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Rotordynamics of a Mechanical 
Face Seal Riding on a Flexible 
Shaft 
A mechanical face seal is a triboelement intended to minimize leakage between a 
rotating shaft and a housing, while allowing the shaft to rotate as freely as possible. 
All dynamic analysis to date have concentrated on the seal itself. In reality, however, 
especially in high speed turbomachinery, shafts are made flexible and the dynamics 
of seals must be coupled with the dynamics of shafts. (Perhaps the dynamics of 
other triboelements, such as gears, bearings, etc., have to be included as well.) In 
this work the complex extended transfer matrix method is established to solve for 
the steady state response of a noncontacting flexibly mounted rotor mechanical face 
seal that rides on a flexible shaft. This method offers a complete dynamic analysis 
of a seal tribosystem, including effects of shaft inertia and slenderness, fluid film, 
secondary seal, flexibly mounted rotating element, and axial offset of the rotor 
center of mass. The results are then compared to those obtained from an analysis 
that implicitly assumed the shaft rigid. The comparison shows that shaft dynamics 
can greatly affect the seal performance even at relatively low speeds. 

Introduction 
Modern high performance turbomachinery operate under 

extreme conditions such as high speeds, high pressures, high 
temperatures, and possibly hazardous environments. Mechan
ical face seals have experienced a rapid growth in such appli
cations, specifically in cooling pumps of nuclear power plants, 
jet engine compressors, and pumps handling liquified petro
leum gases. To ensure long life and reliable operation seals 
must be inherently stable, and their steady-state behavior should 
be such that wear and leakage are minimum. Mechanical face 
seal dynamics has been an active area of research in the past 
three decades as extensively reviewed by Etsion (1982, 1985, 
and 1991). Additional work by Salant and Blasbalg (1991), 
and Yasuna and Hughes (1992) investigated the dynamics of 
two-phase seals limited to one axial degree of freedom. Without 
exception, however, all research to date on the dynamic be
havior of mechanical seals concentrated on the seal itself, dis
regarding the effects that the rotating shaft might have on the 
seal. Noteworthy is Marcscher's (1987) discussion on the dam
age caused by shaft vibration to internal components in cen
trifugal pumps, such as bearings, mechanical seals, etc. In 
reality, especially in high speed turbomachinery, shafts cannot 
be considered rigid a priori and the dynamic behavior of the 
triboelements (in this work, a mechanical face seal) must be 
coupled with the dynamics of the shaft. 

Recently Green (1989 and 1990) provided a closed-form so
lution for the dynamic behavior of a flexibly mounted rotor 
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(FMR) mechanical face seal. The rotor is free to move axially, 
tilt (nutation), and whirl about the shaft axis of rotation. That 
work also did not include shaft dynamics. However, the equa
tions of motion for the rotor derived there will be useful herein. 
In this work the complex extended transfer matrix will be 
formulated to solve, for the first time, the coupled problem 
of the dynamics of a flexible shaft and a noncontacting FMR 
mechanical face seal that rides on it. 

The transfer matrix method (originated with the works of 
Myklestad (1944) and Prohl (1945)) is well-suited to handle 
shaft dynamics problems (Pestel and Leckie, 1963, and Rao, 
1983). To apply this method to a shaft-seal tribosystem the 
support and fluid-film rotordynamic coefficients of the seal 
(Green and Etsion, 1985, and Green, 1987, respectively) must 
be reproduced in a complex extended transfer matrix form. 
As a practical example the method will be applied to analyze 
a test rig which was built to experimentally investigate the 
dynamic behavior of a noncontacting FMR mechanical face 
seal (Lee and Green, 1992). The rotor response to its own 
initial misalignment as measured with respect to the axis of 
rotation, the effects of the axial offset of the rotor center of 
mass from the pitch axis, and the shaft slenderness will be 
investigated. Since the complex extended transfer matrix 
method is modular it can accommodate other triboelements 
such as bearings, gears, and the like, to provide a compre
hensive dynamic investigation of detailed tribosystems. 

