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ABSTRACT

The sealing capability of an elastomeric O-ring seal depends upon the contact stresses
that develop between the O-ring and the surfaces with which it comes into contact.  It has
been suggested in the literature that leakage will occur when the pressure differential across
the seal just exceeds the initial (or static) peak contact stress.  The stresses that develop in
compressed O-rings, in common cases of restrained and unrestrained geometries (grooved
and ungrooved), are investigated using the finite element method.  The analysis includes
material hyperelasticity and axisymmetry.  Contact stress profiles, and peak contact stresses
are plotted versus squeeze, up to 32 percent.  The contact width, which is the length of the
O-ring that touches the retaining surfaces when viewed from the cross-section, is also
determined.  Expressions are derived empirically to predict the peak contact stress and the
contact width.  These expressions are also compared to those obtained by other researchers
(who assumed plain strain conditions) and conclusions to their validity are drawn.

NOMENCLATURE

b = contact width S = compressive stress
d = wire diameter x* = displacement
D = nominal (mean) diameter x = radial coordinate
Ddef = deformed mean diameter X = radial distance from O-ring center
E = modulus of elasticity y = axial coordinate
h = deformed O-ring thickness Y = axial distance from O-ring center
l = groove width * = normalized squeeze (i.e., fractional
q = chord diameter    compression)
Q = normalized chord diameter, q/d *ij = equivalent normalized squeeze
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Figure 1  (A) Unrestrained Radial Loading. (B)
Unrestrained Axial Loading. (C) Restrained
Radial Loading. (D) Restrained Axial loading.

Figure 2(a)  Unrestrained geometry Figure 2(b)  Section of a restrained O-ring

INTRODUCTION

Elastomeric O-ring seals have a broad range of service conditions that make the O-
ring ideal for static and dynamic sealing functions.  Its ability to seal on relatively rough
surface finishes offers one of the economical solutions to sealing problems.  Elastomeric O-
rings are capable of undergoing large deformations under compression.  Hence, grooves are
often used to restrict this deformation, resulting in improved sealing capabilities and
prevention of creep and extrusion.  The complex geometry confederated with the deformation
of restrained O-rings and nonlinear material hyperelasticity render analytical solutions
infeasible.  This complicated geometry and experimental inconvenience make experimental
data hard to obtain.  It is here where the utility of the finite element method becomes
prominent.  By performing a FEM analysis, comparison of the results can be made to cases
where experimental data is procurable.  Then, conclusions can be drawn as to the validity of
FEM solutions of geometries where experimental data cannot be easily obtained.

The stiffness relationships
associated with the compression of
elastomeric torroidal O-ring seals have
recently been studied by Green and
English (1992) for the cases shown in
Figure 1.  That work provided empirical
expressions for the prediction of
compression forces and stiffnesses at
squeeze levels up to 32 percent.  Sealing
capabilities, however, depend upon the
stress related parameters at the interface.
It was as early as Lindly's work (1967),
who proposed that leakage onset occurs
when the pressure differential  across the
seal, P, barely exceeds the initial (or
static) peak contact stress, Smax (i.e., P $
Smax).  It should be noted that any increase in the contact stress, caused by the pressure
loading, is ignored using this theory.  Simplified expressions relating contact width to peak
contact stress have been developed in order to predict Smax.  Assuming unrestrained loading
and plain strain Lindley (1967) obtained the contact width, b, normalized with respect to the
wire diameter, d, [see Figures 2(a) and 3]
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Figure 3  Stress profile definition for
unrestrained axial loading.
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and the peak contact stress, Smax, normalized with respect to the modulus of elasticity, E,

Here *=x*/d, is the normalized squeeze, i.e., the
compressive displacement, x*, divided by the wire
diameter, d.  The first term in the equations was
obtained using Hertzian theory, and the second
term was added to correct for empirical data at
high squeeze levels.

