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Steady-State Response of a
Flexibly Mounted Stator
Mechanical Face Seal Subject
to Dynamic Forcing of a Flexible
Rotor
Mechanical face seals are constitutive components of much larger turbomachines and
require consideration of the system dynamics for successful design. The dynamic inter-
play between the seal and rotor is intensified by recent trends toward reduced clearances,
higher speeds, and more flexible rotors. Here, the “rotor” consists of the flexible shaft
and the rotating seal seat. The objective here is to, for the first time, determine how the
rotor affects the seal performance and vice versa. Thresholds can then be established
beyond which the rotor influences the seal but not vice versa (i.e., the rotordynamics can
be sent to the seal analysis as an exogenous input). To this end, a model of a flexibly
mounted stator face seal is provided including the coupled dynamics of the flexible rotor.
The model accounts for axial and angular deflections of the rotor and seal. Coupled
rotordynamics are modeled using a lumped-parameter approach including static and
dynamic rotor angular misalignments. For expediency, linearized expressions for fluid
forces are used, and the resulting steady-state equations of motion are solved analytically
to investigate how rotor inertia, speed, and angular misalignment influence the coupled
seal dynamics. Importantly, results from the study reveal that in some operating regimes,
neglecting the rotordynamics implies healthy seal operation when instead intermittent
rub exists between the faces. This work also shows that when the rotor inertia is much
larger than the seal inertia, the rotordynamics can be solved separately and used in the
seal model as an external input. [DOI: 10.1115/1.4036380]

1 Introduction

Mechanical face seals allow rotating shafts to transfer power
through fluid reservoirs of differing pressure. These seals are often
delineated by noting which element, rotating or stationary, is flexi-
bly mounted (e.g., flexibly mounted stator (FMS), flexibly mounted
rotor (FMR), or flexibly mounted rotor–rotor (FMRR) seals).
Mechanical face seals are also categorized according to the mecha-
nism that produces sealing (i.e., contacting or noncontacting);
this work concerns the latter, where surface separation is achieved
via hydrostatic and/or hydrodynamic pressure. Noncontacting
mechanical face seals are often used in applications such as nuclear
reactor coolant pumps and high performance jet engines [1]
because they reduce frictional losses and provide an improvement
in component life. Increases in turbomachine efficiency are often
achieved by reducing fluid clearances [2], increasing rotor shaft
speeds, and implementing lighter and more flexible rotors.

Mechanical face seal dynamic models should improve commen-
surately with these heightened requirements by better accounting
for rotor–seal coupling. Green and Etsion [3] provide stiffness and
damping coefficients for a FMS seal, and later use these expres-
sions to simulate the steady-state seal dynamics [4]. Similar analy-
ses have also been performed for a FMR seal [5] to show that
gyroscopic terms stabilize the FMR seal when the rotating seal ele-
ment is thin. Other studies show that excessive seal vibration can
cause detrimental face contact in mechanical seals [6,7]. Varney
and Green [8] use rough surface contact to study intermittent con-
tact in an otherwise noncontacting face seal. Etsion and Halperin
[9] suggest the use of a surface-textured seal to reduce the

possibility for face contact. Green [10] develops a transient model
to analyze seal lift-off, and accounts for surface roughness, start-
up/shut-down operation, and thermoelastic face coning. Lee and
Green [11] develop a linearized transfer matrix method to couple
the rotor and seal dynamics; the objective of their work is to elimi-
nate rotordynamics as an explanation for unexpected phenomena
seen in a particular seal test rig.

The dynamics of other seal configurations have also been dis-
cussed in the literature. Wileman and Green [12,13] develop the
equations of motion for a FMRR seal configuration, where both
seal elements are permitted to rotate. This configuration signifies
the most generic face seal configuration and can be degenerated
into any of the more common seal configurations. A later analysis
[14] discusses performance differences between the most common
face seal configurations. They restrict their analysis to the case of
equal seal face inertia, which is justified since the rotating seal
ring is considered to be the rotor. The model is later expanded to
include lateral seal ring deflections [15], where constant synchro-
nous shaft whirl couples the seal’s angular vibration and the lat-
eral whirl frequency [16].

Mechanical face seals are always constitutive components of a
much larger turbomachine. A principal shortcoming of the afore-
mentioned literature is a lack of analysis elaborating on coupling
between the seal and the rotor. It should be emphasized that most
previous seal dynamics works refer to the rotating seal element as
the rotor; this convention is avoided here to remove confusion
when discussing the actual rotor (i.e., the flexible shaft). The prin-
cipal objective here is to determine how the rotor influences the
seal dynamics, and by doing so, establish thresholds indicating the
importance of seal–rotor dynamic coupling. To this end, a
dynamic model of a noncontacting FMS seal is developed that
includes dynamics of the coupled shaft (i.e., the rotor). A lumped-
parameter rotordynamic model is used that accounts for conical
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rotor vibration. The equations of motion are provided for both ele-
ments, the dynamics of which are coupled through the lubricating
fluid film. For expediency, the equations of motion are rearranged
to include linearized stiffness and damping coefficients, and then
solved analytically to ascertain the influence of rotor-to-stator
inertia ratio, shaft speed, and dynamic angular misalignment on
the seal steady-state dynamic performance. This study is a novel
departure from previous works concerning flexibly mounted
stator–rotor (FMSR) seals [12,14] because the rotor in an FMSR
seal refers to the rotating ring designed specifically to be part of
the sealing apparatus. Here, the rotor consists of the flexible shaft
and seal seat.

2 Modeling the Coupled Rotor-Flexibly Mounted

Rotor System

The FMS mechanical face seal with an accompanying rotor is
shown in Fig. 1. The stationary seal ring (i.e., the FMS) is a thin
annular ring mounted to the housing using an axial support spring
and a secondary seal O-ring. Rotation of the stationary element
about the shaft axis is constrained by an antirotation lock. Oppo-
site the seal ring is the flat-faced seal seat, which in this work is
the rotating element (i.e., the rotor). The rotor in this case is flexi-
bly mounted because the shaft is assumed to be flexible. A thin
fluid film separates the seal faces, creating a fluid-filled region
between the elements which is referred to here as the sealing dam.
Face coning and relative angular tilts induce significant fluid pres-
sure within the sealing dam; a good seal design uses this pressure
to generate clearance sufficient for avoiding undesirable face
contact.