The Test Rig 
To establish the complex extended transfer method (CETM) 

only a schematic model of the FMR face seal test rig is necessary 
(Fig. 1). In the rig the shaft is cantilevered to a precision spindle 
driven by an electric a motor. (The cantilevered configuration 
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Fig. 1 Schematic model of a noncontacting FMR seal test rig 
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Fig. 2 Lumped parameter models of the seal test rig 

affects only the boundary conditions, but not the method.) 
The rotor is flexibly mounted on the shaft by means of an 
elastomeric Nitrile (Buna N) O-ring and a spring. The flat-
face carbon ring (primary seal) is attached to the rotor as it 
rotates facing the coned-face stator (stainless steel mating ring). 
The fluid leaks through the sealing dam in the direction of a 
negative pressure gradient. The pressure in the sealing dam 
separates the carbon ring and the stator and provides the rotor 
with fluid film stiffness, whereas fluid viscosity provides the 
damping. More technical information on the test rig can be 
found in Lee and Green (1992). 

System Modeling 

For the purpose of solving the system dynamics the test rig 
is modeled in Fig. 2(a) by five lumped disks having transna
tional and rotatory inertias. Kf, Ks, Df, and Ds, represent 
coefficients in the angular mode. The equivalent model (in Fig. 
2(b)) emphasizes the free end boundary conditions of zero 
moment and shear force. The rotor (disk 5) is subjected to 
two forcing inputs: The first is the fixed stator misalignment, 
7s, and the second is the initial rotor misalignment, yri. Both 
are measured with respect to the axis of shaft rotation. The 
equations of motion of an FMR face seal in the inertial xyz-
system are (Green, 1990) 

I,'yx + Ipuyy + (Ds + Df)yx + (Ds + -Dfjwyy+ (Ks + Kf)yx 

--ys(KfCOS ips + - Dfoi sin il/s) + Ksyri cos ut 

(1) 

I,yy ~ IPo>yx + ( A + Df) yy - [ Ds + - Df ) wyx + (Ks + Kf)yy 

= ys(Kf sin \j/s - - Dfw cos ips) + Ksyri sin a>t 

where /, and Ip are the transverse and polar moments of inertia, 
respectively. Equations (1) are linear; therefore, solutions of 
yx and yy for the two forcing inputs, ys and yri, can be super
imposed. However, since ys is static, the corresponding rotor 
response is also static (Green, 1989). Inasmuch as this static 
response is important to the complete rotor response, it is not 
of interest in this dynamic investigation. Only the dynamic 
response to the forcing input, y„, will be considered here. 
Although Eqs. (1) are particular to a rigid body FMR seal they 
are still useful for the current investigation. Their individual 
terms will reappear in the various complex extended transfer 
matrices. 

Complex Extended Transfer Matrix Modeling 
The size of a general transfer matrix for shaft free vibration 

problems is eight by eight (8 x 8) (Pestel and Leckie, 1963). 
Since the external force (dynamic load due to yri) is sinusoidal 
having a frequency of the shaft speed, to, a complex formu
lation is functional. To handle the external force, the size of 
the complex transfer matrix is extended to nine by nine (9 x 
9). These make up the complex extended transfer matrix. Con
sequently, the state vector at station /, Z„ is 

Z, = {ux,6y,My, - V„ - uy,6x,Mx, Vy, 1) / (2) 

where u,8,M, and Kare the complex magnitudes of deflection, 
slope, moment, and shear force, respectively, as shown in Fig. 