Wendt (1971) examined stress
distributions in O-rings and X-rings, with
emphasis on groove design.  The most
significant result of his work includes an
expression for contact width of an unrestrained
axially loaded O-ring.  Molari (1973), who
examined the stress and contact related
parameters of O-rings using photoelastic
techniques, lent credence to the findings of
Wendt and was one of the firsts to examine the problem of restrained O-ring seals.  Molari's work,
however, considered one lateral wall only.  Dragoni and Strozzi (1988) also used photoelasticity, but
investigated an O-ring restrained between two lateral walls as defined in Figure 2(b).  These
researchers assumed that plane strain conditions were prevailing and thus did not address the
condition of axisymmetric loading.

George, Strozzi, and Rich (1987) supported Lindley's results using a finite element code
developed especially for the task.  Experimental data taken was compared to the results obtained by
numerical solution.  Later Dragoni and Strozzi (1988) examined the case of laterally restrained O-
ring seals in a groove using a modification of the FEM code.  The results were also limited to plain
strain conditions.  Using Lindley's model of Hertzian contact stress, they offered an approximate
analytical method for "moderately" compressed O-rings up to about 15 percent squeeze.  A stress
related parameter was given in terms of a normalized deformed chord diameter, Q = q/d  (see Figure
3).  By fitting a curve to experimental results (Strozzi, 1986), they characterized Q as a function of
*

where the right-hand side emphasizes the functional form of the equation, as needed for later
derivations.  Using only the first term of Eq. (2) the peak contact stress was given as

In a compromise between accuracy and simplicity they prefer Wendt's (1971) description of the
contact width
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At this point Dragoni and Strozzi (1988) developed an equivalent normalized squeeze, *ij,
which can be used in modeling the characteristics of restrained O-rings.  The notation ij is used to
denote the effects of the particular groove wall defined perpendicular to either the i or j direction.
For example, for restrained radial loading the equivalent squeeze in the x direction, *xy, denotes the
squeeze associated in part to the  squeeze directly applied in the x direction and in part to the
constraint of the walls which are perpendicular to the y direction.  Alternately, for restrained axial
loading, *yx is the equivalent normalized squeeze on the groove walls perpendicular to the top/bottom
compressive surfaces. By definition *yx is estimated as a ratio.  The numerator is the difference
between two terms: (i) a virtual deformed chord diameter along the y-axis caused by the compression
*xy [and is calculated by substituting *xy into Eq. (3)]; (ii) the deformed O-ring thickness, h [shown
in Figure 2(b)].  The denominator is the undeformed wire diameter, d.  Hence,

where f is the functional given in Eq. (3).  Applying similar reasoning in the perpendicular x-
direction, and using the groove width, l (as the O-ring thickness), gives the equivalent squeeze

These relationships provide estimates for any groove dimensions (allowing the possibility of a gap
between the undeformed O-ring and the lateral walls, i.e., l > d).  Next, we define the particular case
(subscripted here with the letter t) where the groove lateral walls are tangent to the undeformed O-
ring, i.e., l = d as shown in Figure 2(b).  Combination of Eqs. (6) and (7) yields

where the functional form of Eq. (3) is used repeatedly.  Eq. (8) can be solved iteratively for *tyx.
Then *txy is calculated by Eq. (7), and by substitution into Eqs. (4) and (5) the normalized peak
contact stress and the normalized contact width can be determined in the respective directions.

Since in all the aforementioned work plain strain conditions prevailed, it implies that no
distinction exists between axial and radial loading.  This was found invalid in some important
loading conditions for the compression force and stiffness (Green and English, 1992).  The loading
cases in Figure 1 are investigated here to determine contact stresses and contact widths under
axisymmetric conditions.  These include a highly frictional ("unlubricated") contact where surface
sliding is prevented in an unrestrained axial loading; and frictionless ("perfectly lubricated") contacts
where forceless surface sliding exist in axial, radial, restrained, and unrestrained loadings.  The
commercial code ANSYS and the nonlinear techniques, described in Green and English (1992) and
in greater detail in English (1989), are utilized.  Reduced integration is exclusively applied as it was
found to give most accurate results.  These are best represented in normalized forms, proven
indifferently to the aspect ratio, d/D.  Convergence is discussed in whole in the last two references.
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Figure 4  Primary wall contact stress profile
for unrestrained - perfectly lubricated
axially loaded O-ring.