In reality, most mechanical face seals are manufactured with
flat faces. During lift-off and subsequent steady operation, friction
and viscosity result in thermoelastic deformations which warp the
seal faces and create a finite radial coning. This coning typically
reaches a steady value during normal operation, which in turn
results in a finite centerline clearance Co between the seal faces.
Importantly, this work assumes that the coning and clearance are
constant at steady operation with known operating conditions (Pi

and Po) and geometry (the inner, outer, and balance radii). The
specific value of coning at steady state can be found using a more
detailed thermoelastic deformation analysis, as discussed by
Green [10].

2.1 Equations of Motion. Seal elements are flexibly mounted
so that the seal can track the rotor even when inevitable misalign-
ments exist in either component. The angular kinematics of the
FMS and rotor are shown in Fig. 2 using the convention of previ-
ous works [12,13,17] concerning various seal configurations
(FMS, FMRR, etc.). Lateral deflections are not considered in this

work. A short description of each reference frame will be useful
for understanding the subsequent dynamic analyses:

(1) nsgsfs: An inertial reference frame fixed to the FMS center,
Os.

(2) XsYsZs: This frame is precessed about fs by the precession
ws. Xs is the diametral line about which the FMS tilts.

(3) xsyszs: This FMS-principal frame is nutated about Xs by cs.
(4) nrgrfr: An inertial reference frame fixed to the rotor center,

Or, where fr defines the axis of shaft rotation.
(5) X0rY

0
rZ
0
r: This frame is precessed about fr by the shaft rota-

tion angle aðtÞ. If the shaft speed xr is constant, then
a ¼ xrt.

(6) XrYrZr: This frame is precessed about fr by the absolute
rotor precession wr, or alternatively, precessed about Z0r by
the relative rotor precession w0 (i.e., wr ¼ aðtÞ þ w0).

(7) xryrzr: This frame is nutated about Xr by cr, where Xr is
selected arbitrarily with no loss of generality. The rotor
spin / then occurs about axis zr.

(8) xp
r yp

r zp
r : This frame (not shown for brevity) is obtained by

first applying the rotor spin / about zr and then rotating this
new set of axes so that the rotor’s principal moments of
inertia are defined within the frame. The dynamic angular
misalignment v defines the angle between the body-fixed
spinning reference frame and the principal frame.

The rotor spin / has been rigorously defined in previous works
(e.g., Ref. [17]). In general, the relationship between the rotor
rotation angle aðtÞ and the shaft speed xr is given by

aðtÞ ¼
ðt

0

xrðtÞdt (1)

This work assumes with no loss of generality that both inertial ref-
erence frames remain parallel, where the frames are only

Fig. 1 FMS seal configuration showing the flexible rotor and stationary seal element

Fig. 2 Reference frames used to model the kinematics of a
flexibly mounted stator mechanical face seal
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translated from one another by the clearance Co. The equations of
motion are found by balancing the applied and dynamic forces
and moments, using a procedure analogous to that of Wileman
and Green [13]. The equations of motion for the FMS accounting
for angular and axial deflections are [4,13]

Its€cns þ Ds _cns þ Kscns ¼ Kscsi þ ðMf Þn (2)

Its€cgs þ Ds _cgs þ Kscgs ¼ ðMf Þg (3)

ms €uzs þ Dzs _uzs þ Kzsuzs ¼ Ff � Fcls (4)

The fluid moment about axis j is denoted ðMf Þj, whereas the net
axial fluid force is Ff. The closing force Fcls on the FMS is gener-
ated by the axial support spring and fluid pressure, and will be
provided in Sec. 2.3. As will be seen, these forces and moments
nonlinearly depend on the seal and rotor positions (i.e., axial and
angular degrees-of-freedom). The fluid film forces act on both ele-
ments, thus intrinsically coupling their motion. Any existing rotor-
dynamic model can be used, provided that the model accounts for
angular and axial deflections. For simplicity, and to establish basic
principles, this work assumes the following lumped parameter
rotor model:

Itr€cnr þ Iprxr _cgr þ Dr _cnr þ Krcnr þ xrDrxcgr ¼ �ðMf Þn
þðItr � IprÞ vfx2

r cos aþ _xr sin ag þ Krvs cos a
(5)

Itr€cgr � Iprxr _cnr þ Dr _cgr þ Krcgr � xrDrxcnr ¼ �ðMf Þg
þðItr � IprÞ vfx2

r sin a� _xr cos ag þ Krvs sin a
(6)

mr €uzr þ Dzr _uzr þ Kzruzr ¼ �Ff (7)

This rotordynamic model mathematically resembles the rotating
seal ring dynamics in an FMSR configuration. This resemblance
is not required, and it should be emphasized once again that any
suitable rotordynamic can be used in place of Eqs. (5)–(7).
Because of the similarity, though, the left-hand side terms in Eqs.
(5)–(7) are analogous to those derived by Wileman and Green
[13]. The moments induced by dynamic angular misalignment are
derived in Appendix A. The polar and transverse mass moments
of inertia of element i are Ipi and Iti, respectively (where i can be
either r or s, for rotor and stator).

The stiffness and damping coefficients of the FMS are Ks and
Ds for the angular modes and Kzs and Dzs for the axial modes, and
are provided by Green and Etsion [18] for a seal supported by an
elastomeric O-ring. In reality, the O-ring support is viscoelastic;
however, in a liquid-lubricated seal, the O-ring stiffness and
damping is significantly overwhelmed by that of the fluid film. In
a gas-lubricated seal, an improved model for the O-ring support
could be utilized by following the approach of Green and Etsion
[18]. The rotor angular stiffness is Kr, which is found directly via
an analysis of the rotor dimensions and material properties. Exter-
nal viscous damping on the rotor is described via the damping
coefficient Dr, while the rotating damping coefficient is denoted
Dxr and is obtained by the process described by Green and Casey
[19] and Varney and Green [20].

