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Storage and Loss Characteristics
of Coupled Poroviscoelastic and
Hydrodynamic Systems for
Biomimetic Applications
Biotribology and biomechanics are evolving fields that draw from many disciplines. A
natural relationship particularly exists between tribology and biology because many bio-
logical systems rely on tribophysics for adhesion, lubrication, and locomotion. This leads
to many biomimetic inspirations and applications. The current study looks to mimic the
function of articular cartilage in purely mechanical systems. To accomplish this goal, a
novel coupling of phenomena is utilized. A flexible, porous, viscoelastic material is paired
with a hydrodynamic load to assess the feasibility and benefit of a biomimetic thrust bear-
ing. This study presents the dynamic properties of the coupled system, as determined
from transient to steady operating states. The results indicate that bio-inspired bearings
may have application in certain tribological systems, including biomechanical joint
replacements, dampers, flexible rotordynamic bearings, and seals.
[DOI: 10.1115/1.4038958]

1 Introduction

The properties of articular cartilage make for an impressive tri-
bological system. In healthy joints, articular cartilage is a phe-
nomenal load bearing and wear resistant material [1,2]. There are
many contributing mechanisms that make cartilage effective, with
one important aspect being the coupled solid–fluid interactions of
the collagen matrix and synovial fluid [3–9]. These coupled inter-
actions make cartilage a desirable material to mimic outside of
biological applications. The goal of the current study is to study
cartilage-like materials operating in purely mechanical systems.
The following study explores flexible/porous materials operating
under hydrodynamic loads. The transient operation of the system
is desired, as this is a proposed benefit of using a cartilage-like
material in mechanical applications. Therefore, the coupled sys-
tem is simulated in transient operation with a perturbation from
steady-state. The results are compared to a traditional thrust bear-
ing using the dynamic properties of storage and loss (defined
herein).

A poroviscoelastic (PVE) model is proposed to mimic the func-
tion of cartilage. PVE materials are commonly used in cartilage
modeling [7,10–13], and the two time-dependent mechanisms
(permeability and viscoelasticity) give rich frequency domain
characteristics (e.g., storage and loss). The PVE model is coupled
to a hydrodynamic fluid load (HDL) with a modified Reynolds
equation. The details of this coupling are found in a previous
work [14]. The properties of storage and loss are assessed relative
to a steady-state. These solutions indicate that the PVE/HDL com-
bination is beneficial in certain tribological applications, particu-
larly at relatively low frequencies (comparable to the gate of a
human). Comparisons between the PVE/HDL model and a tradi-
tional HDL model are made with the correspondence principle,
discussed in Sec. 2.

2 Background

The PVE/HDL problem is coupled with a combination of finite
elements and finite difference/finite volume techniques. The

details of this problem are presented in previous work [14]. The
poroviscoelastic medium is a combination of viscoelastic solid
grains and an imbibing Newtonian fluid (governed by Darcy’s
law). The fluid film is comprised of a Newtonian fluid for compat-
ibility. The previous study simulated a coupled PVE/HDL thrust
bearing to steady-state (equilibrium with a load, W), shown in
Fig. 1 by the solid lines. Herein, dynamic properties of a similar
system are obtained by perturbing the system from steady-state
(WþDW), shown in Fig. 1 by the dashed lines. The resulting
properties of storage and loss give metrics that can be used to
assess bearing dynamic performance across a frequency spectrum.

2.1 The Correspondence Principle and Mechanical
Impedance. Following the techniques of Miller and Green
[15,16] for gas film bearings, a correspondence principle is intro-
duced for coupled PVE/HDL problems. The correspondence

Fig. 1 Thrust bearing before and after load perturbation
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principle follows the techniques used for viscoelastic materials.
Retaining the convolution integral from linear viscoelasticity (i.e.,
Boltzmann’s superposition principle [17]), a force–displacement
relationship is proposed

FðtÞ ¼ Dð0ÞKðtÞ þ
ðt

0

_DðcÞKðt� cÞ dc (1)

and

DðtÞ ¼ Fð0ÞCðtÞ þ
ðt

0

_FðcÞCðt� cÞ dc (2)

In Eqs. (1) and (2), F(t) is force, D(t) is displacement, K(t) is the
stiffness modulus, and C(t) is the compliance modulus. The stiff-
ness and compliance moduli are analogous to the viscoelastic
relaxation and creep moduli, respectively. Equations (1) and (2)
are analogous to the stress–strain relationships given for linear
viscoelasticity, where stress is translated to force, and strain to
displacement.