Nomenclature 

d = rotor center of mass axial 
offset Mx, My = 

Df = angular fluid film damping / = 
Ds = angular support damping Pi = 
EI = flexural rigidity of shaft t = 
Fj = field matrix "*, uy = 
I, = transverse moment of iner

tia U = 
Ip = polar moment of inertia Vx, Vy = 

Ke = angular elastomeric O-ring 
stiffness xyz = 

Kf = angular fluid film stiffness Z — 
Ks = angular support stiffness, 7w = 

Ksp + Ke Sn = 
Ksp = angular spring stiffness 

moments in the xyz-system 
length of shaft section 
point matrix 
time 
deflections in the xyz-sys
tem 
overall transfer matrix 
shear forces in the .xyz-sys
tem 
inertial system 
state vector 
initial rotor misalignment 
rotor angular response to 
Tri 

7s = fixed stator misalignment 
yx> ly = components of rotor angu

lar response in the xyz-sys
tem 

9X, dy = shaft section and rotor tilts 
(slopes) in the xj'z-system 

(/> = phase angle of 6 with re
spect to yri 

4> = phase angle of yr] with re
spect to yrj 

\ps = phase angle of ys with re
spect to the x-axis 

co = shaft speed 
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Fig. 3 Free body diagrams of section i in the xz and yz planes 
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Fig. 4 Definition of axial offset of the rotor center of mass 

3. The aforementioned are all functions of co. The state vector 
at the left of station i, Zf, is related to the state vector at the 
right of station / - 1, Zf_i, through the field matrix, Fh 

Zf = FiZf„l (3) 

The field matrix of a shaft section /, Fit is defined as follows: 

F,= 

1 / 

0 1 

0 0 
0 0 

I1 /3 

2EI 6EI 
0 0 0 0 0 

J_ 
EI 
1 
0 

2EI 
I 
1 

0 0 0 0 0 

0 0 
0 0 

0 0 0 

0 0 0 

0 1 / 

0 0 1 

0 
0 
I2 

0 
0 
/3 

2EI 6EI 

0 0 
0 0 
0 0 

0 0 
0 0 
0 0 

]_ 
EI 
1 
0 
0 

/ 
2EI 

I 
1 
0 

(4) 

/; (=1,2,3,4 

where EI and /are, respectively, the flexural rigidity and length 
of section i. Since the support angular stiffness and damping, 
Ks and Ds, are quantities that instigate forces resulting from 
relative motion between shaft and rotor (stations four and five 

in Fig. 2(b)), they are expressed in a separate field matrix. 
Assuming no relative radial motion between the shaft and the 
rotor (i.e., O-ring compression remains unchanged), the field 
matrix, F5, is devised as follows: 

F< = 

1 

0 

0 
0 
0 

0 

0 
0 
0 

0 

1 

0 
0 
0 

0 

0 
0 
0 

0 
1 

Ks+jDso> 
1 
0 
0 

0 

0 
0 
0 

0 

0 

0 
1 
0 

0 

0 
0 
0 

0 

0 

0 
0 
1 

0 

0 
0 
0 

0 

0 

0 
0 
0 

1 

0 
0 
0 

0 

0 

0 
0 
0 

1 
Ks+jDsu, 

1 
0 
0 

0 

0 

0 
0 
0 

0 

0 
1 
0 

0 

0 

0 
0 
0 

0 

0 
0 
1 

(5) 

The term Ks + jDsu is the angular complex impedance of the 
support caused by shear deformation. Ks and Ds for an elas-
tomeric O-ring secondary seal are typically frequency depen
dent (Green and Etsion, 1986). 

If there is an axial offset of the rotor center of mass from 
the pitch axis (represented by d in Fig. 4), its effect has to be 
included in a transfer matrix. The additional section generated 
by d is modeled as a massless rigid bar. The entire rotor mass 
is attached at one end of the bar while an angular spring and 
a damper (Ks and Ds) are attached at the other end. To con
struct the field matrix for this bar section, Eq. (4) is used with 
two modifications: First, / is replaced by d; and second, since 
the bar is assumed rigid then 

d_ d^ d^_ 
EI' EI' EI 

•0 (6) 

Hence, the field matrix of the axial offset is 

l t f O O O O O O O 
0 1 0 0 0 0 0 0 0 
O O l r f O O O O O 
0 0 0 1 0 0 0 0 0 

Ffl= 0 0 0 0 1 d 0 0 0 (7) 
0 0 0 0 0 1 0 0 0 
O O O O O O l t f O 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 

In the case where no axial offset exists (d = 0), Fd is simply 
the identity matrix. 

