenom-
enon: higher harmonic shaft speed oscillations. Though enlighten-
ing as a first step, the truncation approach only heuristically
approximates the rotor’s response, and cannot be considered a
true rotor–stator rub model.

To remedy the lack of a true rotordynamic contact model,
Beatty [6] introduced the LECM. Once the rotor exceeds the pre-
scribed clearance, a normal restoring force is generated at the
interface which is proportional to the rotor–stator interference by
the postulated linear contact stiffness kc; the original work
assumes a linear force–interference relationship, as do many

subsequent investigations. Though other rotordynamic contact
models have been introduced since the LECM, such as Choy and
Padovan’s rub-energy contact model [7], a majority of authors
investigating rotor–stator rub have employed some variation of
the LECM [8–20]. Various complications to the LECM have been
introduced, such as velocity-dependent friction, static offset
between the rotor and stator [21], Hertzian contact forces [22,23],
and contact damping [22,24], among numerous others. Still, the
most prevalent contact models (LECM and Hertzian) assume that
the rotor–stator contact force is generated via bulk material defor-
mation, regardless of the contact severity. The LECM has been
used to predict a strong nonlinear behavior in the rotor–stator rub
systems, such as quasiperiodic and chaotic responses. Bifurcation
studies on various system parameters have been performed (such
as rotor shaft speed, eccentricity, clearance, and many others),
indicating period-doubling, intermittency, and direct transition as
possible routes to chaos [9,16,24,25].

Even though the LECM has enjoyed widespread application,
and demonstrated some ability to qualitatively predict the rotor
response, the model is dissociated from the true nature of contact-
ing surfaces. Estimating the contact stiffness is an inextricable
complication and a principle disadvantage of the LECM. Large
contact stiffnesses are often assumed, but realistically estimating
the contact stiffness is difficult. Even disregarding the complica-
tion of estimating the contact stiffness, resistance to surface pene-
tration is clearly nonlinear [26]. In addition, the LECM assumes
that rotor–stator rub occurs only at the point of maximum interfer-
ence. As will be discussed in greater detail later, Varney and
Green [27,28] addressed these deficiencies by considering the
rotor and stator as curved conformal bodies with finite surface
roughness. Real engineering surfaces are not smooth, but instead
are composed of peaks, or asperities, of varying height (i.e., real
surfaces are rough). Greenwood and Williamson [29] reduced the
contact of rough elastic surfaces to that of a single composite
rough surface in contact with a rigid flat, where each asperity is
hemispherical and deforms according to Hertzian contact theory.
The contact force is then related to the surface separation distance
using an assumed stochastic distribution of surface heights. Still,
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the Greenwood–Williamson (GW) model considers only elastic
deformation, and neglects the possibility of plastic deformation.

In fact, asperity deformation is typically some combination of
elastic and plastic effects [30]. A novel rough surface contact
model concerning elastoplastic asperity deformation is provided
by Chang et al. [31] (i.e., the Chang-Etsion-Bogy (CEB) model. A
closed-form solution to the CEB model is provided by Green [32].
Though the CEB model provides useful conceptual understanding
of an elastoplastic rough surface contact, the model is not without
its shortcomings (namely, the CEB model can predict higher load
carrying capacity for a surface deforming elastoplastically than a
surface deforming only elastically). Jackson and Green [33]
resolved these issues by applying finite element methods to a sin-
gle hemispherical elastoplastic asperity [30], and extended the
results to rough surface contact. Importantly, the JG elastoplastic
rough surface contact model accounts for variations in the geo-
metrical hardness of each asperity as a function of deformation.
However, the additional accuracy gained by using the JG model
comes at an increased computational cost, as additional numeric
integrations are required to evaluate the contact force.