2.2 Mechanical Impedance. A Laplace transform performed
on Eqs. (1) and (2) provides a theoretical relationship between the
stiffness and compliance moduli in the Laplace domain, forming
the elastic-viscoelastic correspondence principle

FðsÞ ¼ sKðsÞDðsÞ (3)

DðsÞ ¼ sCðsÞFðsÞ (4)

Substituting Eq. (3) into Eq. (4) yields

sK sð Þ ¼ 1

sC sð Þ
(5)

Analogous to the complex modulus from viscoelasticity, sK(s) is
effectively a spring in the Laplace domain. Transferring from the
Laplace domain to the frequency domain, sK(s) has real and imag-
inary components

ðixÞKðxÞ¢K�ðxÞ ¼ K0ðxÞ þ iK00ðxÞ (6)

The real part (K0) is defined as the storage and the imaginary part
(K00) as the loss. These properties are used to compare the PVE/
HDL and rigid cases. For the current work, storage, and loss cor-
respond to stiffness and damping, respectively, and are the critical
metrics used to assess performance. In future work, other perform-
ance characteristics may be considered.

The physical significance of Eqs. (1)–(6) is that the storage and
loss characteristics of a system are obtained with a single experi-
ment, either by controlling load support or film thickness. This is
done by imposing an instantaneous displacement in the film thick-
ness and tracking the corresponding load support over time, or
imposing an instantaneous change in load support and tracking
the change in film thickness. The correspondence principle gives a
mechanical impedance, from which storage and loss are found.
This technique is advantageous because the combined poroviscoe-
lastic behavior essentially behaves like a spring in the Laplace
domain, making analysis straightforward. The relationship
between the Laplace and frequency domains is also utilized in this
work.

Previously, Miller and Green [15,16] imposed an instantaneous
displacement on a gas film bearing to determine storage and loss.
This method was consistent with a relaxation experiment and was
supported because air is a compressible fluid (the equation of state
allows for pressure calculations immediately after an instantane-
ous step at t¼ t0). However, this is not possible in the HDL/PVE
case, because the fluid and solid are considered incompressible.
Therefore, an instantaneous displacement is impossible for the

proposed cases (that are laterally constrained). This dictates that a
relaxation experiment is not ideally suited to determine the stor-
age and loss of the coupled PVE/HDL simulation (it is possible
that a sufficiently fast, but finite, displacement may be imposed on
the body in order to mimic relaxation). The alternative to relaxa-
tion is creep, which is physically possible in the current model.
Here, a change in the load support is imposed, and the correspond-
ing film thickness required to sustain this load is determined
instantaneously. This technique is used in the current study to
determine storage and loss.

2.3 Mechanical Impedance Models. As discussed earlier, to
determine the mechanical impedance of the coupled PVE/HDL
problem, a creep-like experiment is performed. First, the bearing
in Fig. 1 is simulated to steady-state under a load, W. Then, from
steady-state, the load is instantaneously perturbed and fixed
(WþDW), and the bearing’s resulting travel is tracked. This
creates a time-dependent force–displacement relationship. The
force–displacement relationship is either translated into the fre-
quency domain to determine storage and loss directly, or fit in the
time domain with a constitutive model, whereby the fit parameters
define the storage and loss. Using a known constitutive model is
advantageous because it provides fit parameters that can be easily
compared between configurations and simulations, and there are
often direct correlations between the time domain fit and the
frequency domain storage and loss moduli.

