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ABSTRACT

The sealing capability of an elastomeric O-ring seal depends upamnthetstresses
that develop between the O-ring and the surfaces with which itscontecontact. It has
been suggested in the literature that leakage will occur when gsipgalifferential across
the seal just exceeds the initial (or static) peak conteagsst The stresses that develop in
compressed O-rings, in common cases of restrained and unrestraonesetrges (grooved
and ungrooved), are investigated using the finite element method. The aunadyistles
material hyperelasticity and axisymmetry. Contact stress moditel peak contact stresses
are plotted versus squeeze, up to 32 percent. The contact width, whietheisgth of the
O-ring that touches the retaining surfaces when viewed from tss-section, is also
determined. Expressions are derived empirically to predict theqoedict stress and the
contact width. These expressions are also compared to those obtaineer bgssarchers
(who assumed plain strain conditions) and conclusions to their validity are drawn.

NOMENCLATURE

b = contact width S = compressive stress

d = wire diameter X = displacement

D = nominal (mean) diameter X = radial coordinate

Dyi = deformed mean diameter X = radial distance from O-ring center
E = modulus of elasticity y = axial coordinate

h = deformed O-ring thickness Y = axial distance from O-ring center

I = groove width 0 = normalized squeeze (i.e., fractional
q = chord diameter compression)

Q = normalized chord diameter, g/d o, = equivalent normalized squeeze
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INTRODUCTION

Elastomeric O-ring seals have a broad range of service conditions that make the O-
ring ideal for static and dynamic sealing functions. Its abilityetd en relatively rough
surface finishes offers one of the economical solutions to sealingprebElastomeric O-
rings are capable of undergoing large deformations under compression. gleaces are
often used to restrict this deformation, resulting in improvedingealapabilities and
prevention of creep and extrusion. The complex geometry confederdte¢dendeformation
of restrained O-rings and nonlinear material hyperelasticity readalytical solutions
infeasible. This complicated geometry and experimental inconveniekesax@gerimental
data hard to obtain. It is here where the utility of the fieieament method becomes
prominent. By performing a FEM analysis, comparison of the resultsecarade to cases
where experimental data is procurable. Then, conclusions can be driavwheagalidity of
FEM solutions of geometries where experimental data cannot be easily obtained.

The stiffness relationships
associated with the compression of
elastomeric torroidal O-ring seals ha
recently been studied by Green arld
English (1992) for the cases shown i
Figure 1. That work provided empirical A B
expressions for the prediction of
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compression forces and stiffnesses |at i
squeeze levels up to 32 percent. Sealihg 2 é/%
capabilities, however, depend upon the ?’%,////,%‘K
stress related parameters at the interfage. c

It was as early as Lindly's work (1967)Figure1 (A) Unrestrained Radial Loading. (B)
who proposed that leakage onset occushrestrained Axial Loading. (C) Restrained
when the pressure differential across tiRadial Loading. (D) Restrained Axial loading.
seal, P, barely exceeds the initial (or

static) peak contact stress, Ji.e., P>

Sna- It should be noted that any increase in the contact steessed by the pressure
loading, is ignored using this theory. Simplified expressions relating ¢avititb to peak
contact stress have been developed in order to predictAsuming unrestrained loading
and plain strain Lindley (1967) obtained the contact width, b, normalizedesipect to the
wire diameter, d, [see Figures 2(a) and 3]
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Figure 2(a) Unrestrained geometry Figure 2(b) Section of a restrained O-ring
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and the peak contact stresg,Snormalized with respect to the modulus of elasticity, E,
1

S 3
Pmax {E (1.2552 + 5066)]2 (2)
E 611

Hered=x'/d, is the normalized squeeze, i.e., tHe ..., ,
compressive displacemenit, divided by the wire |« **
diameter, d. The first term in the equations was .
obtained using Hertzian theory, and the secopd

term was added to correct for empirical data jat

high squeeze levels.