The state vector at the right of a lumped disk at station /, 
Zf, is related to the state vector at the left of that lumped 
disk, Zf, by a point matrix, Ph such that 

Zf=PiZf (8) 

The point matrix of a lumped shaft disk i, P„ is devised as 

1 
0 
0 

mw2 

0 
0 
0 
0 
0 

0 0 0 0 
1 

-I,u2 

0 
0 
0 

JW 
0 

0 0 
1 0 
0 1 
0 0 
0 0 
0 0 
0 0 mw2 

0 0 0 0 

0 
0 

-jlp"1 

0 
0 
1 

- / , 0 ) 2 

0. 
0 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
1 0 0 
0 1 0 
0 0 1 

(9) 

i; 1=1,2,3,4 
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where the gyroscopic effect is expressed by Ipw . The fluid film 
angular stiffness and damping, Kj and Dj (Green, 1987), are 
quantities that instigate forces on the rotor due to its motion 
relative to an inertial stator, i.e., Kj and Dj are "absolute" 
quantities. Therefore, their effects are included in the point 
matrix that follows. The point matrix of disk five (i.e., the 
FMR), P5, is obtained from Eqs. (1) as follows: 

as 8/yrl. The phase angle is found from the respective argu
ments 

(f>= At 
^ + 2 

(16) 

The dynamic response of the FMR mechanical face seal only 

P,= 

1 
0 

0 

mu>2 

0 
0 

0 

0 
0 

0 
1 

Kf-I,i/+jDfu 

0 
0 
0 

1 2 
-Dfu+jIpco 

0 
0 

0 
0 

1 

0 
0 
0 

0 

0 
0 

0 
0 

0 

1 
0 
0 

0 

0 
0 

0 
0 

0 

0 
1 
0 

0 

0 

1 

0 0 
0 0 

0 0 
0 0 
0 0 

0 1 
0 0 

DfU-jIpta 0 0 jKsyri 

Kf-W+jDfw 1 0 -Ksyri 

(10) 

where cos(a>0 and sin(o>/) have been replaced by 1 and —j, 
respectively. Noteworthy is the presence of the forcing func
tion, yri, in the ninth column of the matrix Ps. 

Equations (3) and (8) are combined to give the transfer 
matrix PjFj for section /, effectively transferring properties at 
station / - 1 to station /. Hence, 

Zf = PiFiZf.l (11) 

Applying Eq. (11) successively, Zf and Z0 are related by 

Z? = UZ0 (12) 

where U is the overall transfer matrix 

U=P5FdF5P,F,P,F3P2F2PlFl (13) 

It is important to emphasize that all transfer matrices cor
respond to a state vector, Z, which contains angular as well 
as lateral degrees of freedom, 0 and u, respectively (see Eq. 
(2)). The result U, whether obtained analytically or numeri
cally, effectively couples all degrees of freedom. 

Applying the boundary conditions at the two ends, i.e., no 
deflection and slope at station 0, and no shear force and mo
ment at station 5, Eq. (12) reduces to 

t/33 C/34 t/37 t/38 

C43 U44 Utf U48 

t/73 t/74 [/77 C/78 

U$3 t/84 Usi t/g8 

(14) 

where L/y are known elements of U. Upon solving Eq. (14) 
for Z0, the intermediate state vectors, Z b Z2, Z3, and Z4, and 
the end vector Z5 are found by using Eq. (11) recursively. That 
is, all degrees of freedom have been found at every section, 
where of particular interest are the angular responses, 9X and 
6y. The outlined CETM method proposes a numerical solution 
at a given shaft speed, co. This procedure can be looped through 
a desired spectrum of frequencies. 