There is an analogous relationship between mechanical imped-
ance and the complex modulus from viscoelasticity. Therefore,
the spring-dashpot and fractional models used in viscoelasticity
[14] can also model the force–displacement relationship. While
the relaxation modulus is often considered in the definition of vis-
coelasticity, the mechanical impedance is determined from a
creep-like test. An integer-order and fractional model are pro-
posed as suitable models. The integer-order model is the well-
known Kelvin–Voigt model, shown in Fig. 2(a). The fractional
model emulates the Kelvin–Voigt model, replacing the dashpot
with a fractional spring-pot of order a (Fig. 2(b)). The compliance
of the Kelvin–Voigt model is [18]

C tð Þ ¼ 1

Kkv
1� e�t=s½ � (7)

where the time constant, s, relates the model parameters Kkv and g

s ¼ g
Kkv

(8)

The compliance of the fractional Kelvin–Voigt model is [18]

C tð Þ ¼ 1

Kf
1� Ea �

t

�

� �a
" #( )

(9)

where Ea is the Mittag-Leffler function [19]

Ea zð Þ ¼
X1
k¼0

zk

C ak þ 1ð Þ (10)

In Eq. (10), z is an independent variable, and k is an index. �
relates the model parameters Kf and b

� ¼ b
Kf

(11)

and takes the units of seconds (s). When a¼ 1, the fractional cal-
culus model reverts identically to the Kelvin–Voigt model, and
when a¼ 1/2, the complementary error function appears [2,14].
The integer-order and fractional models are capable of a creep-
like behavior (fixed load with changing displacement), while
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incapable of stress–relaxation-like behavior (instantaneous dis-
placement is not possible). This mimics the physics of the coupled
simulation with incompressible constituents. The models can be
generalized by stacking additional elements in series [18]

C tð Þ ¼
X1
n¼0

1

Kfn

1� Ean
� t

�n

� �an

" #( )
(12)

The constitutive model for compliance, as given in Eq. (5), leads
to storage and loss in the frequency domain

ixK xð Þ ¼ K� xð Þ ¼ 1

ixC xð Þ (13)

Equation (12) is converted from the time domain to the Laplace
domain

C sð Þ ¼
X1
n¼0

1

Kfn

1

s
� 1

s 1þ ansanð Þ

� �
(14)

with

an ¼
1

�n

� �an

(15)

Multiplying the two sides of Eq. (14) by “s” gives

sC sð Þ ¼
X1
n¼0

1

Kfn

1� 1

1þ ansanð Þ

� �
(16)

From Eqs. (5), (6), and (13), the storage and loss properties of the
coupled PVE/HDL system are expediently obtained from the
compliance data. The physics of the integer and fractional
Kelvin–Voigt models suggests that the storage and loss values
trend to infinity at high frequencies. This is consistent with the
coupled HDL/PVE problem, in that an instantaneous displacement
(x ! 1) is not possible in the system. If compressibility is
allowed, or the solid is not confined as described earlier (i.e., an
instantaneous deformation is possible at t¼ 0), the storage and
loss values will be finite as t¼ 0 or x!1.

Compared to the rigid case, the flexible interface of the porovis-
coelastic pad poses a unique challenge in the description of the
film profile because of deformation. In the rigid case, the film pro-
file can be determined by knowing the initial geometry and one
point along the bearing’s interface. For the flexible case, it is not
sufficient to know the coordinates of a single point on the pad, as
the deformation of the entire porous pad dictates the film thick-
ness. Therefore, some ambiguity exists in describing the time his-
tory of the film thickness. For the purposes of the current work,
the bearing’s location at steady-state serves as “zero” (see Fig. 1).
A point on the bearing is chosen as the tracking point, and all dis-
placements are measured relative to this position. The displace-
ment, D(t), is the magnitude of the bearing’s response from
steady-state

DðtÞ ¼ jdðtÞ � dðt0Þj (17)

Letting steady-state be defined as d(t0)¼ 0, then

DðtÞ ¼ jdðtÞj (18)

This definition of displacement is a “triboelement centric” view of
the system dynamics, and it serves as a platform for comparing
the different cases. The aforementioned models are fit to the dis-
placement time history when subjected to a set load perturbation.
From the fit, analytical expressions exist to determine the

mechanical impedance in the Laplace domain, leading to the
properties of storage and loss in the frequency domain. In the fore-
going work, the results are obtained from the numerical procedure
described in Ref. [14], where the porous Reynolds equation is
coupled to the structural poroviscoelasticity by ABAQUS and associ-
ated subroutines.