Wendt (1971) examined stres$ T
distributions in O-rings and X-rings, with
emphasis on groove design. The mopt
significant result of his work includes ar 7
expression for contact width of an unrestrained Nail profile
axially loaded O-ring. Molari (1973), who = , —
examined the stress and contact relatgdgureg’. Stress_ proflle.deflnltlon for
parameters of O-rings using photoelastfénreStra'ned axial loading.
techniques, lent credence to the findings of
Wendt and was one of the firsts to examine the problem of resti@inied seals. Molari's work,
however, considered one lateral wall only. Dragoni and Strozzi (198&)sad@hotoelasticity, but
investigated an O-ring restrained between two lateral walldefined in Figure 2(b). These
researchers assumed that plane strain conditions were prevaitindhes did not address the
condition of axisymmetric loading.

George, Strozzi, and Rich (1987) supported Lindley's results usingeadiaiment code
developed especially for the task. Experimental data taken was eahtpahe results obtained by
numerical solution. Later Dragoni and Strozzi (1988) examined the caserafl{jatestrained O-
ring seals in a groove using a modification of the FEM code. Theagegeie also limited to plain
strain conditions. Using Lindley's model of Hertzian contact stteey offered an approximate
analytical method for "moderately” compressed O-rings up to about 15peqeeeze. A stress
related parameter was given in terms of a normalized deforinoed diameter, Q = g/d (see Figure
3). By fitting a curve to experimental results (Strozzi, 1986), thesactexized Q as a function of
o)

global x

\ I
k—‘ ’—L}b : —— or radial

0=1+0.41535 + 1.15 &% = £(3) (3)

where the right-hand side emphasizes the functional form of thei@guas needed for later
derivations. Using only the first term of Eq. (2) the peak contact stress was given as

S El
max _ ﬂ 6 4 (4)
E 3m

In a compromise between accuracy and simplicity they preferdée(1971) description of the
contact width
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At this point Dragoni and Strozzi (1988) developed an equivalent normalized sdijgeze,
which can be used in modeling the characteristics of restrained O-rings. Themiptatused to
denote the effects of the particular groove wall defined perpendiouddther the i or j direction.
For example, for restrained radial loading the equivalent squeezexiulitieetion,d,,, denotes the
squeeze associated in part to the squeeze directly applied indifextion and in part to the
constraint of the walls which are perpendicular to the y direction. Alternately sfoaireed axial
loading.,, is the equivalent normalized squeeze on the groove walls perpendithkatdp/bottom
compressive surfaces. By definitidy, is estimated as a ratio. The numerator is the difference
between two terms: (i) a virtual deformed chord diameter alongdes caused by the compression
d,, [and is calculated by substitutifg, into Eq. (3)]; (ii) the deformed O-ring thicknesgshown
in Figure 2(b)]. The denominator is the undeformed wire diameter, d. Hence,

d£(5,,) - h h

6Yx:—d:f(6xy) _E (6)

wheref is the functional given in Eq. (3). Applying similar reasoning in the melipalar x-
direction, and using the groove width{as the O-ring thickness), gives the equivalent squeeze

dr(s,) - 1
= - £(5,) -
Xy d yx

(7)

Q, |~

These relationships provide estimates for any groove dimensions (allihipgssibility of a gap
between the undeformed O-ring and the lateral wallsl »el). Next, we define the particular case
(subscripted here with the lettgmwhere the groove lateral walls are tangent to the undeformed O-
ring, i.e.,I = d as shown in Figure 2(b). Combination of Egs. (6) and (7) yields

Bupe = £(£(8,,) ~1) — = (8)

where the functional form of Eq. (3) is used repeatedly. Eq. (8) caoled iteratively fod,,.
Thend,, is calculated by Eq. (7), and by substitution into Egs. (4) and (5)aimealized peak
contact stress and the normalized contact width can be determined in the respedivasli
Since in all the aforementioned work plain strain conditions prevatl@dplies that no
distinction exists between axial and radial loading. This was fawalid in some important
loading conditions for the compression force and stiffness (Green ardi£i§i92). The loading
cases in Figure 1 are investigated here to determine contasdestrand contact widths under
axisymmetric conditions. These include a highly frictional ("unlubri£3teontact where surface
sliding is prevented in an unrestrained axial loading; and frictiofllesdectly lubricated") contacts
where forceless surface sliding exist in axial, radial, restch and unrestrained loadings. The
commercial code ANSYS and the nonlinear techniques, described indhe&mglish (1992) and
in greater detail in English (1989), are utilized. Reduced integriatexclusively applied as it was
found to give most accurate results. These are best regedanhormalized forms, proven
indifferently to the aspect ratio, d/D. Convergence is discusselddlewn the last two references.
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STRESSPARAMETERSRESULTS