As a first step toward improving rotor–stator rub modeling,
Varney and Green [27,28] studied the static conformal contact
between two curved rough surfaces using the JG elastoplastic
rough surface contact model and compared the results to those
predicted by the LECM. Their results intuitively indicate that con-
tact between strongly conformal surfaces (i.e., a rotor and stator
system with a small set-point clearance) generates a wide circum-
ferential range of non-negligible contact pressure. Furthermore,
the force–displacement curve obtained from the JG model is
shown to be fundamentally different from that predicted by the

LECM, as the contact force gradually increases as a greater num-
ber of asperity contacts accumulate (whereas the LECM suddenly
switches on once the rotor deflection exceeds the set-point clear-
ance). The study concludes by providing a simple exponential
curve-fit to the quasistatic JG contact force as a function of rotor
deflection for a representative set of triboelement surface parame-
ter measurements. As will be seen herein, such an approximation
greatly reduces computation time in a rotor–stator rub simulation,
as tedious numeric integrations of the asperity contact pressures
are avoided at each simulation time step.

Here, for the first time, rough surface contact is applied to
model rotor–stator rub dynamics. Rather than assuming a
rotor–stator contact stiffness, as is the case with the LECM, meas-
urable rotor and stator surface and material properties are used to
obtain the contact force, which is formulated on underlying physi-
cal principles rather than simplifying assumptions. Specifically,
the JG elastoplastic rough surface contact model is used here
according to the methods developed by Varney and Green [28].
Results are provided in the form of rotor orbits, Poincar�e sections,
and shaft speed bifurcations.

2 Modeling

2.1 Modeling: Rotordynamic System. An elastically sup-
ported Jeffcott rotor is shown in Fig. 1, where the support stiffness
k is defined in the inertial xyz reference frame. This study consid-
ers only cylindrical modes, and consequentially two rotor
degrees-of-freedom ux and uy are selected, chosen as the deflec-
tion of the rotor’s geometric center C, referenced from the unde-
flected position of the rotor O (here, shaft flexibility and conical
modes are not considered). The well-known equations of motion
for the Jeffcott rotor with constant shaft speed n, including a rotat-
ing imbalance and gravity, are

m€ux þ c _ux þ kux ¼ m�n2 cosðntÞ (1)

m€uy þ c _uy þ kuy ¼ m�n2 sinðntÞ � mg (2)

The rotor mass is m while the composite viscous damping coeffi-
cient resulting from external damping of the disk and support
damping is c. The symmetric support has stiffness k, though the
symmetry assumption could be easily removed (here,
kxx¼ kyy¼ k). The rotor’s center of mass is offset from the geo-
metric center by the eccentricity �. The rotor is constrained within
a stationary housing (i.e., the stator) with set-point clearance d
(shown exaggerated in Fig. 2; in reality, the radius of the rotor is
significantly greater than the clearance).

Fig. 1 Jeffcott rotor with finite rotor–stator set-point
clearance d

Fig. 2 Lateral contact in the Jeffcott rotor. (a) Undeflected rotor–stator system and (b) deflected
rotor with lateral contact.
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As the rotor and stator draw sufficiently close, the asperities on
each rough surface interact, generating a contact pressure whose
normal and tangential components are q(h, z) and s(h, z). Circum-
ferential position is designated by h, while the rotor’s dimension
along the axis of rotation is z. Integrating the normal component
of the contact pressure over the contact area gives the resultant
contact forces in the x and y directions

Fcx ¼ Rr

ð2p

0

ðB=2

�B=2

qðh; zÞcos hdz dh (3)

Fcy ¼ Rr

ð2p

0

ðB=2

�B=2

qðh; zÞsin hdz dh (4)

where B is the rotor’s length into the page and Rr is the rotor ra-
dius. Since only lateral deflections are considered, the contact
pressure q(h) is a function of only circumferential position, and
the contact force integrals reduce to

Fcx ¼ RrB

ð2p

0

qðhÞcos h dh (5)

Fcy ¼ RrB

ð2p

0

qðhÞsin h dh (6)

Here, a Coulomb model is used to correlate the friction force to
the normal contact force, where the dry friction coefficient is l.
Hence, the resultant friction forces in the x and y directions are

Ff x ¼ lFcy (7)

Ff y ¼ lFcx (8)

where the direction of the friction force obeys the convention
established in Fig. 2(b). It is well-known that certain shaft speeds
and parameter ranges can result in the friction force reversing
directions, depending on the relative velocity at the contact inter-
face. This switching phenomenon is not observed for the parame-
ter ranges considered herein, as indicated by simulation, and is
therefore neglected in the derivations for brevity.