The rotor’s angular misalignment manifests in two fundamen-
tally different forms. Dynamic misalignment occurs when the
rotor’s principal axes of inertia do not align with the nutated ref-
erenced frame xryrzr; the angle between these frames is denoted
v, as discussed in Appendix A. Importantly, the angle v referen-
ces the rotor’s principal moments of inertia. The second effect,
static misalignment, is caused by unavoidable imperfections such
as improper installation, rotor bow, and run-out, and persists
even when xr ¼ 0. This static misalignment is an actual physical
rotation with magnitude vs. The static rotor misalignment is
imposed by applying a moment to the rotor that generates vs [4].
The static FMS misalignment csi occurs about ns with no loss of
generality.

The inertial component tilts of element i are cni and cgi and are
found by solving the equations of motion. These components
comprise each element’s total tilt c2

i ¼ c2
ni þ c2

gi and precession
tan wi ¼ cgi=cni. The seal’s performance is neatly summarized by
calculating the relative tilt c� between the elements [21]

ðc�Þ2 ¼ c2
s þ c2

r � 2cscr cos ðws � wrÞ (8)

Successful seal operation is characterized by small relative mis-
alignments, since the objective of the flexible mount is to allow
one element to track the other. Since the seal considered here is
designed so that Po>Pi, the film thickness contribution from face
coning is minimum at the inner radius ri. Taking this into consid-
eration, the critical relative tilt beyond which contact occurs is
c�cr ¼ C=ri [3], where C is the centerline clearance between the
seal ring and rotor.

2.2 Film Thickness Between the Flexibly Mounted Stator
and Rotor. Since lateral deflections are not considered here, it
will be judicious to describe any point in the sealing dam using the
inertial rh coordinate system as shown in Fig. 2. Using this coordi-
nate system, the fluid film clearance between the seal elements is

hðr; h; tÞ ¼ Co þ ðuzs � uzrÞ þ csr sin ðh� wsÞ
� crr sin ðh� wrÞ þ b�ðr � riÞ (9)

where b� is the magnitude of face coning. In this work, coning is
assumed to be time invariant, even though in transient operation
the coning is often generated by thermoelastic and centrifugal
deformations [10]. Circumferential and time derivatives of the
film thickness will be needed to evaluate the fluid forces and
moments acting on the seal elements. These derivatives are

@h

@h
¼ csr cos h� wsð Þ � crr cos h� wrð Þ (10)

@h

@t
¼ _uzs � _uzr þ _csr sin h� wsð Þ � _wscsr cos h� wsð Þ

� _crr sin h� wrð Þ þ _wrcrr cos h� wrð Þ (11)

2.3 Fluid Film Forces and Moments. The fluid film pres-
sures depend on the clearance Co, which itself depends on the con-
ing angle and balance radii (in addition to the known operating
conditions). Here, a clearance and coning angle are selected a pri-
ori; balancing the opening and closing forces on the flexibly
mounted element then provides the balance radius rb which enfor-
ces the selected clearance. The opening force is generated solely
by fluid pressure within the sealing dam, while the closing force
arises from the radially mounted spring and fluid forces acting on
the backside of the seal ring. The static pressure profile is solved
from the Reynolds equation using the narrow seal approximation
[22]

Ps r; hð Þ ¼ Po � Po � Pið Þ h2
i

h2
o � h2

i

ho

h

� �2

� 1

" #
(12)

where the subscripts “o” and “i” represent outer and inner parame-
ters, respectively. Integrating this axisymmetric static pressure
profile across the sealing dam gives the fluid film opening force.
The closing force is found by summing the spring and pressure
forces acting on the seal ring backside

Fcls ¼ Fspr þ p½Poðr2
o � r2

bÞ þ Piðr2
b � r2

i Þ� (13)

In this work, the spring force is assumed to be constant
(Fspr 6¼ FsprðuzÞ) since the axial deflections are small. These
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equations are then used to select a balance radius rb yielding the
clearance Co.

Angular tilts and shaft rotation result in hydrodynamic fluid
forces. The hydrodynamic pressure is found by analytically solv-
ing the isoviscous and incompressible Reynolds equation using
the narrow seal approximation [23–25]

Pd r; h; tð Þ ¼ �3l xr
@h

@h
þ 2

@h

@t

� �
ro � rð Þ r � rið Þ

hmh2
(14)

where hm ¼ hðrm; hÞ, rm is the mean seal ring radius, and l is the
fluid viscosity. For the parameters given in Table 1, the narrow
seal approximation results in less than 2% error in the fluid film
force calculations [23]. The total fluid pressure Pf ðr; h; tÞ is the
sum of the hydrostatic (Eq. (12)) and hydrodynamic (Eq. (14))
components

Pf ðr; h; tÞ ¼ max½Psðr; h; tÞ þ Pdðr; h; tÞ; 0� (15)

where the conditional statement applies the half-Sommerfeld
boundary condition to account for the possibility of cavitation.
The fluid film moments and axial force are found by integrating
the pressure over the sealing dam

Mn ¼
ð2p

0

ðro

ri

Pf ðr; h; tÞr2 sin h dr dh (16)

Mg ¼ �
ð2p

0

ðro

ri

Pf ðr; h; tÞr2 cos h dr dh (17)

Fz ¼
ð2p

0

ðro

ri

Pf ðr; h; tÞr dr dh (18)

These integrals can be evaluated at any instant in time by discre-
tizing the sealing dam and applying a suitable numeric integration
scheme (e.g., Simpson’s rule or Gaussian quadrature).

2.4 Linearized Equations of Motion. The equations of
motion (Eqs. (2)–(7)) require multiple integrations of the fluid
pressure at each time step in the solution process; this numeric
approach is tedious and inhibits a comprehensive investigation of
seal performance. Several realistic assumptions can be applied to
reduce the fluid film to associated stiffness and damping coeffi-
cients. The first of these assumptions is that the seal ring is nar-
row, which is typically true for most practical face seals. The
second assumption is that the seal experiences only small deflec-
tions (angular and axial) about a steady operational state. This
assumption is reasonable for this work since (a) the seal is bal-
anced a priori, and (b) only parameters’ regimes which avoid face
contact are considered. The final assumption is that the hydrostatic
pressure generated in the sealing dam is sufficient to suppress
cavitation.