Vernacular for this discussion includes "primary wall" and "lateedl.” The primary wall
or walls are the surfaces which move together to force the compression of the O-ring. The
lateral walls are the sides of the restraining groove. InitEllwvalls are tangent to the undeformed
geometry of the O-ring. For the axial case the top and bottom walls arenttagypwalls, and for
the radial case the inside and outside walls are the primary walls.

Contact stress profiles are plotted as the normalized nodal stress compghent S2E,
versus the normalized x or y coordinates (X/d or Y/d), respectively. For example, Fithores3 s
the X-coordinate, defined relative to the deformed nominal radiyg2.D X is the horizontal
distance from the center of the O-ring cross-section to a node ampgrimeter. The normalized
stress of interest here is the y-component of the nodal styéss,|&the plots Fis shown instead
to designate neo-Hookean material representation, justified for use by Green and E8§R3h (

The first contact pressure profile, shown in Figure 4, was producedafrgnadrilateral
element mesh, using reduced integration (Green and English, 1992). Six profiles were chosen
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Figure4 Primary wall contact stress profile Figure5 Primary wall contact stress profile for
for unrestrained - perfectly lubricated unrestrained - unlubricated axially loaded O-
axially loaded O-ring. ring (the only fixed case)

from ten load steps of 3.2 percent squeeze each, and are reprdsetitecsymbols given in the
legend. Two other features can be extracted from the figur@hdinormalized deformed chord
diameter, Q=qg/d, is the farthest distance between two opposite poietsch profile, and (ii) the
normalized contact width, b/d, is the distance between two points brpeside where the curve
intersects the zero stress line. Notice that Q and b/d deeethif at each load step. Finally, there
is a condition of symmetry about the x-z plane, of the global coordinate system, $undititihe
top and bottom profiles are identical and, therefore, only one is showre tMhiprofiles appear
symmetric about X/d=0, close examination of the results revealsaisieer This is due to the
imposition of axisymmetric conditions upon the solution (rather than plain strain conditions).
Figure 5 shows the contact stress profile for the unlubricatedofaseestrained axial
loading (where a coefficient of friction 0.9 was used). The asymrisatnuch more pronounced in



this case. It should also be noted that the peak valygsf&ighly 85 percent higher than that for
the lubricated case. This increase in peak contact stress @plamed by the fact that the
deformed nominal diametery[@ does not expand as the load increases. Actuglldé&reases as
the loading is applied, although, only a small amount. A comparison of Figarek5, shows that
friction has a dominating role in stress profile development.

Turning to radial compression, Figure 6 shows how the contact stressspaoéildefined.

is the stress component of interest here
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Figure6 Stress profile definition for Figure7 Contact stress profile for
unrestrained radial loading. unrestrained radial loading. Half profiles for

the inside and outside primary walls are shown.

O-ring cross section to a node on the perimeter. g is the defohnedidiameter parallel to the
compressive surfaces. Because the model is not symmetric abgtt fitene the stresses on both
walls, the inside primary wall and the outside primary wall, must be examined.

The stress profiles for unrestrained radial loading are shown irgHigiitere we notice that
the outside primary wall profile is larger than the inside prinaaatyprofile. This is due to nominal
diameter contraction during axisymmetric loading. Figure 7 exempifi@is the necessity of using
an axisymmetric model to represent the O-ring. While the difterbetween the inside and outside
walls is minor for this particular restraining configuration it cblsé much more significant for a
different type of loading.