The equations of motion modified to include contact at the
rotor–stator interface are

m€ux þ c _ux þ kux ¼ m�n2 cosðntÞ � Fcx þ Ff x (9)

m€uy þ c _uy þ kuy ¼ m�n2 sinðntÞ � Fcy�Ff y � mg (10)

3 Modeling: Calculating the Contact Force

A necessary prerequisite for calculating the contact force is an
expression relating the rotor–stator circumferential clearance h(h)
to circumferential position h (see Fig. 3). This circumferential
clearance expression is obtained here by modifying well-known
journal bearing film thickness equations, as prescribed by Varney
and Green [28]. Such an approach is permissible when the set-
point clearance d is much smaller than the rotor and stator radii.

Consider a rotor deflected radially by r and oriented from the
inertial x axis by hm. The clearance between the rotor and stator is
then a function of only circumferential position

hðhÞ ¼ d½1� ðr=dÞcosðh� hmÞ� (11)

where h is defined from the inertial x axis. As the circumferential
clearance approaches the surface roughness dimension, the asper-
ities on each surface begin to interact and deform, generating con-
tact pressure between the surfaces. The JG [33] rough surface
contact model has previously been shown to compare favorably
against other rough surface contact models when compared to

experimental results, and will be employed here according to the
procedure established by Varney and Green [28]. A summary of
the approach is provided in Appendix A. Importantly, bulk defor-
mation of the rotor and stator material is neglected when calculat-
ing the contact force. This assumption is reasonable, as the rotor
typically rebounds from the stator when only a small percentage
of the asperities are in contact (as will be seen herein). Further-
more, cumulative surface damage (i.e., time-varying surface
parameters) is not considered herein for simplicity, though such a
consideration may be required in future work.

The JG rough surface contact model neglects dynamic effects
at each asperity, and consequentially the contact force is strictly
quasistatic (as is the LECM). Thus, Varney and Green [28] used
regression analysis to obtain a closed-form exponential
force–displacement relationship. This closed-form relationship,
obtained from a single simulation of rotor displacement versus
contact force, can then be implemented in a dynamic simulation
of Eqs. (9) and (10) to avoid time-consuming numeric integrations
required by the JG model. By first identifying via simulation a
suitable range of rotor deflections rint over which rebound occurs,
Varney and Green [28] proposed a simple exponential fit

~Fc ¼ a1 exp ðk~rÞ � a0 (12)

where the following normalizations are used for robustness:

~Fc ¼ Fc=maxðFcÞ (13)

~r ¼
r �min rintð Þ

dlr

(14)

The radial deflection range of interest rint is scaled by the set-point
clearance d and standard deviation of the considered normalized
radial deflections lr. It is imperative to note that the maximum
and minimum values specified in the above equations pertain spe-
cifically to the radial contact range of interest. The upper bound of
this range is the distance at which asperity interactions become
meaningful (i.e., generate a significant contact force). The lower
bound of this range is identified via full numeric simulation, as
will be discussed in Sec. 4.1. The contact force Fc is normalized
by the maximum force obtained in the interval of interest. The
specific coefficients a0, a1, and k will be provided where appropri-
ate, in reference to specific presented results (keep in mind that
these coefficients are specific to the material properties, surface
topography, and considered range of rotor–stator interference).

3.1 Fundamental Differences Between the LECM and JG
Contact Models. The LECM and JG rotor–stator rub models
are fundamentally different, both qualitatively and quantitatively.