The fluid film stiffness and damping coefficients, Kf and Df, are
found analytically by Wileman and Green [12] for the general
case of a FMRR configuration in which both seal elements are

permitted to rotate (this work omits the laborious mathematics for
brevity). These coefficients are applicable here since the FMS-
flexible rotor configuration is a degenerate case of the FMRR
configuration. An important conclusion from their work is that lin-
earizing about a stable operating mode decouples the angular and
axial degrees-of-freedom. Since shaft axial stiffness is typically
large, and the FMS is assumed to be balanced, the axial linearized
equations of motion will not be considered herein.

The linearized fluid film stiffness and damping coefficients are

Kf ¼ p Po � Pið Þ bRi � 1ð ÞE2
o

r4
o

Co
(19)

Df ¼ 2pR3
mGo

Sr4
o

Coxr
(20)

where

S ¼ 6lxr
ro

Co

� �2

1� R2
i

� �
(21)

Eo ¼
1� Rið ÞRm

2þ b 1� Rið Þ (22)

Go ¼
ln 1þ b 1� Rið Þð Þ � 2b 1� Rið Þ

2þ b� 1� Rið Þ
b3 1� Rið Þ2

(23)

Normalized terms in the above expressions are given by R ¼ r=ro

and b ¼ b�ro=Co. These fluid film coefficients are then used to
express the fluid forces and moments [12]. The steady-state linear-
ized equations of motion for angular tilts of both elements, includ-
ing Kf and Df, are then

Its€cns þ Ds þ Dfð Þ _cns � Df _cnr þ Ks þ Kfð Þcns

� Kf cnr þ
1

2
xrDf cgs � cgrð Þ ¼ Kscsi (24)

Its€cgs þ Ds þ Dfð Þ _cgs � Df _cgr þ Ks þ Kfð Þcgs

� Kf cgr þ
1

2
xrDf cnr � cnsð Þ ¼ 0

(25)

Itr€cnr þ Iprxr _cgr þ ðDr þ Df Þ _cnr � Df _cns þ ðKr þ Kf Þcnr

� Kf cns þ xrDrxcgr þ
1

2
xrDf cgr � cgsð Þ

¼ Itr � Iprð Þvx2
r þ Krvs

n o
cos xrtð Þ

(26)

Itr€cgr � Iprxr _cnr þ ðDr þ Df Þ _cgr � Df _cgs

þ ðKr þ Kf Þcgr � Kf cgs � xrDrxcnr

þ 1

2
xrDf cns � cnrð Þ ¼ Itr � Iprð Þvx2

r þ Krvs

n o
sin xrtð Þ

(27)

where a ¼ xrt since the shaft speed is constant. These equations
are expressed in matrix form

½M�f€qg þ ð½D� þ xr½G�Þf _qg þ ½K�fqg ¼ fFg (28)

where ½M� is the mass matrix, ½D� and ½G� contain damping and
gyroscopic terms, respectively, and ½K� is the stiffness matrix. The
state vector {q} contains the FMS and rotor angular degrees-of-
freedom, and {F} contains all forcing functions. This set of linear
ordinary differential equations is solved analytically to provide a

Table 1 Seal and lubricant properties

Parameter

Viscosity 1.2 mPa�s
Pressure differential, Po � Pi 400 kPa
Set point clearance, Co 1 lm
Coning, b� 1 mrad
Inner radius, ri 0.0355 m
Outer radius, ro 0.0408 m
Closing force, Fcls 20 N
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closed-form steady-state solution from which general trends in
seal behavior can be expediently extracted. The angular whirl fre-
quencies are found by setting fFg ¼ 0 and assuming a solution
�q0 ¼ �A expðktÞ. This procedure yields the characteristic equation
whose roots are the system whirl frequencies. Likewise, the
steady-state forced response solution is found by assuming a solu-
tion in the form �q ¼ �C þ �C expðixrtÞ, where �C is the constant
response to the static seal misalignment and �C is the steady-state
dynamic response to the rotor misalignment. The free and forced
response solutions are provided in Appendix B.

The equations of motion for a FMSR seal configuration can be
obtained from Eqs. (24)–(27) by replacing the distinct rotating
damping coefficient Dxr with the rotor damping coefficient Dr.
However, a distinct difference exists in the mechanism by which
the rotor stiffness and damping coefficients are obtained. In a
FMSR seal, these coefficients are found from the flexible support,
namely, the elastomeric O-ring used to attach the rotating seal
ring to the primary rotor. When the shaft rotordynamics are con-
cerned, the rotor stiffness and damping coefficients are found
from the material and geometry properties of the rotor.

The linearized equations of motion and steady-state solution
are not given as a panacea to be used in lieu of investigating the
full nonlinear equations of motion. Rather, the linearized equa-
tions of motion are a tool that can be used to expediently extract
trends in the rotor response for a wide range of possible design
parameters such as misalignment, rotor inertia ratio, and shaft
speed. Any analysis of a particular seal configuration should first
verify that the linearized equations are valid in the considered
regime of parameters.

3 Results

The objective of this study is to quantify the rotor’s influence
on the FMS seal dynamics; because the FMS is designed to track
misalignments in the rotating element, the seal’s performance will
be quantified with respect to the relative tilt between the rotor and
stator (Eq. (8)). The parameters used here are given in Tables 1
and 2 for the dynamic and sealing parameters, respectively. The
FMS stiffness and damping values used here, Ks and Ds, are repre-
sentative of values obtained from an existing experimental FMS
seal test rig [7]. Likewise, the rotor parameters Kr and Dr are rep-
resentative of the rotor found in an associated experimental test
rig [19,20]. Parameters not specified, such as the inertia ratio
d ¼ Itr=Ipr , dynamic angular misalignment v, and shaft speed xr,
will be provided wherever applicable. The static misalignments csi

and vs are not considered here since linear superposition applies
to the linearized equations of motion; the system response to these
terms can be found independently and added to the response to
dynamic rotor misalignment.

The efficacy of the linearized steady-state analytic solution is
established by comparing the solution to that found by solving
numerically the full nonlinear equations of motion (Eqs. (2)–(7)).
The nonlinear equations of motion were solved numerically using
MATLAB’S ODE15S; the relative and absolute tolerances were
obtained by progressively tightening the tolerance until conver-
gence was obtained. The relative tilt versus shaft speed is shown
in Fig. 3 for several values of dynamic angular misalignment. The
relative tilt reaches a local maximum at 990 rad/s; this peak occurs

identically at the rotor’s first 1� forward critical speed. Impor-
tantly, the appearance of the rotor’s critical speed response in the
relative tilt indicates that the rotordynamics have a profound influ-
ence on the seal performance for the parameters considered here.