Results and Discussions 
The numerical values for the various parameters which model 

the actual seal test rig are given in the Appendix. The magnitude 
of the angular response of the FMR mechanical face seal, 6, 
is found from the elements of Z5. Hence, 

0=I0V,5I = I0,,5I (15) 

where 0X,5 and ^,5 are the tilts (slopes) about the x and y axes 
at station 5, respectively. The transmissibility is then calculated 

(disregarding shaft dynamics and axial offset) was obtained 
analytically by Green (1989) in terms of transmissibility 

and phase 

(17) 

[(/„ -I,W+(Ks + K/))
2 + Dfw 

;Dfi> 
\//= - t a n (18) 

(Ip-I,)o>*+(Ks + Kf) 

where yrI is the rotor angular response to yrl, and ty is the 
phase angle of yrI with respect to yri. 

Results obtained from the current CETM method are com
pared with those obtained from the analysis by Green (1989), 
in Fig. 5 for the transmissibility, and in Fig. 6 for the phase; 
both as functions of the shaft speed. The comparison reveals 
results that are practically identical, except for a spike that 
occurs in the CETM results about 42,000 rpm. The spike is 
attributed to the resonance of the system. This was verified 
by a finite element analysis of free vibration of the shaft and 
rotor, which gave a first natural frequency about 42,000 rpm. 
In Fig. 5, the transmissibility increases in a limited range of 
co (up to about 1200 rpm) because of the stiffness hardening 
of the O-ring. However, as co increases above 1200 rpm, the 
transmissibility decreases monotonically because of the gy-

— CETM modeling of seal & shaft 
Analysis of seal only 

Shaft Speed, rpm 
xlO 

Fig. 5 Transmissibility versus shaft speed; comparison of CETM and 
analysis 
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CETM modeling of seal & shaft 

Analysis of seal only 
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Fig. 6 Phase versus shaft speed; comparison of CETM and analysis 

CETM modeling with a slender 
shaft 

Analysis of seal only 

xlO 
Shaft Speed, r p m 

Fig. 9 Transmissibility versus shaft speed; slender shaft 

>2 

Shaft Speed, rpm 
xlO 

Fig. 7 Transmissibility versus shaft speed; FMR seal having 5 mm axial 
offset 

u 
-0.5 

-1 

-1.5 

-2 
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-3 

— CETM modeling with 
axial offset 

— Analysis of seal only 

L • 

a 5 mm 

0 3 6 
4 

xlO Shaft Speed, rpm 
Fig. 8 Phase versus shaft speed; FMR seal having 5 mm axial offset 

roscopic effect that overcomes the stiffness hardening of the 
O-ring (see Eq. (17) and the Appendix for Ks). 

Since in any practical system it is impossible to entirely 
eliminate the axial offset of the rotor center of mass from the 
pitch axis, it is important to estimate its effect. Results obtained 
by the CETM method for an FMR having an estimated 5 mm 
axial offset, are shown in Fig. 7 for the transmissibility, and 
in Fig. 8 for the phase. The results provide evidence that the 

CETM modeling with a slender 
shaft & a 5 mm axial offset 

Analysis of seal only 

Shaft Speed, rpm 
xlO 

Fig. 10 Transmissibility versus shaft speed; slender shaft and 5 mm 
axial offset 

shaft dynamics affects the seal dynamics at a range of to from 
about 20,000 rpm to 60,000 rpm, where the response is most 
pronounced at resonance. In high speed turbomachinery this 
behavior must be confronted with. (In the test rig under con
sideration this effect is inconsequential because the maximum 
operating speed was designed to be less than 6000 rpm.) 