Figure 5  Primary wall contact stress profile for
unrestrained - unlubricated axially loaded O-
ring (the only fixed case)

STRESS PARAMETERS RESULTS
Vernacular for this discussion includes "primary wall" and "lateral wall."  The primary wall

or walls are the surfaces which move together to force the compression of the O-ring.  The 
lateral walls are the sides of the restraining groove.  Initially all walls are tangent to the undeformed
geometry of the O-ring.  For the axial case the top and bottom walls are the primary walls, and for
the radial case the inside and outside walls are the primary walls.

Contact stress profiles are plotted as the normalized nodal stress component, Sy/E or Sx/E,
versus the normalized x or y coordinates (X/d or Y/d), respectively.  For example, Figure 3 shows
the X-coordinate, defined relative to the deformed nominal radius, Ddef/2.  X is the horizontal
distance from the center of the O-ring cross-section to a node along the perimeter.  The normalized
stress of interest here is the y-component of the nodal stress, Sy/E.  In the plots Eo is shown instead
to designate neo-Hookean material representation, justified for use by Green and English (1992).

The first contact pressure profile, shown in Figure 4, was produced from a quadrilateral
element mesh, using reduced integration (Green and English, 1992).  Six  profiles  were chosen

from ten load steps of 3.2 percent squeeze each, and are represented by the symbols given in the
legend.  Two other features can be extracted from the figure:  (i) The normalized deformed chord
diameter, Q=q/d, is the farthest distance between two opposite points on each profile, and (ii) the
normalized contact width, b/d, is the distance between two points on each profile where the curve
intersects the zero stress line.  Notice that Q and b/d are different at each load step.  Finally, there
is a condition of symmetry about the x-z plane, of the global coordinate system, such that both the
top and bottom profiles are identical and, therefore, only one is shown.  While the profiles appear
symmetric about X/d=0, close examination of the results reveals otherwise.  This is due to the
imposition of axisymmetric conditions upon the solution (rather than plain strain conditions).

Figure 5 shows the contact stress profile for the unlubricated case of unrestrained axial
loading (where a coefficient of friction 0.9 was used).  The asymmetry is much more pronounced in



Figure 6  Stress profile definition for
unrestrained radial loading.

Figure 7   Contact stress profile for
unrestrained radial loading.  Half profiles for
the inside and outside primary walls are shown. 

Figure 8   Profile definition for restrained
axial loading.

Figure 9   Profile definition for restrained
radial loading.

this case.  It should also be noted that the peak value of Sy is roughly 85 percent higher than that for
the lubricated case.  This increase in peak contact stress can be explained by the fact that the
deformed nominal diameter, Ddef, does not expand as the load increases.  Actually Ddef decreases as
the loading is applied, although, only a small amount.  A comparison of Figures 4 and 5, shows that
friction has a dominating role in stress profile development.

Turning to radial compression, Figure 6 shows how the contact stress profiles are defined.
Sx is the stress component of interest here, and Y is the vertical distance from the center of the

O-ring cross section to a node on the perimeter.  q is the deformed chord diameter parallel to the
compressive surfaces.  Because the model is not symmetric about the y-z plane the stresses on both
walls, the inside primary wall and the outside primary wall, must be examined.

The stress profiles for unrestrained radial loading are shown in Figure 7.  Here we notice that
the outside primary wall profile is larger than the inside primary wall profile.  This is due to nominal
diameter contraction during axisymmetric loading.  Figure 7 exemplifies again the necessity of using
an axisymmetric model to represent the O-ring.  While the difference between the inside and outside
walls is minor for this particular restraining configuration it could be much more significant for a
different type of loading.

Next up for attention are the restrained cases.  Figure 8 gives the profile definition for
restrained axial loading.  Note that the profiles are symmetric about the x-z plane; however, they



89

Figure 10   Contact stress profile for
primary wall of restrained axial loading.

Figure 11   Contact stress profile for inside and
outside lateral walls for restrained axial
loading.