3 Results

A number of cases are explored herein to understand the
dynamic effects of the permeable and viscoelastic contributions.
Table 1 gives the relevant simulation parameters used to deter-
mine steady-state. Numerous permeability values in the neighbor-
hood of articular cartilage (k � 10�16 m2) are explored. The
transient response of the coupled PVE/HDL problem is obtained
by perturbing the load support. This occurs from steady-state and
is equivalent to a weight being added to the bearing at time t¼ t0.
The results of the simulations to steady-state are given in Ref.
[20]. In the transient case, the magnitude of the fluid film’s
response is tracked in time, as shown in Fig. 3. The information in
Fig. 3 gives displacement of the bearing versus time for a known
incremental load (DW¼ 12 N/m). The compliance modulus is fit
to these data. With the compliance modulus, the dynamic proper-
ties of storage and loss are obtained, as outlined earlier.

Herein, the terminologies “rigid,” “flexible,” “nonporous,” and
“porous” are used to describe the mechanism(s) apparent in the
substrate. Rigid means that the bearing surface does not deform,
while flexible means that the surface can deform. Nonporous, or
impermeable, means that no fluid can flow vertically across the
bearing surface, and porous means that fluid can flow in the
vertical direction.

3.1 Rigid and Impermeable Case. The rigid and imperme-
able case is common in tribological applications and is given as a
benchmark example. The displacement path (i.e., Fig. 3) is fit
with the fractional calculus Kelvin–Voigt model, shown in
Fig. 4(a). The fit parameters are given in Table 2, and the

Fig. 2 Mechanical analogy for the compliance models used to
determine force/displacement relationship: (a) Kelvin–Voigt
viscoelastic model and (b) fractional representation of the
Kelvin–Voigt viscoelastic model
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frequency-dependent storage and loss properties are shown in Fig.
4(b). For the rigid, impermeable cases, the fractional derivative is
nearly one (a � 1), which indicates that the fractional element is
essentially a damper and the model is nearly the traditional
Kelvin–Voigt model. In this case, the storage is virtually constant,
and the loss is virtually linear. The dynamic property of damping
is defined as the loss modulus divided by frequency

B xð Þ ¼ K00 xð Þ
x

(19)

The damping in the rigid/impermeable case is practically constant.
This translates to constant stiffness and damping, exactly like a
spring and dashpot in parallel. These results are consistent with a
purely viscous response.

3.2 Rigid and Permeable Cases. The effect of permeability
on storage and loss is studied in the rigid case (no material defor-
mation). The permeability is varied from the impermeable case to
a value of k¼ 10�13 m2. Increasing the permeability beyond this
point is not suitable for the example parameters given (the bearing
cannot support the load requirements). Under the same perturba-
tion load (DW¼ 12 N/m), the compliance results are shown in
Fig. 5 for various permeabilities. The results given in Table 2
show that the K term decreases with an increase in permeability,
while � increases with permeability. However, the character of
the storage and loss is relatively unchanged by the permeability.
This is indicated by the fractional derivative value not changing
significantly from the impermeable to the most permeable cases
(a � 1). Therefore, the storage properties of the system stay nearly
constant with frequency, and the loss properties are practically lin-
ear with frequency, similar to that shown in Fig. 4(b).

In the permeable region where triboelement operation is possi-
ble (k�10�13 m2), the effect of permeability alone is not signifi-
cant enough to change the storage and loss character (a remains
approximately 1). This is indicated in Table 2 and Figs. 4(b) and
5, where the response is shown to effectively be a spring and
damper in parallel. However, the mechanism of permeability is
still influential in the bearing’s performance, as the storage
decreases with an increase in permeability, and the loss increases

with increasing permeability. Discussed herein, the combination
of permeability and flexibility gives rich frequency-dependent
behavior. This is because permeability changes the action of
deformation in the porous pad. In likelihood, the permeability
does change the storage and loss characteristics significantly, but
this occurs outside of the operational region for the considered
case.

