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Rotordynamics of a Mechanical
Face Seal Riding on a Flexible
Shaft

A mechanical face seal is a triboelement intended to minimize leakage between a
rotating shaft and a housing, while allowing the shaft to rotate as freely as possible.
All dynamic analysis to date have concentrated on the seal itself. In reality, however,
especially in high speed turbomachinery, shafts are made flexible and the dynamics
of seals must be coupled with the dynamics of shafts. (Perhaps the dynamics of
other triboelements, such as gears, bearings, etc., have to be included as well.) In
this work the complex extended transfer matrix method is established to solve Sfor
the steady state response of a noncontacting flexibly mounted rotor mechanical face
seal that rides on a flexible shaft. This method offers a complete dynamic analysis
of a seal tribosystem, including effects of shaft inertia and slenderness, fluid film,
secondary seal, flexibly mounted rotating element, and axial offset of the rotor
center of mass. The results are then compared to those obtained from an analysis
that implicitly assumed the shaft rigid. The comparison shows that shaft dynamics

can greatly affect the seal performance even at relatively low speeds.

Introduction

Modern high performance turbomachinery operate under
extreme conditions such as high speeds, high pressures, high
temperatures, and possibly hazardous environments. Mechan-
ical face seals have experienced a rapid growth in such appli-
cations, specifically in cooling pumps of nuclear power plants,
jet engine compressors, and pumps handling liquified petro-
leum gases. To ensure long life and reliable operation seals
must be inherently stable, and their steady-state behavior should
be such that wear and leakage are minimum. Mechanical face
seal dynamics has been an active area of research in the past
three decades as extensively reviewed by Etsion (1982, 1985,
and 1991). Additional work by Salant and Blasbalg (1991),
and Yasuna and Hughes (1992) investigated the dynamics of
two-phase seals limited to one axial degree of freedom. Without
exception, however, all research to date on the dynamic be-
havior of mechanical seals concentrated on the seal itself, dis-
regarding the effects that the rotating shaft might have on the
seal. Noteworthy is Marcscher’s (1987) discussion on the dam-
age caused by shaft vibration to internal components in cen-
trifugal pumps, such as bearings, mechanical seals, etc. In
reality, especially in high speed turbomachinery, shafts cannot
be considered rigid a priori and the dynamic behavior of the
triboelements (in this work, a mechanical face seal) must be
coupled with the dynamics of the shaft.

Recently Green (1989 and 1990) provided a closed-form so-
lution for the dynamic behavior of a flexibly mounted rotor
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(FMR) mechanical face seal. The rotor is free to move axially,
tilt (nutation), and whirl about the shaft axis of rotation. That
work also did not include shaft dynamics. However, the equa-
tions of motion for the rotor derived there will be useful herein.
In this work the complex extended transfer matrix will be
formulated to solve, for the first time, the coupled problem
of the dynamics of a flexible shaft and a noncontacting FMR
mechanical face seal that rides on it.

The transfer matrix method (originated with the works of
Myklestad (1944) and Prohl (1945)) is well-suited to handle
shaft dynamics problems (Pestel and Leckie, 1963, and Rao,
1983). To apply this method to a shaft-seal tribosystem the
support and fluid-film rotordynamic coefficients of the seal
(Green and Etsion, 1985, and Green, 1987, respectively) must
be reproduced in a complex extended transfer matrix form.
As a practical example the method will be applied to analyze
a test rig which was built to experimentally investigate the
dynamic behavior of a noncontacting FMR mechanical face
seal (Lee and Green, 1992). The rotor response to its own
initial misalignment as measured with respect to the axis of
rotation, the effects of the axial offset of the rotor center of
mass from the pitch axis, and the shaft slenderness will be
investigated. Since the complex extended transfer matrix
method is modular it can accommodate other triboelements
such as bearings, gears, and the like, to provide a compre-
hensive dynamic investigation of detailed tribosystems.