Fig. 3 Clearance between the rotor and stator as a function of
circumferential position
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The force–displacement relationship found using both the LECM
and JG contact models is shown in Fig. 4 using the representative
surface parameters provided by Varney and Green [28] and a lin-
ear contact stiffness of kc¼ 1.5� 108 N/m in the LECM. From
Fig. 4, it is clear that the LECM switches on when the rotor deflec-
tion r exceeds the clearance d. On the other hand, the JG rough
surface contact model causes the contact force to gradually
increase as more asperities interact on the rotor and stator surfa-
ces. Additionally, the JG rough surface contact model predicts a
nonlinear force–displacement relationship, whereas the LECM is
linear once contact occurs (however, note that the switching
behavior causes nonlinearity in the system even though the
LECM force–displacement relationship is by itself linear). Taking
into account these differences, the most important distinction
between the models is that the JG rough surface contact model
does not rely on any a priori choice of parameters, but is instead
generated using real and measurable surface parameters.

4 Results

The equations of motion are placed into state-space form and
integrated numerically using MATLAB

VR

’s hybrid fourth-/fifth-order
variable-step Runge–Kutta solver, ode45. The integration toleran-
ces must be carefully selected due to small rotor–stator interfer-
ences; here, the relative and absolute tolerances are set to 10�12

and 10�15, respectively. Appropriate tolerances are selected by
progressively tightening the tolerance until convergence is
obtained. One-tenth of the rotor’s static deflection is used as the
initial condition in each case, with zero initial velocity; the system
is then set into motion via the nonautonomous terms in Eqs. (9)
and (10). This work considers only the rotor’s steady-state
response. Time has been nondimensionalized by the shaft speed,
n, such that the nondimensional time is given by s¼ nt. The rotor
and surface parameters used here are tabulated in Appendix B.
The rough surface parameters used herein are calculated from real
surface profilometry measurements [32].

4.1 Approximating the JG Contact Force. The first step in
expediently simulating the rotor–stator response using the JG
rough surface contact model is to obtain a closed-form exponen-
tial fit of the quasistatic contact force versus rotor radial deflec-
tion, according to the convention established in Eq. (12) (in the
author’s experience, this curve-fit approach provides computa-
tional time savings of at least two orders of magnitude). There-
fore, a suitable range of radial deflections over which impact

occurs must be found by full numeric simulation (i.e., fully evalu-
ating the numeric integrations detailed in Appendix A). Such a
response is shown in Fig. 5 using the rotor and surface parameters
provided in Appendix B. Note that the rotor radial deflection
waveform is expressed as rotor–stator closeness, which is defined
as the distance between the rotor and stator (d� r). For clarity,
this term is then normalized by the composite surface height
standard deviation, r. Only a small segment of the rotor response
is shown here to highlight a single indicative impact (the complete
steady-state rotor orbit is shown in Fig. 6(b)).

Fig. 4 Comparing the LECM and the JG rough surface contact model [28]

Fig. 5 Identifying the radial range over which impact occurs
(a) rotor–stator closeness (i.e., separation distance) expressed
in multiples of the surface height standard deviation, r and (b)
corresponding contact force
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The radial range of interest is then extracted by noting both the
maximum radial deflection (i.e., minimum rotor–stator closeness)
and the minimum radial deflection at which the contact force
becomes non-negligible. Clearly, this approach requires heuristic

identification of the minimum bound of the radial deflection range
of interest. Several trials may be necessitated before appropriate
bounds are selected, as determined by comparing the rotor orbits
found using full numeric simulation and the exponential curve fit.

For the case shown in Fig. 5, the minimum and maximum radial
range over which to perform the regression are selected as
r¼ d�4r and r¼ d�2.5r, respectively. Using this radial range,
the curve fit parameters defined in Eq. (12) are a0¼ 0.0048,
a1¼ 0.0075, and k¼ 1.441. The exponential fit is compared to the
quasistatic contact force in Fig. 7, and displays excellent agree-
ment. Still, the appropriate metric for assessing agreement
between the two approaches extends beyond contact force agree-
ment: the rotordynamics must likewise exhibit agreement. This
comparison is provided in Figs. 6(b) and 6(c) for the full numeric
simulation and exponential fit, respectively. As is evident from
the figures, the rotor orbits are indeed both qualitatively and quan-
titatively similar, even for a chaotic response comprising numer-
ous impacts.