3.3 Flexible (PVE) Cases. The performance of triboelements
with flexible–porous interfaces is explored using a thrust bearing,
like that of Fig. 1, in a “long bearing” configuration

Table 1 Geometric parameters for PVE/HDL analysis

Parameter Symbol Value (units)

Load per depth W 600 (N/m)
PVE pad length L 25 (mm)
PVE pad height H 6.25 (mm)
Bearing velocity U1 0.02 (m/s)
Fluid viscosity l 0.1 (Pa�s)
Slip coefficient a 0.1
Initial inlet film thickness hi 40 (lm)
Film thickness ratio a 2.2

Fig. 3 Change in bearing height due to a 2% (DW 5 12 N/m)
load perturbation

Fig. 4 Compliance, storage and loss in the rigid/nonporous
case: (a) compliance in the rigid/nonporous case, with fit given
in Table 2 and (b) storage and loss in the rigid/nonporous case

Table 2 Storage and loss fit to simulation data (rigid
configuration)

k (m2) Kf (N/m) � (s) a ho (lm)

Nonporous 6.64� 107 1.363 0.991 18.1
10�16 6.67� 107 1.363 0.993 18.0
10�15 6.67� 107 1.363 0.993 17.8
10�14 6.49� 107 1.365 0.993 16.9
10�13 4.93� 107 1.888 0.988 12.1

Fig. 5 Compliance in the rigid/porous cases
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(corresponding to plane strain in the poromechanics). The geome-
try and specifications of the problem are given in Table 1. The
PVE pad is “glued” at the lateral edges (x¼ 0 and x¼ L) of the
PVE pad. In this application, glued means that the PVE pad is
fixed at the edges, and no strain occurs at the boundary. However,
fluid is still allowed to permeate across the porous boundary.
Figure 6 shows the boundary conditions imposed on the porous
pad. Assuming a submerged bearing, the leading and trailing edges
of the pad are exposed to atmospheric pressure (gauge), which
allows fluid flow across the boundary. The bottom boundary is
fixed and rigid, and the top boundary is flexible and the pressure, p,
is equal to the fluid film pressure, P. The pressure gradient in the
porous pad facilitates fluid flow throughout the pad. The pressure
boundary and initial conditions are defined mathematically

pð0; y; tÞ ¼ pðL; y; tÞ ¼ 0 (20)

@p

@y
x;�H; tð Þ ¼ 0 (21)

pðx; 0; tÞ ¼ Pðx; 0; tÞ (22)

pðx; y; 0Þ ¼ 0 (23)

exð0; y; tÞ ¼ exðL; y; tÞ ¼ 0 (24)

eyð0; y; tÞ ¼ eyðL; y; tÞ ¼ 0 (25)

exðx;�H; tÞ ¼ eyðx;�H; tÞ ¼ 0 (26)

rxðx; 0; tÞ ¼ 0 (27)

ryðx; 0; tÞ ¼ �Pðx; 0; tÞ (28)

rxðx; y; 0Þ ¼ ryðx; y; 0Þ ¼ 0 (29)

Equations (20)–(22) enforce the fluid pressure boundary condi-
tions, while Eqs. (24)–(28) are placed on the biomimetic solid
matrix. Equation (21) enforces no flow across the rigid boundary
at y¼ –H. Figure 6(a) shows the boundaries where flow exists,

and these values are determined from the fluid pressure gradients.
Pressure boundary conditions are enforced to maintain continuity
with the HDL solution from the Reynolds equation [20]. Initial
conditions in Eqs. (23) and (29) provide the undisturbed loading
conditions at time t¼ 0.