The Test Rig

To establish the complex extended transfer method (CETM)
only a schematic model of the FMR face seal test rig is necessary
(Fig. 1). In the rig the shaft is cantilevered to a precision spindle
driven by an electric a motor. (The cantilevered configuration

APRIL 1994, Vol. 116 / 345



il

spindle

stator
carbon ring

Fig. 1 Schematic model of a noncontacting FMR seal test rig

Fig. 2 Lumped parameter models of the seal test rig

affects only the boundary conditions, but not the method.)
The rotor is flexibly mounted on the shaft by means of an
elastomeric Nitrile (Buna N) O-ring and a spring. The flat-
face carbon ring (primary seal) is attached to the rotor as it
rotates facing the coned-face stator (stainless steel mating ring).
The fluid leaks through the sealing dam in the direction of a
negative pressure gradient. The pressure in the sealing dam
separates the carbon ring and the stator and provides the rotor
with fluid film stiffness, whereas fluid viscosity provides the
damping. More technical information on the test rig can be
found in Lee and Green (1992).

System Modeling

For the purpose of solving the system dynamics the test rig
is modeled in Fig. 2(a) by five lumped disks having transna-
tional and rotatory inertias. K, K, Dy, and Ds, represent
coefficients in the angular mode. The equivalent model (in Fig.
2(b)) emphasizes the free end boundary conditions of zero
moment and shear force. The rotor (disk 5) is subjected to
two forcing inputs: The first is the fixed stator misalignment,
vs, and the second is the initial rotor misalignment, ;. Both
are measured with respect to the axis of shaft rotation. The
equations of motion of an FMR face seal in the inertial xyz-
system are (Green, 1990)

s, . \ 1
Iy + !pQ'Yy'i' (Ds+Dy)yx+ (Ds+£Df)my+ (K3+Kf)7x

1
=7,(Ky cos 1.|'zs+§ Dyw sin ¢) + Ky, cos wt
8))
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Ar."Yy_Jr,r::“"'Yx'i' (Ds+Df)'Yy_ (Ds"'i Df) oyt (Ks+Kp)yy
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=v;(K sin :,f/s—i Dyw cos ) + K¢y, sin wt

where /, and I, are the transverse and polar moments of inertia,
respectively. Equations (1) are linear; therefore, solutions of
vx and v, for the two forcing inputs, v, and +,;, can be super-
imposed. However, since v, is static, the corresponding rotor
response is also static (Green, 1989). Inasmuch as this static
response is important to the complete rotor response, it is not
of interest in this dynamic investigation. Only the dynamic
response to the forcing input, v,, will be considered here.
Although Eqgs. (1) are particular to a rigid body FMR seal they
are still useful for the current investigation. Their individual
terms will reappear in the various complex extended transfer
matrices.

Complex Extended Transfer Matrix Modeling

The size of a general transfer matrix for shaft free vibration
problems is eight by eight (8 x 8) (Pestel and Leckie, 1963).
Since the external force (dynamic load due to v,;) is sinusoidal
having a frequency of the shaft speed, w, a complex formu-
lation is functional. To handle the external force, the size of
the complex transfer matrix is extended to nine by nine (9 X
9). These make up the complex extended transfer matrix. Con-
sequently, the state vector at station i, Zj, is

Z."= {“xseysMya -V — “y’ﬂx’Mm Vysl !l}'" (2)

where u, 8, M, and V are the complex magnitudes of deflection,
slope, moment, and shear force, respectively, as shown in Fig.