4.2 Rotordynamic Differences Between the LECM to the
JG Contact Models. Intuitively, similar responses are gleaned
from the LECM and JG contact models when the number of con-
tacts per revolution is small, as shown in Fig. 8 for a period-2 orbit
at n¼ 1.45xn, where xn is the natural frequency of the noncon-
tacting Jeffcott rotor. The rotor deflection is normalized by the
set-point clearance d, which is represented on the orbit plots using
a circle with a normalized radius of unity. Likewise, a reduced ra-
dius of r¼ d�3r is shown with a dashed line to highlight the im-
portance of properly accounting for surface roughness. Poincar�e
return points are obtained by sampling the nonautonomous system
response once per normalized rotor rotation; i.e., a Poincar�e return
point is found every 2p nondimensional units of time.

As the number of contacts per revolution increases, the cumula-
tive influence of different contact force models generates qualita-
tively different responses. For example, consider the rotor
response using each contact model at n¼ 1.7xn, shown in Fig. 6.
The LECM predicts a period-4 response, while the JG rough sur-
face rotor–stator rub model predicts chaotic motion, as evidenced
by a scattering of the Poincar�e return points and broadband fre-
quency content (see Fig. 9).

Still, the qualitative differences between the models are best
elucidated by observing displacements on the scale of the contact
phenomena. A small portion of the full rotor orbits originally
given in Fig. 6 is provided in Fig. 10, showing the rotor–stator
impact on a much finer scale. In both figures, the set-point clear-
ance d is shown along with a chosen representation of surface
roughness; i.e., a radial line at r¼ d�3r (this is also shown with
the LECM results to facilitate comparison, even though the

Fig. 6 Distinctions between rotor orbits using the LECM and
JG models (n 5 1.7xn): (a) LECM (kc 5 5 3 108 N/m), (b) JG
rotor–stator rub model (full numeric simulation), and (c) JG
rotor–stator rub model (exponential contact force fit)

Fig. 7 Fitting an exponential function to the quasistatic con-
tact force versus rotor radial deflection (expressed as the num-
ber of surface height standard deviations from the clearance;
i.e., rotor–stator closeness)
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LECM does not account for surface roughness). The LECM
rotor–stator contact force switches on immediately when the rotor
deflection exceeds the set-point clearance, and henceforth the con-
tact force depends only on the contact stiffness kc and rotor–stator
interference r�d. The JG rotor–stator rub model instead predicts a
gradual increase in the contact force as the rotor–stator closeness
approaches the surface roughness dimension. In fact, Fig. 10(b)
shows that the rotor rebounds from the stator when only a small
percentage of the asperities interact. This effective reduced clear-
ance is likely critically important for rotor–stator systems with
clearances near the surface roughness dimension.

Shaft speed bifurcation diagrams are a convenient tool for eas-
ily ascertaining broad differences between the LECM and JG
rotor–stator rub models. The composite of all Poincar�e return
points over the considered parameter range provides the bifurca-
tion diagram, which adeptly illuminates quantitative and qualita-
tive changes in response with variations in the control parameter
(in this case, shaft speed). The shaft speed bifurcation diagrams
are given in Figs. 11(a) and 11(b) for the LECM and JG
rotor–stator rub models, respectively. Though the figures display

Fig. 8 Similarities between rotor orbits using the LECM and
JG models (n 5 1.45xn): (a) LECM and (b) JG (exponential con-
tact force fit)

Fig. 9 Broadband frequency spectra indicating the presence
of chaotic response (JG model, n 5 1.7xn)

Fig. 10 Observing differences between the LECM and JG
rotor–stator rub models on a finer scale (n 5 1.7xn): (a) LECM
(kc 5 5 3 108 N/m) and (b) JG rotor–stator rub model