Several observations can also be made regarding the veracity of
the analytic steady-state solution. For the parameters considered
here, it is clear that the analytic steady-state solution is most accu-
rate for small misalignments and shaft speeds at or above the
rotor’s critical speed. These conclusions are reasonable because
the linearized fluid film rotordynamic coefficients are found by
assuming that the rotor deflections are small. Even though the sol-
utions diverge in certain regimes, the analytic steady-state solu-
tion is sufficiently accurate for investigating parametric trends,
and particularly so for small misalignments and shaft speeds
beneath the critical speed.

Dynamic coupling between the rotor and stator is investigated
by varying the ratio between the rotor and FMS transverse mass
moments of inertia. The dynamic response of a thick rotor (d¼ 2)
to an angular misalignment of v ¼ 0:5 mrad is given in Fig. 4,
which shows relative tilt c� versus shaft speed xr for several trans-
verse inertia ratios. In addition, the dynamic response of only the
rotor (i.e., no sealing apparatus) is provided for comparison. As
expected, the FMS and rotor are essentially decoupled for inertia
ratios Itr=Its above 100. The importance of this conclusion cannot
be understated, as it implies that for massive rotors (Itr � Its), the
rotordynamics influence the seal dynamics but not vice versa.
Thus, the rotordynamics can be solved independently and sent as
a known input to a separate seal dynamics model.

Significant dynamic amplification is seen for certain inertia
ratios Itr=Its when the rotor is thick (Itr=Ipr > 1). This phenom-
enon is shown in Fig. 5 for both a thin and a thick rotor by observ-
ing the maximum relative tilt c� versus inertia ratio Itr=Its. The
relative tilt versus shaft speed profile is found for each inertia ratio
(see Fig. 4, for example, profiles) from which the maximum

Table 2 Rotor and seal dynamic and support properties

Parameter Rotor FMS

Polar moment of inertia Ipr ¼ 1=d Itr kg/m2 —
Transverse moment of inertia Itr ¼ 0:2 kg/m2 Its ¼ 1:7� 10�3 kg/m2

Mass mr¼ 10 kg ms ¼ 0:1 kg
Angular support stiffness Kr ¼ 5� 105 N�m/rad Ks¼ 363.9 N�m/rad
Angular external/support damping Dr¼ 20 N�m s/rad Ds¼ 0.22 N�m s/rad
Rotating damping Dxr ¼ 1 N�m s/rad —

Fig. 3 Comparing the numeric solution of the full nonlinear
equations of motion to the analytic solution of the linearized
equations of motion (d 5 2)

Journal of Tribology NOVEMBER 2017, Vol. 139 / 062201-5

Downloaded From: https://tribology.asmedigitalcollection.asme.org on 12/20/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



relative tilt is recorded. For a thin rotor, the relative tilt decreases
monotonically as the inertia ratio increases (Fig. 5(b)). On the
other hand, Fig. 5(a) indicates that the relative tilt for a thick rotor
reaches its maximum value when Itr=Its ¼ 6:48 and xr ¼ 877:3

rad/s (this occurs at maximum when the system characteristic
equation is minimized).

Seal face contact occurs when the relative tilt exceeds the maxi-
mum allowable clearance. In an outward-pressurized seal with the
inward flow, first contact occurs along the inner radius, at a

Fig. 4 Investigating the influence of FMS dynamics on rotor
response for an angular misalignment of v 5 0:5 mrad, d 5 2

Fig. 5 Relative tilt versus rotor–stator inertia ratio for thin and thick rotors: (a) thick rotor
(d 5 2) and (b) thin rotor (d 5 0.5)

Fig. 6 Relative tilt versus shaft speed for several values of
angular misalignment, highlighting the appearance of face con-
tact when coupled rotordynamics are included (d 5 2; Itr=Its 5 50)

Fig. 7 Relative tilt versus shaft speed xr and rotor inertia ratio d 5 Itr=Ipr (v 5 0.5 mrad): (a) case when the rotor inertia is much
larger than the FMS (Itr=Its 5 50) and (b) case when the rotor inertia is comparable to the FMS (Itr=Its 5 2)
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critical value of c�cr ¼ Co=ri; any relative tilt exceeding this value
precipitates face contact. A dangerous ramification of neglecting
the rotordynamics is that the analysis may predict healthy opera-
tion when face contact occurs. This result is shown in Fig. 6 for a
thick rotor, where the rotor tilt is provided versus shaft speed for
several values of rotor angular misalignment. Clearly, operating
near the rotor’s critical speed of 990 rad/s results in the onset of
contact.

One solution for minimizing the effect of coupled rotordynam-
ics is to ensure that the rotor is thin. In this case, gyroscopic
effects stabilize the rotor and eliminate the forward critical speed
of the rotor [26]. Figure 7 gives the normalized relative tilt
c�ro=Co versus shaft speed and rotor inertia ratio Itr=Ipr. When the
rotor inertia is much larger than that of the stator (Fig. 7(a)), no
critical speed response is observed when the rotor is thin. On the
other hand, the dynamics of a system where the rotor and the sta-
tor inertia are comparable are more complicated (Fig. 7(b)), and
no general conclusions can be made regarding rotor inertia ratio.

4 Conclusions

The importance of studying the effect of shaft rotordynamics
on FMS seal performance increases as shafts are made lighter and
more flexible and clearances are reduced. The full nonlinear equa-
tions of motion for a FMS seal coupled to the angular dynamics of
a flexible rotor have been presented, where the two elements are
coupled via forces and moments generated via a thin fluid film
between the faces. The equations of motion are linearized using
existing stiffness and damping coefficients and solved exactly to
provide a closed-form solution for the system’s steady-state
response to angular misalignment. The linearized steady-state
solution is shown to be most precise for small misalignments and
shaft speeds beneath the critical speed, though the results in all
cases are qualitatively similar for the parameters considered here.
For this reason, the linearized steady-state solution is used to
expediently extract trends in the system performance for a wide
range of parameters.