Nomenclature
d = rotor center of mass axial
offset M,, M, = moments in the xyz-system
D; = angular fluid film damping = length of shaft section ys = fixed stator misalignment
D, = angular support damping P; = point matrix Yo ¥y = components of rotor angu-
EI = flexural rigidity of shaft t = time lar response in the xyz-sys-
F; = field matrix uy, U, = deflections in the xyz-sys- tem
I, = transverse moment of iner- tem 0., 6, = shaft section and rotor tilts
tia U = overall transfer matrix (slopes) in the xyz-system
I, = polar moment of inertia Vi, V, = shear forces in the xyz-sys- ¢ = phase angle of # with re-
K, = angular elastomeric O-ring tem spect to 7,;
stiffness xyz = inertial system Y = phase angle of v,; with re-
K; = angular fluid film stiffness Z = state vector spect to y,;
K, = angular support stiffness, Y- = initial rotor misalignment Y, = phase angle of 7, with re-
Ky + K, vy = rotor angular response to spect to the x-axis
K, = angular spring stiffness Yri w = shaft speed
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Fig. 3 Free body diagrams of section i in the xz and yz planes

d (axial offset)
Fig. 4 Definition of axial offset of the rotor center of mass

3. The aforementioned are all functions of w. The state vector
at the left of station , Z¥, is related to the state vector at the
right of station i — 1, Z%,, through the field matrix, F;

Zi=Fz} ?3)
The field matrix of a shaft section i, F;, is defined as follows:
P
f eig— s
2EI 6EI ae 3 ¢ .0
I P
0 X isosdad
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where EI and / are, respectively, the flexural rigidity and length
of section /. Since the support angular stiffness and damping,
K and D, are quantities that instigate forces resulting from
relative motion between shaft and rotor (stations four and five
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in Fig. 2(b)), they are expressed in a separate field matrix.
Assuming no relative radial motion between the shaft and the
rotor (i.e., O-ring compression remains unchanged), the field
matrix, Fs, is devised as follows:

et 0228 1ol 95 sofbiicr s O,
1
0 —_—

o Vi byt gt ¢4
69 1 o000 o0 0.0
085505 0100 0 010

F=[00 0 010 0 0o0]|®
!
0 0 0 1
% 9 K, +JDw’? |°
00550 60 00: 1 - a9i0
B0 05 5800, <0 510
00 5§05 5000 0 40

The term K + jD,w is the angular complex impedance of the
support caused by shear deformation. K, and D, for an elas-
tomeric O-ring secondary seal are typically frequency depen-
dent (Green and Etsion, 1986).

If there is an axial offset of the rotor center of mass from
the pitch axis (represented by d in Fig. 4), its effect has to be
included in a transfer matrix. The additional section generated
by d is modeled as a massless rigid bar. The entire rotor mass
is attached at one end of the bar while an angular spring and
a damper (K and D) are attached at the other end. To con-
struct the field matrix for this bar section, Eq. (4) is used with
two modifications: First, / is replaced by d; and second, since
the bar is assumed rigid then

2 3
i \ d_ s d__,,o (6)
ElI'" EI' EI

Hence, the field matrix of the axial offset is

1d0000GO0GO0O0
01 0000O0O0GO0O0
001 dO0O0GO0O0O0
000100000
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In the case where no axial offset exists (d = 0), F is simply
the identity matrix.

The state vector at the right of a lumped disk at station i,
ZR, is related to the state vector at the left of that lumped
disk, ZF, by a point matrix, P;, such that

Zl=pzf 8)

The point matrix of a lumped shaft disk i, P;, is devised as
P|'=

"1 0 00 o0 0 00 0
0 1 00 0 0 #57i0etg- 0
0 -Iw® 1 0 0 —jlw 00 0
Mot i 05F S06ah040 0 000
0 (RENE R 0 o 2000510 ©)
0 0 00 0 1 00 0
0 jlw 00 0 -Io> 10 0
0 0 0 0 m? 0 010
i 0 0 0 0 0 0 0 0 lJ i i=1,2,3,4
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where the gyroscopic effect is expressed by I,,wz. The fluid film
angular stiffness and damping, K, and Dy (Green, 1987), are
quantities that instigate forces on the rotor due to its motion
relative to an inertial stator, i.e., Ky and Dy are ‘‘absolute’
quantities. Therefore, their effects are included in the point
matrix that follows. The point matrix of disk five (i.e., the
FMR), Ps, is obtained from Egs. (1) as follows:

B 0 00 0 0
0 1 00 0 0
1
0 K;~Iw'+jDw 1 0 0 —>Dw—jlw
mw’ 0 D10 0
Ps= 0 0 o 01 0
0 0 00 0 1
0 %wa-i-jlpwz 0 0 0 K~Iu+jDw
0 0 0 0 m 0
) 0 00 O 0

where cos(wt) and sin(w?) have been replaced by 1 and —j,
respectively, Noteworthy is the presence of the forcing func-
tion, 4y, in the ninth column of the matrix Ps.

Equations (3) and (8) are combined to give the transfer
matrix P;F; for section i, effectively transferring properties at
station i— 1 to station i. Hence,

Zf=PFZi, an
Applying Eq. (11) successively, Z® and Z, are related by
Z8-vz, (12)
where U is the overall transfer matrix
U= PsF,FsPyF,P;F;P,F,P\F) (13)

It is important to emphasize that all transfer matrices cor-
respond to a state vector, Z, which contains angular as well
as lateral degrees of freedom, 6 and u, respectively (see Eq.
(2)). The result U, whether obtained analytically or numeri-
cally, effectively couples all degrees of freedom.

Applying the boundary conditions at the two ends, i.e., no
deflection and slope at station 0, and no shear force and mo-
ment at station 5, Eq. (12) reduces to

Uy Uy Uy

U:gg My

) Us = Us Uu Uy Ugl|) -V, [ (14)
Uss Uy U U Usp M,
Uss Usy Us Ug; Uss Vy/o

where Uj; are known elements of U. Upon solving Eq. (14)
for Z,, the intermediate state vectors, Z,, Z,, Z3, and Z, and
the end vector Zs are found by using Eq. (11) recursively. That
is, all degrees of freedom have been found at every section,
where of particular interest are the angular responses, 0y and
8,. The outlined CETM method proposes a numerical solution
at a given shaft speed, w. This procedure can be looped through
a desired spectrum of frequencies.

Results and Discussions

The numerical values for the various parameters which model
the actual seal test rig are given in the Appendix. The magnitude
of the angular response of the FMR mechanical face seal, 6,
is found from the elements of Zs. Hence,

8=10,5 = 10,5 (15)

where 6, s and 0, s are the tilts (slopes) about the x and y axes
at station S, respectively. The transmissibility is then calculated
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as 8/,. The phase angle is found from the respective argu-
ments

m

o= 48x_5= /.By‘5+2

(16)

The dynamic response of the FMR mechanical face seal only

(10)

co = o000 O OC
o~ © OCO © OO
o

(disregarding shaft dynamics and axial offset) was obtained
analytically by Green (1989) in terms of transmissibility

1 2 an
Yri l 2
[,- 1)+ (Ks+ KPP + (5 D,w)
and phase
1
F
Y= —tan"! (18)

(I,— 1)’ + (K + Ky)

where #,; is the rotor angular response to vy, and ¢ is the
phase angle of v, with respect to .

Results obtained from the current CETM method are com-
pared with those obtained from the analysis by Green (1989),
in Fig. 5 for the transmissibility, and in Fig. 6 for the phase;
both as functions of the shaft speed. The comparison reveals
results that are practically identical, except for a spike that
occurs in the CETM results about 42,000 rpm. The spike is
attributed to the resonance of the system. This was verified
by a finite element analysis of free vibration of the shaft and
rotor, which gave a first natural frequency about 42,000 rpm.
In Fig. 5, the transmissibility increases in a limited range of
 (up to about 1200 rpm) because of the stiffness hardening
of the O-ring. However, as w increases above 1200 rpm, the
transmissibility decreases monotonically because of the gy-

0 1 U 4 5 6

x104
Shaft Speed, rpm

Fig. 5 Transmissibility versus shaft speed; comparison of CETM and
analysis
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Fig. 8 Phase versus shaft speed; comparison of CETM and analysis
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Fig. 8 Phase versus shaft speed; FMR seal having 5 mm axial offset

roscopic effect that overcomes the stiffness hardening of the
O-ring (see Eq. (17) and the Appendix for K;).