021015-6 / Vol. 138, APRIL 2016 Transactions of the ASME

Downloaded From: http://vibrationacoustics.asmedigitalcollection.asme.org/ on 04/13/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



some generic similarities, it is clear that the JG rotor–stator rub
model predicts different responses than the LECM. Thus, when
deciding on a contact model for a rotor–stator rub study, care
must be taken in choosing whether the LECM is in fact appropri-
ate. Each model begins by predicting a period-1 response until
approximately n¼ 1.42xn, at which point period-doubling is
encountered, and the response bifurcates to period-2 motion.
Beyond this point, the models begin to predict different responses.
The JG model implementation shows, for the parameters consid-
ered here, a greater proclivity for chaotic motion (note the
expanded shaft speed ranges over which chaos is observed). The
differences could perhaps be attributed to the decreased likelihood
of grazing bifurcations in the JG model, since the contact force
varies smoothly (albeit over a small radial range) rather than being
a truly piecewise-smooth dynamical system such as the LECM.

5 Conclusion

A prerequisite for accurately simulating rotor–stator rub is real-
istically modeling the contact phenomena. Two phenomena can
dictate the contact physics: asperity deformation and/or bulk ma-
terial deformation. Previous rotor–stator contact models such as
the LECM indicate that bulk material deformation is the primary
mechanism generating contact force. The LECM fails to satisfy
the requirement of realistically modeling contact, relying instead
on an esoteric contact stiffness in addition to assuming point con-
tact. An alternative approach is presented which approximates the
contact force using the JG elastoplastic rough surface contact
model, founded upon measurable parameters of the rotor and sta-
tor surfaces. Interestingly, the results presented herein show that
rotor rebound occurs when the rotor–stator separation distance is
on the order of 3r, implying that for partial rubs the primary
mechanism of contact is actually asperity deformation. Thus, the

present model not only more realistically captures the contact
force mathematically but also elucidates the primary contact
physics dominating partial rotor–stator rubs: asperity deformation.
Though some similarities exist between results found using the
LECM and JG rotor–stator rub models, shaft speed bifurcations
indicate significant deviations between the predicted rotor
motions. Another advantage of modeling rotor–stator rub using a
rough surface approach is the capability to isolate and investigate
individual surface parameters. This capability could potentially be
used to reduce the adverse influence of prolonged rub via
enhanced surface engineering. Even though the newly develop JG
rotor–stator rub model relies on measurable surface parameters to
calculate the contact force, a necessary future step toward ascer-
taining a suitable rotor–stator rub model is experimental
verification.

Nomenclature

B ¼ rotor length
c ¼ damping coefficient
E ¼ composite elastic modulus

Fcx, Fcy ¼ normal contact force
Ffx, Ffy ¼ friction force

h(h) ¼ circumferential clearance
k ¼ support stiffness
n ¼ shaft speed
R ¼ surface height standard deviation

Rr ¼ rotor radius
ux, uy ¼ rotor deflections in the x and y directions

d ¼ set-point clearance
� ¼ rotor eccentricity
g ¼ areal density of asperities
h ¼ circumferential position

hm ¼ angular location of minimum clearance
l ¼ friction coefficient
r ¼ surface height standard deviation
rs ¼ asperity height standard deviation
w ¼ plasticity index

xc ¼ critical interference

Appendix A: Using the JG Model to Calculate the

Rotor–Stator Contact Force

Real engineering surfaces are not smooth, but are instead a col-
lection of peaks and valleys referred to as asperities. In the same
manner as the historically venerable elastic GW model [29], the
contact of two opposing rough surfaces is reduced to that of one
rigid flat contacting a single rough surface whose parameters are a
composite of both real rough surfaces. The asperity heights z are
defined from the mean asperity height, and the separation distance
between this mean and the contacting rigid flat at each rotor cir-
cumferential position h is the circumferential clearance h(h). The
standard deviation of surface heights and asperity heights are r
and rs, respectively, and are related by

r2 ¼ r2
s þ

3:717� 10�4

g2R2
(A1)

where g is the composite areal asperity density and R is the com-
posite average asperity radius of curvature [29]. The distance
between the mean surface height and the mean asperity height is
ys (see Ref. [28]). Here, the asperity heights are presumed to obey
a Gaussian distribution /ðzÞ without any loss of generality

/ z�ð Þ ¼ 1ffiffiffiffiffiffi
2p
p r

rs

� �
exp �0:5

r
rs

� �2

z�ð Þ2
" #

(A2)

where the superscript (�)* signifies normalization by r.