Next up for attention are the restrained cases. Figure 8 thiggsrofile definition for
restrained axial loading. Note that the profiles are symmetric about the x-z plameeghaivey
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Figure8 Profile definition for restrained Figure9 Profile definition for restrained
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are not symmetric about the y-z plane. The restrained radialgpdefihition can be seen in Figure
9. This profile is similar to the previous profile in that the Bygtry planes are the same. However,
the primary and lateral walls are different. Note the dedingifor the contact widttsandc on the
primary and lateral walls, respectively.

Figures 10 and 11 show the profiles for the primary and lateral walls, respectivetg for t
restrained axially loaded O-ring. The half profiles for the inside and outside \atdiakshow

S

Nrsiztockate ) Nraiizlyue (1

Figure10 Contact stress profile for Figure1l Contact stress profile for inside and
primary wall of restrained axial loading. outside lateral walls for restrained axial
loading.

that there is a difference between lateral wall profileene axisymmetric loading is concerned.
Here the peak value of S/E§ 17 percent larger for the primary wall than that for the-dateall.
Figures 10 and 11 show an interesting formation of significant compressivalrstresses at the
O-ring surface that is in contact with the respective retgiwalls. Molari (1973), using
bidimensional photoelastic techniques, obtained similar profiles; howbeeutface stresses did
not show up in his work because they were masked by the physical boundariest #pparatus.
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Figure12 Contact stress profile for inside Figure13 Contact stress profile for lateral
and outside primary walls for restrained wall of restrained radial loading.
radial loading.
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Next we consider the case of restraingd
radial loading. Contact stress profiles for the
primary and lateral walls are given in Figur
12 and 13, respectively. In Figure 12
difference exists in the half profiles for th
inside (left) and outside (right) primary walls
Peak contact stress values for the primary wajls
are about 34 percent greater than those for the
lateral wall. Also here there are surface stresges
at the retaining walls.

The final case under investigation i
that for plane strain loading. Figure 14 shows
the stress profile for unrestrained plane strain
loading. Plane strain loading profiles for th
restrained case are given in Figures 15 and 16.
In this case there is symmetry about both the - .
z and y-z planes. Hence, there is no need fof ure 14~ Contact stress profile for
half profile plot of inside or outside walls. ijunrestrained plane strain loading primary wall.
can be seen by comparing the stress profiles
from plain strain loading to all previous cases that there ign#fisant difference in the profiles,
especially in radial loading and peak contact stresses. teigftre, concluded that plain strain
conditions do not commonly describe O-ring compression.
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Figure15 Contact stress profile for Figure16 Contact stress profile for plane

restrained plane strain loading primary wall. strain loading lateral walls.

PEAK CONTACT STRESS

Peak contact stress is of interest in order to estimatiliey of the O-ring to form a seal
(Lindley, 1967). Figure 17 contains the compilation of peak contact strésseinrestrained
loadings, i.e., axial, radial, and plane strain. It can be seen thatrtiey wall peak contact stress
response for radial loading is the greatest. This is followed Isritgs response of the unlubricated
axial loading, which is significantly greater than its lubricatedatative. Furthermore, we see that
both Lindley's predictions underestimate the peak contact stress throtightmading range with
the exception of the plane strain case. The latter case agtatigely well with the prediction
Lindley derived from Hertzian theory (Eq. (2), but without the second correction term). hidbte t



91

the empirically added correction term causé

an overestimation of the peak contact stre
for squeezes above 24 percent.
Lindley gives no prediction for the

peak contact stress of a restrained O-ring.

The comparison to Dragoni and Strozz

(1988) prediction can be seen in Figures 1

and 19. Their prediction agrees relativel
well with the axial and plane strain results
but, underestimates the peak contact strg
for radial loading. Where the lateral wall i
concerned Strozzi's prediction
underestimates the peak contact stre
response for all cases. It is interesting th
the lateral wall response for radial loading

SS
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S

less than the responses for both axial a

hd

plane strain cases.

comparison, that Strozzi's model is relativelynrestrained loading.
accurate for predicting the peak contact
stress for the primary wall of restrained axial and restrairstepstrain cases, but it breaks down
in radial loading and where the lateral wall is concerned.

It seems from thisigure1l7 Peak contact stress results for

T
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Figure 18 Peak contact stress results
for restrained loading primary wall.