To investigate the consequences of the shaft slenderness, the 
length of each shaft section is theoretically elongated three 
times without increasing its mass. Thus, the flexural rigidity 
is reduced by a factor of one-ninth. The transmissibility ob
tained by the CETM with the slender shaft is shown in Fig. 
9. Two resonances are observed at 3000 rpm and 37,000 rpm, 
respectively. The first natural frequency is now considerably 
lower (most of rotating machinery in processing plant appli
cations, for example, operate between 750 rpm to 15,000 rpm 
(Laws, 1987)). Even the second natural frequency is lower than 
the first natural frequency of the system with the original stiffer 
shaft. Consequently, the dynamic response of the FMR seal 
is severely affected by the shaft dynamics in operation under 
6000 rpm. The transmissibility obtained by the CETM with 
the slender shaft and an additional 5 mm axial offset is shown 
in Fig. 10. The results show again an even more pronounced 
response at the first two resonances. The obvious conclusion 
is that the smaller the axial offset and the stiffer the shaft the 
better; practically, however, these may not be feasible. 

Conclusions 
The complex extended transfer matrix (CETM) method was 

formulated to solve the coupled problem of the dynamics of 
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the shaft and a noncontacting FMR mechanical face seal. The 
method was then applied to analyze an actual test rig. The 
results from the CETM method were compared to results of 
a closed-form solution of an FMR seal, a solution that was 
limited to rigid body dynamics (i.e., did not include shaft 
flexibility or axial offset of the rotor center of mass). 

The results show that when a seal is being-driven by a slender 
shaft, the seal dynamics is greatly affected by the shaft dy
namics even at relatively low operating speeds. This particu
larly holds in high speed applications. The flexibility of the 
shaft and the axial offset of the rotor center of mass were 
found to have an adverse effect on the dynamic behavior of 
a seal, where the latter enhances the response at resonance. 

In the test rig under consideration the driving shaft was 
especially designed to be very stiff, therefore, its effect on the 
dynamic response of the seal was negligible in the designed 
speed range. Here the CETM method and the closed-form 
solution produced practically identical results. In general seal 
applications, however, the closed-form solution may not real
istically predict the seal dynamic response. 

The CETM method established here offers a complete dy
namic analysis of a seal tribosystem including the effects of 
the shaft, fluid film, secondary seal, flexibly mounted rotating 
element, and axial offset. The method is modular and can 
accommodate other triboelements such as bearings, gears, and 
the like, to provide comprehensive analysis of elaborate tri-
bosystems. 
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A P P E N D I X 
The numerical values for the various parameters of the actual 

test rig (Lee and Green, 1992) are 
= 1338.2 Pa-m4 

= 3.2847xl(T6 kg• 
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The dependency of Ks and Ds upon frequency was obtained 
from experiments done on a support consisting of a spring and 
two Buna-N O-rings (Lee, 1992). The fluid film coefficients 
Kf and Df were calculated for water pressure of 0.283 MPa 
and viscosity of 0.89 mPa-s. The rotor input forcing misa
lignment, yri = 0.4 mrad, is in the bulk of measurements. (The 
numerical value of the latter is actually insignificant because 
results are presented in a transmissibility form, i.e., ratio of 
output to input.) The various lumped masses and moments of 
inertia were calculated based upon the geometry of the shaft 
and the rotor, and upon the length of section / (the mass of 
the spring, however small, is lumped into the mass of the rotor). 
The index /' = 1 to 4 corresponds to the shaft, and / = 5 
represents the rotor. EI is the flexural rigidity of the shaft, 
and d = 5 mm is a generous estimate of the center of mass 
axial offset. 

D I S C U S S I O N 

R. Metcalfe1 

The coupling of shaft and end face seal rotordynamics is an 
interesting extension of previous work. This has been studied 
for high speed pumps with annular and labyrinth seals, but 
for end face seals little is known about their dynamic inter
actions with machines in which they are installed. In general, 

AECL Research, Chalk River, Ontario, Canada. 

this is because few problems of this kind have been identified, 
though they may be more common than is known. 

At the discusser's company, seal ring responses to various 
misaligned conditions were measured more than a decade ago. 
When their O-ring supports were tested for stiffness and damp
ing coefficients to use in analysis, it was found they behaved 
far differently from ideal. Not only were their responses to 
harmonic displacement dependent on frequency, as mentioned 
in the authors' appendix, but friction and hysteresis dominated 
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