Fig. 11 Shaft speed bifurcation study (see Appendix B for sur-
face and rotor parameters) (a) LECM (kc 5 5 3 108N/m) and (b) JG
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Jackson and Green [33] extended a finite element study of flat-
tening elastoplastic hemispherical contact to a rough surface con-
tact model, where hardness is shown to be a function of both
geometry and material properties [30]. The interference between
each asperity and the contacting rigid flat is x¼ z� d, where d is
the general surface separation distance (here, d¼ h(h)). The criti-
cal interference xc at the initial point of yielding is derived from
the von Mises yield criterion

xc ¼
pCSy

2E

� �2

R (A3)

The material Poisson’s ratio is � and the yield strength is Sy.
Specifically, the product CSy is chosen as CSy ¼
minðCð�1ÞSy1;Cð�2ÞSy2Þ [26], where, in this work surfaces, 1 and
2 represent the rotor and stator. The constant C is calculated to be

C ¼ 1:295 exp 0:736� (A4)

Using the critical interference, the contact force at the point of ini-
tial yielding is

�Pc ¼
4

3

R

E

� �2
1

2
pCSy

� �3

(A5)

where the over-bar signifies a single asperity model (i.e., contact
between a sphere and a flat). Here, E is the composite elastic mod-
ulus for the contacting surfaces [29]. For small deformations,
0�x/xc� 1.9xc, the solution is essentially identical to the Hertz-
ian model. For x> 1.9xc, the contact force acting on a single as-
perity is

�P ¼ �Pc exp � 1

4

x
xc

� �5=12
 !" #

x
xc

� �3=2
(

þ 4HG

CSy
1� exp � 1
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x
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 !" #

x
xc

� �)
(A6)

where

HG

Sy
¼ 2:84 1� exp �0:82
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B ¼ 0:14 expð23eyÞ (A8)

ey ¼
Sy

E
(A9)

Equation (A7) indicates that surface hardness HG depends on both
material and surface properties.

Still, Eq. (A6) only provides the contact force acting on a single
asperity. When the rigid flat and composite rough surface are sep-
arated by a distance d¼ h(h), any asperity whose height exceeds
h(h) contacts the rigid flat. Thus, the contribution of all asperities
of height z toward the total contact force at circumferential loca-
tion h is

~Pðz; hÞ ¼ gAn
�Pðz� hðhÞÞ/ðzÞ (A10)

where An is the nominal contact area. Thus, the total contact force
at a prescribed surface separation distance is found by summing
the contribution of all asperities whose height exceeds the surface
separation distance. Such a summation is achieved by integrating
Eq. (A10) over the entire contact range

PðhÞ ¼ gAn

ð1
hðhÞ

�Pðz� hðhÞÞ/ðzÞ dz (A11)

Since the surface separation distance h(h) is a function of circum-
ferential location, Eq. (A11) is evaluated separately at each cir-
cumferential location. Rather than evaluate the nominal contact
area An for each discrete circumferential area considered,
Eq. (A11) is redefined to calculate the average contact pressure,
q(h)¼P(h)/An

qðhÞ ¼ g
ð1

hðhÞ
�Pðz� hðhÞÞ/ðzÞ dz (A12)

Now, Eq. (A12) is substituted into Eqs. (5) and (6) and integrated
numerically to obtain the contact force acting on the rotor. It is
imperative to note that the rub force considered herein is quasi-
static, and neglects inertial effects at the asperities. The rub force
therefore only depends on the rotor’s position r; thus, a curve fit
approximation of the rub force versus rotor deflection can impart
a significant improvement in computational expediency.

Appendix B: Rotor and Stator Parameters

The rotor parameters used in this work are provide in Table 1,
while the relevant surface roughness parameters are provided in
Table 2. These parameters are calculated from real surface meas-
urements [33].
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