Since in any practical system it is impossible to entirely
eliminate the axial offset of the rotor center of mass from the
pitch axis, it is important to estimate its effect. Results obtained
by the CETM method for an FMR having an estimated 5 mm
axial offset, are shown in Fig. 7 for the transmissibility, and
in Fig. 8 for the phase. The results provide evidence that the
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Fig. 9 Transmissibility versus shaft speed; slender shaft
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Fig. 10 Transmissibility versus shaft speed; slender shaft and 5 mm
axial offset

shaft dynamics affects the seal dynamics at a range of w from
about 20,000 rpm to 60,000 rpm, where the response is most
pronounced at resonance. In high speed turbomachinery this
behavior must be confronted with. (In the test rig under con-
sideration this effect is inconsequential because the maximum
operating speed was designed to be less than 6000 rpm.)

To investigate the consequences of the shaft slenderness, the
length of each shaft section is theoretically elongated three
times without increasing its mass. Thus, the flexural rigidity
is reduced by a factor of one-ninth. The transmissibility ob-
tained by the CETM with the slender shaft is shown in Fig.
9. Two resonances are observed at 3000 rpm and 37,000 rpm,
respectively. The first natural frequency is now considerably
lower (most of rotating machinery in processing plant appli-
cations, for example, operate between 750 rpm to 15,000 rpm
(Laws, 1987)). Even the second natural frequency is lower than
the first natural frequency of the system with the original stiffer
shaft. Consequently, the dynamic response of the FMR seal
is severely affected by the shaft dynamics in operation under
6000 rpm. The transmissibility obtained by the CETM with
the slender shaft and an additional 5 mm axial offset is shown
in Fig. 10. The results show again an even more pronounced
response at the first two resonances. The obvious conclusion
is that the smaller the axial offset and the stiffer the shaft the
better; practically, however, these may not be feasible.

Conclusions

The complex extended transfer matrix (CETM) method was
formulated to solve the coupled problem of the dynamics of
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the shaft and a noncontacting FMR mechanical face seal. The
method was then applied to analyze an actual test rig. The
results from the CETM method were compared to results of
a closed-form solution of an FMR seal, a solution that was
limited to rigid body dynamics (i.e., did not include shaft
flexibility or axial offset of the rotor center of mass).

The results show that when a seal is being driven by a slender
shaft, the seal dynamics is greatly affected by the shaft dy-
namics even at relatively low operating speeds. This particu-
larly holds in high speed applications. The flexibility of the
shaft and the axial offset of the rotor center of mass were
found to have an adverse effect on the dynamic behavior of
a seal, where the latter enhances the response at resonance.

In the test rig under consideration the driving shaft was
especially designed to be very stiff, therefore, its effect on the
dynamic response of the seal was negligible in the designed
speed range. Here the CETM method and the closed-form
solution produced practically identical results. In general seal
applications, however, the closed-form solution may not real-
istically predict the seal dynamic response.

The CETM method established here offers a complete dy-
namic analysis of a seal tribosystem including the effects of
the shaft, fluid film, secondary seal, flexibly mounted rotating
element, and axial offset. The method is modular and can
accommodate other triboelements such as bearings, gears, and
the like, to provide comprehensive analysis of elaborate tri-
bosystems.
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APPENDIX

The numerical values for the various parameters of the actual
test rig (Lee and Green, 1992) are

El =1338.2 Pa-m’ d =0.005m

I, =3.2847x10"° kg-m’ I, =2.4447x107° kg-m’

Iy =2.5027x107° kg-m’ Iy =2.0652x107° kg-m’

Is =4.1619x10™* kg-m’ I, =8.3497x10"° kg-m?