Figure 12   Contact stress profile for inside
and outside primary walls for restrained
radial loading.

Figure 13   Contact stress profile for lateral
wall of restrained radial loading.

are not symmetric about the y-z plane.  The restrained radial profile definition can be seen in Figure
9.  This profile is similar to the previous profile in that the symmetry planes are the same.  However,
the primary and lateral walls are different.  Note the definitions for the contact widths b and c on the
primary and lateral walls, respectively.

Figures 10 and 11 show the profiles for the primary and lateral walls, respectively, for the
restrained axially loaded O-ring.  The half profiles for the inside and outside lateral walls show

that there is a difference between lateral wall profiles where axisymmetric loading is concerned.
Here the peak value of S/Eo is 17 percent larger for the primary wall than that for the lateral wall.
Figures 10 and 11 show an interesting formation of significant compressive normal stresses at the
O-ring surface that is in contact with the respective retaining walls.  Molari (1973), using
bidimensional photoelastic techniques, obtained similar profiles; however, the surface stresses did
not show up in his work because they were masked by the physical boundary of the test apparatus.
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Figure 14    Contact stress profile for
unrestrained plane strain loading primary wall.

Figure 15   Contact stress profile for
restrained plane strain loading primary wall.

Figure 16   Contact stress profile for plane
strain loading lateral walls.

Next we consider the case of restrained
radial loading.  Contact stress profiles for the
primary and lateral walls are given in Figures
12 and 13, respectively.  In Figure 12 a
difference exists in the half profiles for the
inside (left) and outside (right) primary walls.
Peak contact stress values for the primary walls
are about 34 percent greater than those for the
lateral wall.  Also here there are surface stresses
at the retaining walls.

The final case under investigation is
that for plane strain loading. Figure 14 shows
the stress profile for unrestrained plane strain
loading.  Plane strain loading profiles for the
restrained case are given in Figures 15 and 16.
In this case there is symmetry about both the x-
z and y-z planes.  Hence, there is no need for a
half profile plot of inside or outside walls.  It
can be seen by comparing the stress profiles
from plain strain loading to all previous cases that there is a significant difference in the profiles,
especially in radial loading and peak contact stresses.  It is, therefore, concluded that plain strain
conditions do not commonly describe O-ring compression.

PEAK CONTACT STRESS
Peak contact stress is of interest in order to estimate the ability of the O-ring to form a seal

(Lindley, 1967). Figure 17 contains the compilation of peak contact stresses for unrestrained
loadings, i.e., axial, radial, and plane strain.  It can be seen that the primary wall peak contact stress
response for radial loading is the greatest.  This is followed by the stress response of the unlubricated
axial loading, which is significantly greater than its lubricated correlative.  Furthermore, we see that
both Lindley's predictions underestimate the peak contact stress throughout the loading range with
the exception of the plane strain case.  The latter case agrees relatively well with the prediction
Lindley derived from Hertzian theory (Eq. (2), but without the second correction term).  Note that
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Figure 17   Peak contact stress results for
unrestrained loading.

Figure 18   Peak contact stress results
for restrained loading primary wall.

Figure 19   Peak contact stress for restrained
loading lateral wall.
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the empirically added correction term causes
an overestimation of the peak contact stress
for squeezes above 24 percent.

Lindley gives no prediction for the
peak contact stress of a restrained O-ring.
The comparison to Dragoni and Strozzi
(1988) prediction can be seen in Figures 18
and 19.  Their prediction agrees relatively
well with the axial and plane strain results,
but, underestimates the peak contact stress
for radial loading.  Where the lateral wall is
conce rned  S t rozz i ' s  p r e d i c t i o n
underestimates the peak contact stress
response for all cases.  It is interesting that
the lateral wall response for radial loading is
less than the responses for both axial and
plane strain cases.  It seems from this
comparison, that Strozzi's model is relatively
accurate for predicting the peak contact
stress for the primary wall of restrained axial and restrained plane strain cases, but it breaks down
in radial loading and where the lateral wall is concerned.