The relative tilt between the faces is strongly influenced by the
rotordynamics and displays significant amplification near the syn-
chronous rotor critical speeds. The results presented herein indi-
cate that an analysis which fails to consider the rotordynamics
may incorrectly predict healthy seal operation, when in reality the
rotordynamics precipitate face contact. For thick rotors, signifi-
cant dynamic amplification is seen when the inertia of the rotor
and FMS seal are comparable in magnitude. When the rotor iner-
tia increases significantly beyond that of the stator, the seal
dynamics no longer influence those of the rotor, and the rotordy-
namics can then be solved separately and sent as an input to the
seal model equations. For a system where the rotor inertia is much
larger than the FMS seal inertia, the designer is encouraged to
ensure that a thin rotor is used, since gyroscopic effects stabilize
the system and eliminate resonance at the critical speed.

Investigating the influence of rotordynamics on seal perform-
ance has ramifications beyond seal design. Since the elements are
intrinsically coupled via the fluid film, any shaft rotordynamic
vibration signatures are also transferred to the FMS seal. In such a
manner, a mechanical face seal could perhaps be used as a cost-
effective surrogate for rotordynamic vibration monitoring.

Nomenclature

Co ¼ set-point centerline clearance
Df ¼ fluid film angular damping coefficient
Dr ¼ rotor angular external damping coefficient
Ds ¼ FMS support angular damping coefficient

Dsz ¼ axial support damping coefficient
Dxr ¼ rotor angular rotating damping coefficient
Fcls ¼ closing force
Fspr ¼ radial spring force

hðr; h; tÞ ¼ sealing dam film thickness

Ipi ¼ polar mass moment of inertia of element i
Iti ¼ transverse mass moment of inertia of element i
Kf ¼ fluid film angular stiffness coefficient
Ks ¼ angular support stiffness coefficient

Kzs ¼ axial support stiffness coefficient
mr ¼ rotor mass
ms ¼ flexibly mounted stator mass
Pi ¼ inner fluid pressure
Po ¼ outer fluid pressure
rb ¼ seal ring balance radius
ri ¼ inner seal ring radius

rm ¼ mean seal ring radius
ro ¼ outer seal ring radius
rh ¼ inertial polar coordinate system
uzi ¼ axial deflection of element i
a ¼ shaft rotation angle
b ¼ nondimensional FMS coning angle

b� ¼ dimensional FMS coning angle
cr ¼ magnitude of rotor tilt
cs ¼ magnitude of FMS tilt
csi ¼ static FMS misalignment tilt
cgi ¼ angular tilt about g for element i
cni ¼ angular tilt about n for element i
d ¼ rotor inertia ratio, Itr=Ipr

D ¼ characteristic equation of the system
l ¼ fluid viscosity
/ ¼ rotor spin rate
v ¼ dynamic rotor angular misalignment
vs ¼ static rotor angular misalignment
wr ¼ rotor precession
ws ¼ stator precession
xr ¼ shaft rotation rate

Appendix A: Deriving the Dynamic Misalignment

Forcing Function

A dynamic moment is generated on the rotor when the principal
axes xp

r yp
r zp

r do not align with the spin axes 1r2r3r . The rotor spin
/ occurs within the nutated reference frame xryrzr , which are
shown in Fig. 2 and discussed in detail in Sec. 2.1. The kinematic
constraint between the rotor precession and spin [17,27] is
/ ¼ aðtÞ � wr , and will be useful for deriving the dynamic mis-
alignment moments.

The rotation matrix that transforms the nutated frame xryrzr to
the spin frame 1r2r3r is denoted ½Rzr

ð/Þ�, signifying that the mag-
nitude of the rotation is / and occurs about the zr axis. The princi-
pal frame is rotated from the body-fixed spin frame by the angle
v, which is assumed to occur about axis 1r without any loss of
generality. The relevant rotation matrix that moves a vector
between the spin axes and the principal axes is ½R1r

ðvÞ�. The total
rotation matrix ½R� moving a vector between xryrzr and xp

r yp
r zp

r is
therefore

R½ � ¼ R1r
vð Þ

� �
Rzr

/ð Þ
� �

¼
1 0 0

0 cos v sin v
0 �sin v cos v

2
4

3
5 cos / sin / 0

�sin / cos / 0

0 0 1

2
4

3
5 (A1)

which for small misalignments v� 1 becomes

R½ � ¼
cos / sin / 0

�sin / cos / v
v sin / �v cos / 1

2
4

3
5 (A2)

The principal inertia tensor I½ � for the rotor is transformed into the
nutated reference frame xryrzr by the following expression:
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I½ �xryrxr
¼ R½ �T

Itr 0 0

0 Itr 0

0 0 Ipr

2
64

3
75 R½ � ¼

Itr þ Ipr � Itrð Þv2 sin2/ � 1

2
v2 Ipr � Itrð Þsin 2/ Ipr � Itrð Þv sin /

� 1

2
v2 Ipr � Itrð Þsin 2/ Itr � Ipr � Itrð Þv cos /

Ipr � Itrð Þv sin / � Ipr � Itrð Þv cos / Ipr

2
66664

3
77775 (A3)

For small misalignments, this result reduces to the following,
where the subscripts on the inertia tensor are dropped henceforth
for brevity:

I½ � ¼

Itr 0 Ipr� Itrð Þvsin/

0 Itr � Ipr� Itrð Þvcos/

Ipr� Itrð Þvsin/ � Ipr� Itrð Þvcos/ Ipr

2
6664

3
7775

(A4)

This inertia tensor is now time dependent, since the spin angle /
depends on the rotor precession and the shaft rotation rate. The
dynamic moments for the rotor, assuming that the center of the
rotor Or is the center of mass, are [26]

�MOr
¼ @

�hOr

� �
@t

þ Xxryrzr
� �hOr

� �
(A5)

The angular velocity of the reference frame xryrzr is provided in
previous works [12,26]. The rotor’s angular momentum is
�hOr
¼ I½ ��k, where in this context �k is the absolute angular velocity

of the rotor [17]. The time-dependent inertia matrix manifests pri-
marily in the first term in Eq. (A5)

@ �hOr

� �
@t

¼ @ I½ �
@t

�k þ I½ � @
�k
@t

(A6)

Evaluating Eq. (A5) using the time-dependent inertia matrix is
laborious, and the details are omitted here for brevity. Once the
dynamic moments are found, they are transformed from the nutat-
ing reference frame into the inertial reference frame (see Sec. 2.1
for details on the intermediate frames)

�MOr

� �
nrgrfr
¼ RZr

wrð Þ½ �T Rxr
crð Þ

� �T �MOr

� �
xryrzr

¼

Itr€cnrþIprxr _cgrþ Ipr�Itrð Þv x2
r cosaþ _xr sina

� �
Itr€cgr�Iprxr _cnrþ Ipr�Itrð Þv x2

r sina� _xr cosa
� �

O c2
r

� �

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

(A7)

where the rotation matrices obey the labeling convention estab-
lished earlier.