Figure19 Peak contact stress for restrained
loading lateral wall.

The lack of agreement to analytical work prompts the determinatitme peak contact
stress from the numerical data. This is accomplished by fitfiotyaomial to the numerical results.

Second and third order polynomials are proposed as follows:

max

E

= ad + b&?

S,
—= = cd + d®® + ed’
E

(9)

(10)
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where the coefficients are given in Table 1. While Eqg. (10) produces an excgllent {o) may
be used for simplicity with satisfactory results.

Tablel Least squares coefficients for the calculation of the peak contact stress

Loading Case a b c d e
Unrestrained lubricated axial primary wall 2.05721417 2.6296 -8.8589 12.8391
Unrestrained unlubricated axial primary wall 2.009D2211 2.8383 -8.5051 18.6031
Unrestrained lubricated radial primary wall 2.489115967 3.4591 -11.2857 21.7583
Unrestrained lubricated plane strain primary wall 2320 -2.8961 3.0373 -10.9192 18.0171
Restrained axial primary wall 1.9715 3.1502 298 -23.0013 82.6963
Restrained axial lateral walll 1.0497 6.4631 584 -16.1793 71.5999
Restrained radial primary wall 2.1587 6.77299363 -32.3232 123.630
Restrained radial lateral wall 0.5844 8.793030R3 -15.3593 76.3744
Restrained plane strain primary wall 1.9933 3.27410499 -25.6765 91.5384
Restrained plane strain lateral wall 0.9400 7.51826698 -16.8290 76.9908

CONTACT WIDTH RESULTS

In Figure 3 the contact width, b, i
defined as the length of the circumference pf
the O-ring, from a cross-sectional view, that
makes contact with the compressing surfage.
This information is useful in calculating thg
total load required to compress the O-ring and
in determining the contact stress profile whegn
using Hertzian theory. Both Lindley (1967) .
and Wendt (1971) propose expressions whith
approximate the contact width as a function pf =
compression for unrestrained loading, arjd
Dragoni and Strozzi (1988) propos¢
corresponding expressions for restraingd . |
loading. As illuminated in the introduction
these were developed assuming plain strai
conditions. This section compares resulls
obtained in this research to those predicted py

the other researchers. _ ~ Figure20 Normalized contact width as a
The error associated with the numericalinction of compression for unrestrained
results is significant when considering thR)ading. Included are Lindley and Wendt's

technique used to obtain the contact width. Prediction as well as the results from nodal
Figure 20 there are several data points Witlisplacements.

approximately identical values of b/d. This

comes from the discrete points used to obtain

the contact width. As the loading is applied, new nodes may or may nofrtonaentact with the
compressing surfaces. Several data points with the same valderaply that no new nodes have
come into contact during that portion of the loading sequence. Physicalbntiaet width response
is a continuous phenomenon. By discritizing the mesh we turn this respaosa discrete
phenomenon. Consequently the first data point, of those which have the agniride of b/d, is

3
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the most accurate. Therefore, the contact width shown is an underestimatieractual contact
width.

Contact width data, for the cases of unrestrained loading can benseigiurie 20. The
numerical results from the unlubricated axial and radial casesaghesith Wendt's prediction,
Eqg. (5), up to roughly 24 percent compression. Lindley's prediction, Eq. (1), undatestthe
numerical contact width throughout the load range. For the lubricatatlaad case Wendt's
expression begins to overestimate the contact width at approximatelscé@tpmmpression while
Lindley's expression underestimates, at low compression, and over testithaat higher
compressions. From this we may conclude that Wendt's prediction isagemaall compressions
and that Lindley's prediction should generally not be used.