Ip =1.2513%x10"° kg-m’ Iy =4.2175%10"° kg-m?

I, =1.0829%x10"° kg-m? Is =2.8032%10"* kg-m?

I} =0.01667 m I, =0.01984 m

I; =0.01588 m I, =0.01667 m

m, =0.07241 kg m, =0.08621 kg

my =0.05517 kg m, =0.08803 kg

ms =0.5198 kg vi =4x107*rad

K; =1134.5 N-m/rad K, =5.35+146.1 o’/
(36.36 + w?) N-m/rad

D; =2.1476 N-m-s/rad D, =881.4/(36.36+w?)

N-m-s/rad

The dependency of K, and D; upon frequency was obtained
from experiments done on a support consisting of a spring and
two Buna-N O-rings (Lee, 1992). The fluid film coefficients
K, and D, were calculated for water pressure of 0.283 MPa
and viscosity of 0.89 mPa-s. The rotor input forcing misa-
lignment, v, = 0.4 mrad, is in the bulk of measurements. (The
numerical value of the latter is actually insignificant because
results are presented in a transmissibility form, i.e., ratio of
output to input.) The various lumped masses and moments of
inertia were calculated based upon the geometry of the shaft
and the rotor, and upon the length of section i (the mass of
the spring, however small, is lumped into the mass of the rotor).
The index i = 1 to 4 corresponds to the shaft, and i = 5
represents the rotor. EI is the flexural rigidity of the shaft,
and d = 5 mm is a generous estimate of the center of mass
axial offset.

R. Metcalfe'

The coupling of shaft and end face seal rotordynamics is an
interesting extension of previous work. This has been studied
for high speed pumps with annular and labyrinth seals, but
for end face seals little is known about their dynamic inter-
actions with machines in which they are installed. In general,

! AECL Research, Chalk River, Ontario, Canada.
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this is because few problems of this kind have been identified,
though they may be more common than is known.

At the discusser’s company, seal ring responses to various
misaligned conditions were measured more than a decade ago.
When their O-ring supports were tested for stiffness and damp-
ing coefficients to use in analysis, it was found they behaved
far differently from ideal. Not only were their responses to
harmonic displacement dependent on frequency, as mentioned
in the authors’ appendix, but friction and hysteresis dominated
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their form. It was concluded that any analysis that assumed
ideal stiffness and damping was inherently deficient. A further
concern was friction from the anti-rotation pins or lugs that
normally transmit the driving torque. Did the authors similarly
find their O-ring response to be far from ideal? How sensitive
were the numerical results to variations of stiffness and damp-
ing? Could the authors method be adapted to include the
empirically-determined O-ring response, as opposed to the
idealistic representation?

Mark S. Darlow?

I would like to congratulate the authors on a well thought
out paper that advances the state-of-the-art in areas both di-
rectly and indirectly related to the subject of mechanical face
seals. The contribution to the analysis of noncontacting face
seals is obvious in that it illustrates how derived face seal
properties, which are shown to be quite linear, can be incor-
porated into a transfer matrix analysis. The authors show
directly how the seal dynamics are influenced by the dynamics
of the rotor system and imply the converse when the rotor is
not substantially stiffer than the seal. :

It is interesting to note that while the introduction of an
axial offset to the location of the seal mass has a dramatic
effect on the transmissibility and phase of the seal, there is no
significant change in the resonant frequency of the system.
This is presumably due to the fact that although the mass of
the seal, which is by far the largest mass in the model, is moved
a significant distance away from the built-in end of the shaft,
the angular stiffness of the rotor shaft connection is so much
less than that of the shaft itself that we can consider the mass
to remain attached to the pivot point with the addition of a
small amount of rotatory inertia at that point.