Appendix B: Free and Forced Response Solutions

B.1 Free Response

The system’s whirl frequencies k are found from the linearized
equations of motion, Eqs. (24)–(27), by setting the forcing terms
equal to zero and inserting a solution �q0 ¼ �A exp ktð Þ. This proce-
dure yields the characteristic equation whose roots are the gener-
ally nonsynchronous whirl frequencies

p k;xrð Þ ¼ p4k
4 þ p3kþ p2kþ p1kþ p0 ¼ 0 (B1)

where

p4 ¼ ItsItr

p3 ¼ �i D2Its þ D1Itr � iIprItsxrð Þ

p2 ¼ ixr D1Ipr þ
1

2
Df Itr þ Itsð Þ þ DxrIts

� �
þ D2

f � D1D2 � ItrK1 � ItsK2

p1 ¼ �
1

2
iDf Iprx

2
r þ

1

2
D1 þ D2ð ÞDf � D2

f

�
þD1Dxr þ IprK1

�
xr þ i D1K2 þ D2K1 � 2Df Kfð Þ

p0 ¼ K1K2 � K2
f �

1

2
Df Dxrx

2
r

� 1

2
ixr Df K2 � 2Df Kf þ 2DxrK1 þ Df K1ð Þ

(B2)

where D1 ¼ Ds þ Df ; D2 ¼ Dr þ Df ; K1 ¼ Ks þ Kf , and K2 ¼
Kr þKf .

B.2 Forced Response

The linearized equations of motion, Eqs. (25)–(28), are solved
exactly to provide the steady-state solution to static and dynamic
misalignment. Assuming a solution �q ¼ �C exp ixrtð Þ and inserting
into Eqs. (24)–(27) gives the following steady-state solution:

�C ¼ 1

D
Itr � Iprð Þvx2

r þ Krvs

n o
2iKf � Df xr

2Kf þ iDf xr

2i Kf þ Ks � Itsx2
r

� �
� xr Df þ 2Dsð Þ

2 Kf þ Ks � Itsx2
r

� �
þ ixr Df þ 2Dsð Þ

8>>>><
>>>>:

9>>>>=
>>>>;

(B3)

where D is

D ¼ S4x
4
r þ S3x

3
r þ S2x

2
r þ S1xr þ S0 (B4)

and

S4 ¼ 2iIts Ipr � Itrð Þ
S3 ¼ Df þ 2Dsð Þ Ipr � Itrð Þ þ 2Dxr � Df � 2Drð ÞIts

S2 ¼ i Df þ 2Dsð Þ Dr � Dxrð Þ þ Df Ds

�
þ2 Kf þ Ksð Þ Itr � Iprð Þ þ 2Its Kf þ Krð Þ

�
S1 ¼ Df þ 2Dsð ÞKr þ 2 Dr þ Ds þ Dxrð ÞKf

þ Df þ 2Dr � 2Dxrð ÞKsS0 ¼ �2i Kf Kr þ Kf Ks þ KrKsð Þ
(B5)

References
[1] Steinetz, B. M., Hendricks, R. C., and Munson, J., 1998, “Advanced Seal Tech-

nology Role in Meeting Next Generation Turbine Engine Goals,” NASA, Lewis
Research Center, Cleveland, OH, Technical Report No. 20000020798.

[2] Chupp, R. E., Hendricks, R. C., Lattime, S. B., and Steinetz, B. M., 2006,
“Sealing in Turbomachinery,” NASA, Glenn Research Center, Cleveland, OH,
Technical Report No. 2006-214341.

062201-8 / Vol. 139, NOVEMBER 2017 Transactions of the ASME

Downloaded From: https://tribology.asmedigitalcollection.asme.org on 12/20/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

https://ntrs.nasa.gov/search.jsp?R=20000020798
https://ntrs.nasa.gov/search.jsp?R=20060051674


[3] Green, I., and Etsion, I., 1983, “Fluid Film Dynamic Coefficients in Mechanical
Face Seals,” ASME J. Lubr. Technol., 105(2), pp. 297–302.

[4] Green, I., and Etsion, I., 1986, “Nonlinear Dynamic Analysis of Noncontacting
Coned-Face Mechanical Seals,” ASLE Trans., 29(3), pp. 383–393.

[5] Green, I., 1990, “Gyroscopic and Damping Effects on the Stability of a Non-
contacting Flexibly-Mounted Rotor Mechanical Face Seal,” Dynamics of Rotat-
ing Machinery, Hemisphere, Carlsbad, CA, pp. 153–157.

[6] Etsion, I., and Constantinescu, I., 1984, “Experimental Observation of the
Dynamic Behavior of Noncontacting Coned-Face Mechanical Seals,” ASLE
Trans., 27(3), pp. 263–270.

[7] Lee, A. S., and Green, I., 1995, “An Experimental Investigation of the Steady-
State Response of a Noncontacting Flexibly Mounted Rotor Mechanical Face
Seal,” ASME J. Tribol., 117(1), pp. 153–159.

[8] Varney, P., and Green, I., 2016, “Impact Phenomena in a Non Contacting
Mechanical Face Seal,” ASME J. Tribol., 139(2), p. 022201.

[9] Etsion, I., and Halperin, G., 2002, “A Laser Surface Textured Hydrostatic
Mechanical Seal,” Tribol. Trans., 45(3), pp. 430–434.

[10] Green, I., 2002, “A Transient Dynamic Analysis of Mechanical Seals Including
Asperity Contact and Face Deformation,” Tribol. Trans., 45(3), pp. 284–293.