The lack of agreement to analytical work prompts the determination of the peak contact
stress from the numerical data.  This is accomplished by fitting a polynomial to the numerical results.
Second and third order polynomials are proposed as follows:
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Loading Case a         b          c          d          e
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

Unrestrained lubricated axial primary wall 2.0572  -3.1417    2.6296    -8.8589   12.8391
Unrestrained unlubricated axial primary wall 2.0090  -0.2211    2.8383    -8.5051   18.6031
Unrestrained lubricated radial primary wall 2.4891  -1.5967    3.4591   -11.2857   21.7583
Unrestrained lubricated plane strain primary wall 2.2340  -2.8961    3.0373   -10.9192   18.0171
Restrained axial primary wall 1.9715   3.1502    3.8295   -23.0013   82.6963
Restrained axial lateral wall 1.0497   6.4631    2.6584   -16.1793   71.5999
Restrained radial primary wall 2.1587   6.7729    4.9363   -32.3232  123.630
Restrained radial lateral wall 0.5844   8.7930    2.3003   -15.3593   76.3744
Restrained plane strain primary wall 1.9933   3.2711    4.0499   -25.6765   91.5384
Restrained plane strain lateral wall 0.9400   7.5182    2.6698   -16.8290   76.9908

Table I  Least squares coefficients for the calculation of the peak contact stress

Figure 20   Normalized contact width as a
function of compression for unrestrained
loading.  Included are Lindley and Wendt's
prediction as well as the results from nodal
displacements.

where the coefficients are given in Table 1.  While Eq. (10) produces an excellent fit, Eq. (9) may
be used for simplicity with satisfactory results.

CONTACT WIDTH RESULTS
In Figure 3 the contact width, b, is

defined as the length of the circumference of
the O-ring, from a cross-sectional view, that
makes contact with the compressing surface.
This information is useful in calculating the
total load required to compress the O-ring and
in determining the contact stress profile when
using Hertzian theory.  Both Lindley (1967)
and Wendt (1971) propose expressions which
approximate the contact width as a function of
compression for unrestrained loading, and
Dragoni and Strozzi (1988) propose
corresponding expressions for restrained
loading.  As illuminated in the introduction
these were developed assuming plain strain
conditions.  This section compares results
obtained in this research to those predicted by
the other researchers.  

The error associated with the numerical
results is significant when considering the
technique used to obtain the contact width.  In
Figure 20 there are several data points with
approximately identical values of b/d.  This
comes from the discrete points used to obtain
the contact width.  As the loading is applied, new nodes may or may not come into contact with the
compressing surfaces.  Several data points with the same value of b/d imply that no new nodes have
come into contact during that portion of the loading sequence.  Physically the contact width response
is a continuous phenomenon.  By discritizing the mesh we turn this response into a discrete
phenomenon.  Consequently the first data point, of those which have the same magnitude of b/d, is
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Q ' 1 % 0.210* % 0.657*
2 (11)

Q ' 1 % 0.361* % 1.547*
2 (12)

Q ' 1 % 0.355* % 1.626*
2 (13)

Figure 21    Contact width as a function
of compression for the primary wall
of a restrained O-ring.

Figure 22   Contact width as a function of
compression for the lateral wall of a restrained
O-ring.

the most accurate.  Therefore, the contact width shown is an underestimation of the actual contact
width.

Contact width data, for the cases of unrestrained loading can be seen in Figure 20.  The
numerical results from the unlubricated axial and radial cases agree well with Wendt's prediction,
Eq. (5), up to roughly 24 percent compression.  Lindley's prediction, Eq. (1), underestimates the
numerical contact width throughout the load range.  For the lubricated axial load case Wendt's
expression begins to overestimate the contact width at approximately 10 percent compression while
Lindley's expression underestimates, at low compression, and over estimates it at higher
compressions.  From this we may conclude that Wendt's prediction is good for small compressions
and that Lindley's prediction should generally not be used.