An additional contribution of this paper, which is applicable
beyond the area of seal analysis, is the interesting new approach
taken to the construction of the transfer matrices. Tradition-
ally, forcing functions (including mass unbalance) are incor-
porated in the analysis through the use of forcing function
vectors that are added to the state vector after multiplication
by the corresponding point matrix. This is fine when a step-
by-step approach to moving through the model and calculating
an overall transfer matrix is used. However, with modern ma-
trix analysis software tools that are now generally available
on large, as well as small, computers, the multiplication of a
series of point and field matrices is more convenient and less
sensitive to the accumulation of round-off errors. It is possible
to construct a single equation to represent the overall transfer
matrix using the traditional point and field matrix construc-
tions, but the resulting equation will be of the following form

n=1

0 0
SaAufa-tm sty [E (Andls-12: ) m } * {f}

which is no more convenient to apply than a step-by-step so-
lution. The complex extended transfer matrix approach, on
the other hand, seeks to incorporate the forcing function terms
directly into the point matrix by enlarging the point and field
matrices by one row and one column. This representation could
be used in transfer matrix analysis in general and provides for
a much more convenient solution of the problem.
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The model data provided in the appendix is very useful to
give the reader a sense of the scale of the model and the
magnitude of the response. One additional item that would be
of interest to the reader is the initial, axial clearance of the
seal.

Author’s Closure

The authors thank Drs. Metcalf and Darlow for their interest
in the paper and for their thoughtful discussions. The purpose
of this paper is to provide a comprehensive analytical tool to
analyze complex tribosystems. As with any analysis the results
are as good as the assumptions.

It is also the authors’ belief that the O-ring secondary seal
is the ““Achilles heel”’ of designs that require very small and
controllable motions such as in mechanical seals. It is our
experience that as long as there is unrestricted small O-ring
flexing the modeling of the O-ring as “‘ideal’’ stiffness and
damping coefficients is quite realistic. This was verified in
many repeatable tests such as in Green and Etsion (1986) and
Lee (1992). But other design parameters may hinder this rep-
resentation. For example, it was found by Green and Etsion
(1986) that at high pressures the O-ring greatly stiffens effec-
tively locking the flexibly mounted element. Breakaway fric-
tional force is another nonlinear effect occurring at relatively
large motions. To overcome some of these problems in the
test rig the authors resorted to a two O-ring secondary seal
system with a small squeeze, as described in Lee and Green
(1992). From a numerical view point it is well known that in
seals for incompressible fluids the stiffness and the damping
of the fluid are typically a few orders of magnitude higher
than those of the O-ring secondary seal. Therefore, the cal-
culated seal response is little affected by the O-ring represen-
tation. This, however, may not be true for seals for compressible
fluids and low pressure. While it is convenient (and often
plausible) to use ‘‘ideal’” stiffness and damping in analyses,
the current method is not limited to such a representation. An
empirically-determined O-ring response can replace the fre-
quency-dependent O-ring impedance in Eq. (5).

The presence of friction in any mechanical element will in-
variably introduce a nonlinear effect. In which case an “‘exact’’
closed-form solution would generally not be feasible. This
nonlinearity, however, can be ‘‘linearized”’ by translating the
dissipating frictional energy into equivalent dissipating viscous-
damping energy (see for example the additional reference,
Thomson (1988), pp. 70-74). The anti-rotation pins are another
source of nonlinearity. Not only because of friction but also
because of the uncertainty in the kinematical conditions that
they impose. Undoubtedly, three or more active anti-rotation
pins will lock the flexibly mounted element in the angular mode
and, therefore, no more than two pins should ever be used.
Not such attention is typially given to the manufacturing of
these pins, and an analysis which accounts for all possible
designs is a formidable task. Some of these aspects and the
role of the anti-rotation pins are addressed in the additional
reference, Green and Etsion (1986).
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