[11] Lee, A. S., and Green, I., 1994, “Rotordynamics of a Mechanical Face Seal
Riding on a Flexible Shaft,” ASME J. Tribol., 116(2), pp. 345–351.

[12] Wileman, J., and Green, I., 1991, “The Rotordynamic Coefficients of Mechani-
cal Seals Having Two Flexibly Mounted Rotors,” ASME J. Tribol., 113(4), pp.
795–804.

[13] Wileman, J., and Green, I., 1997, “Steady-State Analysis of Mechanical Seals
With Two Flexibly Mounted Rotors,” ASME J. Tribol., 119(1), pp. 200–204.

[14] Wileman, J., and Green, I., 1999, “Parametric Investigation of the Steady-State
Response of a Mechanical Seal With Two Flexibly Mounted Rotors,” ASME J.
Tribol., 121(1), pp. 69–76.

[15] Wileman, J., and Green, I., 1996, “The Rotor Dynamic Coefficients of Eccen-
tric Mechanical Face Seals,” ASME J. Tribol., 118(1), pp. 215–224.

[16] Wileman, J., 2004, “Dynamic Response of Eccentric Face Seals to Synchronous
Shaft Whirl,” ASME J. Tribol., 126(2), pp. 301–309.

[17] Green, I., 2008, “On the Kinematics and Kinetics of Mechanical Seals, Rotors,
and Wobbling Bodies,” Mech. Mach. Theory, 43(7), pp. 909–917.

[18] Green, I., and Etsion, I., 1986, “Pressure and Squeeze Effects on the Dynamic
Characteristics of Elastomer O-Rings Under Small Reciprocating Motion,”
ASME J. Tribol., 108(3), pp. 439–444.

[19] Green, I., and Casey, C., 2005, “Crack Detection in a Rotor Dynamic System
by Vibration Monitoring—Part I: Analysis,” ASME J. Eng. Gas Turbines
Power, 127(2), pp. 425–436.

[20] Varney, P., and Green, I., 2012, “Crack Detection in a Rotor Dynamic System
by Vibration Monitoring—Part II: Extended Analysis and Experimental
Results,” ASME J. Eng. Gas Turbines Power, 134(11), p. 112501.

[21] Etsion, I., 1982, “Dynamic Analysis of Noncontacting Face Seals,” ASME J.
Tribol., 104(4), pp. 460–468.

[22] Etsion, I., 1980, “Squeeze Effects in Radial Face Seals,” ASME J. Lubr. Tech-
nol., 102(2), pp. 145–151.

[23] Etsion, I., and Sharoni, A., 1980, “Performance of End-Face Seals With
Diametral Tilt and Coning—Hydrostatic Effects,” ASLE Trans., 23(3),
pp. 279–288.

[24] Sharoni, A., and Etsion, I., 1981, “Performance of End-Face Seals With Diametral
Tilt and Coning—Hydrodynamic Effects,” ASLE Trans., 24(1), pp. 61–70.

[25] Green, I., 1987, “The Rotor Dynamic Coefficients of Coned-Face Mechani-
cal Seals With Inward or Outward Flow,” ASME J. Tribol., 109(1), pp.
129–135.

[26] Green, I., 1989, “Gyroscopic and Support Effects on the Steady-State Response
of a Noncontacting Flexibly Mounted Rotor Mechanical Face Seal,” ASME J.
Tribol., 111(2), pp. 200–208.

[27] Green, I., and Etsion, I., 1986, “A Kinematic Model for Mechanical Seals With
Antirotation Locks or Positive Drive Devices,” ASME J. Tribol., 108(1), pp.
42–45.

Journal of Tribology NOVEMBER 2017, Vol. 139 / 062201-9

Downloaded From: https://tribology.asmedigitalcollection.asme.org on 12/20/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

http://dx.doi.org/10.1115/1.3254596
http://dx.doi.org/10.1080/05698198608981700
http://dx.doi.org/10.1080/05698198408981570
http://dx.doi.org/10.1080/05698198408981570
http://dx.doi.org/10.1115/1.2830592
http://dx.doi.org/10.1115/1.4033366
http://dx.doi.org/10.1080/10402000208982570
http://dx.doi.org/10.1080/10402000208982551
http://dx.doi.org/10.1115/1.2927229
http://dx.doi.org/10.1115/1.2920695
http://dx.doi.org/10.1115/1.2832460
http://dx.doi.org/10.1115/1.2833813
http://dx.doi.org/10.1115/1.2833813
http://dx.doi.org/10.1115/1.2837081
http://dx.doi.org/10.1115/1.1645294
http://dx.doi.org/10.1016/j.mechmachtheory.2007.06.004
http://dx.doi.org/10.1115/1.3261231
http://dx.doi.org/10.1115/1.1789514
http://dx.doi.org/10.1115/1.1789514
http://dx.doi.org/10.1115/1.4007275
http://dx.doi.org/10.1115/1.3253255
http://dx.doi.org/10.1115/1.3253255
http://dx.doi.org/10.1115/1.3251452
http://dx.doi.org/10.1115/1.3251452
http://dx.doi.org/10.1080/05698198008982970
http://dx.doi.org/10.1080/05698198108982998
http://dx.doi.org/10.1115/1.3261304
http://dx.doi.org/10.1115/1.3261887
http://dx.doi.org/10.1115/1.3261887
http://dx.doi.org/10.1115/1.3261141

	s1
	aff1
	l
	s2
	s2A
	FD1
	1
	2
	FD2
	FD3
	FD4
	FD5
	FD6
	FD7
	FD8
	s2B
	FD9
	FD10
	FD11
	s2C
	FD12
	FD13
	FD14
	FD15
	FD16
	FD17
	FD18
	s2D
	FD19
	FD20
	FD21
	FD22
	FD23
	FD24
	FD25
	FD26
	FD27
	FD28
	1
	s3
	2
	3
	4
	5
	6
	7
	s4
	APP1
	FDA1
	FDA2
	FDA3
	FDA4
	FDA5
	FDA6
	FDA7
	APP2
	s5A
	FDB1
	FDB2
	s5B
	FDB3
	FDB4
	FDB5
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27