Now we turn to restrained loading while probing Strozzi's approach as outlined from Eq. (3)
through Eq. (8).  To do so a second order polynomial [similar to Eq. (3)] must first be fitted to the
data obtained from the FE analysis of the three unrestrained loading results (lubricated and
unlubricated axial loading, and radial loading).  By extracting nodal displacements from the output
it is possible to obtain the normalized deformed chord diameter.  For the unlubricated-unrestrained
axial loading case the fitted polynomial is

For the lubricated-unrestrained axial loading case the polynomial obtained is

and for the unrestrained radial loading case the polynomial obtained is

The contact width results for restrained loading can be examined in Figures 21 and 22 for the primary
wall and lateral walls, respectively.  Looking at Figure 21 we see that the predictions
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in the solid lines, using Eqs. (12) and (13) as well as Strozzi's Eq. (3), produce overestimates
compared to the numerical nodal contact width at the primary wall for compressions below 19
percent.  At the extreme compressions the normalized chord diameter technique underestimates the
contact width of the primary wall of a restrained radially loaded O-ring.  However, as mentioned
above, these numerical data points underestimate the actual contact width.  Therefore, the prediction
may be considered to give a fairly accurate prediction of contact width.

In Figure 22 we see that Strozzi's technique is a closer approximation to the lateral wall
contact width of a restrained axially loaded O-ring.  But, the figure also shows that the technique is
a gross underestimate of the lateral wall contact width for a restrained radially loaded O-ring.
Without more experimental results it is hard to make a firm statement as to the accuracy of either
Strozzi's approach or the current numerical approach.  It can generally be said, however, that the
numerical results underestimate the actual contact width and, therefore, the method Strozzi suggests
is valid, with exception to the radially loaded case at the lateral wall.

CONCLUSIONS
Acquisition of the stress parameters requires more effort in the postprocessing phase of a

finite element analysis, but compared to the extensive testing equipment required for experimental
stress data acquisition, this methodology is far less expensive in terms of resources and time.
Another feature that FEA has to offer is the ability to examine surface stress data that is otherwise
hidden by the boundary of experimental apparatus.

The most profound finding of this work is the identification of a significant difference
between the peak contact stress response of plane strain models and axisymmetric models of
hyperelastic O-rings (see Figs. 17 through 19, and Table 1).  This is particularly true for the case of
unrestrained loading .  The plane strain results obtained agreed well with those predicted by Wendt.
However, Wendt's prediction of peak contact stress response greatly underestimated the response
generated by axisymmetric loading.  Results obtained from axisymmetric modeling of the lubricated-
axially loaded O-ring also indicate that the plane strain assumption is not valid for prediction of the
peak contact stress response for this particular case.

Contact width examinations performed in this work yield the most inconclusive results out
of all the topics investigated.  This is primarily because the mesh is finite at the perimeter and only
discrete information about the contact width is available.  Clearly better results can be obtained with
a much refined mesh at the expense of computer time.  Given the results for unlubricated-
unrestrained axial loading reasonable agreement exists with Wendt's prediction for compressions up
to 15 percent.  Lindley's prediction underestimates the contact width response for all cases except
lubricated-unrestrained axial loading.

Looking at the cases of restrained loading, only Strozzi offered an analytical technique of
predicting contact width and stress.  To conform with that technique the numerical results were fitted
to produce expressions for the normalized chord diameter in Eqs. (11) - (13).  However, the use of
these equations, in the procedure outlined from Eq. (3) through Eq. (8), overestimates the contact
width compared to numerical data obtained from the deformed nodal coordinates.  Strozzi's
prediction underestimates the lateral wall stress response for the axisymmetric axial and plane strain
cases, yet it gives relatively good agreement to the axisymmetric radial case for compressions below
10 percent.  For compressions above 10 percent Strozzi's prediction again underestimates the peak
contact stress response.

Due to the lack of consistent agreement between the results obtained here and previous
analytical work an alternate empirical procedure is proposed.  The peak contact stresses can be
determined using Eqs. (9) or (10) for the ten loading conditions listed in Table 1.  According to
Lindley (1967) these equations provide estimates of the maximum pressure an O-ring can seal.
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