Now we turn to restrained loading while probing Strozzi's approach a&ssalitiom Eq. (3)
through Eq. (8). To do so a second order polynomial [similar to Eq. (3)] must first be fitted to the
data obtained from the FE analysis of the three unrestrained loadinids rdubricated and
unlubricated axial loading, and radial loading). By extracting nodal dispkus from the output
it is possible to obtain the normalized deformed chord diameterh&aontubricated-unrestrained
axial loading case the fitted polynomial is

0=1+0.2105 + 0.65752 (11)

For the lubricated-unrestrained axial loading case the polynomial obtained is
O0=1+0.3615 + 1.5475&? (12)

and for the unrestrained radial loading case the polynomial obtained is

O0=1+0.3558 + 1.62652 (13)

The contact width results for restrained loading can be examineglireBi21 and 22 for the primary
wall and lateral walls, respectively. Looking at Figure 21 we see that the predictions

Y /,e/'"
" /b/ " '
- | * u "
Figure21 Contact width as a function Figure22 Contact width as a function of
of compression for the primary wall compression for the lateral wall of a restrained

of a restrained O-ring. O-ring.
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in the solid lines, using Eqgs. (12) and (13) as well as Strozzi'§3ggproduce overestimates
compared to the numerical nodal contact width at the primary aratdmpressions below 19
percent. Atthe extreme compressions the normalized chord didgeatteique underestimates the
contact width of the primary wall of a restrained radifdigded O-ring. However, as mentioned
above, these numerical data points underestimate the actual @adtactTherefore, the prediction
may be considered to give a fairly accurate prediction of contact width.

In Figure 22 we see that Strozzi's technique is a closer apm@tan to the lateral wall
contact width of a restrained axially loaded O-ring. But, the figlseeshhows that the technique is
a gross underestimate of the lateral wall contact width f@saained radially loaded O-ring.
Without more experimental results it is hard to make a siilmement as to the accuracy of either
Strozzi's approach or the current numerical approach. It canafjgrer said, however, that the
numerical results underestimate the actual contact width andatteetbe method Strozzi suggests
is valid, with exception to the radially loaded case at the lateral wall.

CONCLUSIONS

Acquisition of the stress parameters requires more effohieipostprocessing phase of a
finite element analysis, but compared to the extensive testing equipgneaired for experimental
stress data acquisition, this methodology is far less expensivenis t#rresources and time.
Another feature that FEA has to offer is the ability to examine surface dtsthat is otherwise
hidden by the boundary of experimental apparatus.

The most profound finding of this work is the identification of a sigaiit difference
between the peak contact stress response of plane strain modelsisymimetric models of
hyperelastic O-rings (see Figs. 17 through 19, and Table 1). This @utatyi true for the case of
unrestrained loading . The plane strain results obtained agreesitvedose predicted by Wendt.
However, Wendt's prediction of peak contact stress response greatlgsiimdated the response
generated by axisymmetric loading. Results obtained from axisymommeideling of the lubricated-
axially loaded O-ring also indicate that the plane strain assuniptian valid for prediction of the
peak contact stress response for this particular case.

Contact width examinations performed in this work yield the most incamelussults out
of all the topics investigated. This is primarily because thénrisdite at the perimeter and only
discrete information about the contact width is available. Clbattgr results can be obtained with
a much refined mesh at the expense of computer time. Giveresh#srfor unlubricated-
unrestrained axial loading reasonable agreement exists with Wanedition for compressions up
to 15 percent. Lindley's prediction underestimates the contact wesitbmse for all cases except
lubricated-unrestrained axial loading.

Looking at the cases of restrained loading, only Strozzi offered aniaabhtgthnique of
predicting contact width and stress. To conform with that techniqueitherical results were fitted
to produce expressions for the normalized chord diameter in Egs. (11) H@Bgver, the use of
these equations, in the procedure outlined from Eq. (3) through Eq. (8)stivetes the contact
width compared to numerical data obtained from the deformed nodalima®@s. Strozzi's
prediction underestimates the lateral wall stress responefaxisymmetric axial and plane strain
cases, yet it gives relatively good agreement to the axisymmeaetiid case for compressions below
10 percent. For compressions above 10 percent Strozzi's predictionagdgiaestimates the peak
contact stress response.

Due to the lack of consistent agreement between the resulireabteere and previous
analytical work an alternate empirical procedure is proposed. Tdieqoatact stresses can be
determined using Egs. (9) or (10) for the ten loading conditions listedlile .. According to
Lindley (1967) these equations provide estimates of the maximum pressure an O-rindi can sea
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