The boundary conditions in Fig. 6 are used to compare the
rigid/nonporous case to the flexible PVE cases. This fixes the PVE
pad at the lateral edges but still allows for deformation in the PVE
body due to fluid exodus. The boundary conditions provide the
best platform for comparison purposes with the rigid cases. The
flexible/porous case has two additional material mechanisms com-
pared to the rigid case: permeability and viscoelasticity. A repre-
sentative set of viscoelastic parameters is used in ABAQUS (Table
3). These parameters are derived from previous study of articular
cartilage [1].

Figure 7(a) shows the compliance of the flexible/nonporous and
rigid/nonporous cases. Two important differences exist between
the flexible/nonporous and rigid/nonporous cases: (1) the flexible/
nonporous case has significantly more compliance than the rigid/
nonporous case and (2) the flexible/nonporous case cannot be fit
with a single fractional order model. Rather, a two element chain
of fractional Kelvin–Voigt elements is required (Fig. 8). The
implications of this are significant because it shows the impact of
the viscoelastic/permeable component.

Figure 7(b) shows the dynamic storage and loss of the rigid/
nonporous and flexible/nonporous cases. The flexible/nonporous
case shows that the viscoelastic action manifests in the storage
and loss results. The flexible/nonporous case has a higher loss
across the frequency spectrum versus the rigid/nonporous case. At
low frequencies, the flexible/nonporous case has lower storage
than its rigid/nonporous counterpart. However, as the frequency
increases, the storage in the flexible/nonporous case increases
beyond the rigid/nonporous case. This is due to the frequency-
dependent portions of the fractional spring-pots that are associated
with the storage modulus. The viscoelastic case has a larger com-
ponent attributed to the frequency-dependent storage modulus
(i.e., an< 1) than the rigid case. Physically, this increase in stor-
age is attributed to the reduced film thickness in the flexible cases
(Fig. 9(a)). Tables 2 and 3 indicate that the flexible cases gener-
ally have smaller film thicknesses than their rigid counterparts.
This is also shown in the pressure profiles, given in Fig. 9(b). The
load support (area under the curve) is identical between rigid/
nonporous and flexible/porous cases, but the shape and load
center is different to accommodate the deformation and flow in
the flexible/porous case. The smaller film thickness generates
higher storage values, but viscoelasticity also influences the stor-
age properties. Therefore, the total response is a combination of
these effects. Viscoelasticity also changes the character of the
response. This differentiates the rigid and flexible cases, and

Fig. 6 Fluid and solid boundary conditions on porous pad
(case I): (a) fluid pressure boundary conditions on the PVE pad
and (b) solid boundary conditions on the PVE pad

Table 3 ABAQUS inputs for viscoelastic component

Parameter Symbol Value (units)

Poisson’s ratio (instantaneous) � 0.3

Elastic modulus (instantaneous) E 15.0 (MPa)

Perturbation DW (0.02) W

Prony constant (bulk) k1 0.152
k2 0.135
k3 0.310
k4 0.217

Prony constant (shear) g1 0.152
g2 0.135
g3 0.310
g4 0.217

Prony time constant s1 7.682 (s)
s2 0.238 (s)
s3 2.229 (s)
s4 5.617 (s)
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means that there is a region of the frequency response that may be
tunable by controlling the viscoelastic and/or permeable action.
The impact of permeability when the viscoelastic mechanism is
included is explored next.

An example of the flexible and porous case is shown in Fig. 10.
Here, the viscoelastic and porous actions occur simultaneously.
The fit parameters in Table 3 indicate what is happening in
Fig. 10. In the flexible/porous cases, the fractional derivatives,
an, deviate dramatically from the rigid/nonporous and flexible/
nonporous cases, where a � 1. As a approaches 1/2, the visco-
elastic response is clearly seen. Figure 10 shows this clear visco-
elastic response at low frequencies, followed by a viscously
dominated response at higher frequencies. Combining permeabil-
ity and viscoelasticity changes the character of the response
appreciably from the rigid/nonporous case and flexible/nonporous
cases. The combined permeability and viscoelasticity play a gov-
erning role in the storage and loss characteristics. Essentially, the
time scale of the path that the triboelement takes after a perturba-
tion is changed, and the resulting storage and loss character is
altered. Without the viscoelastic action, the permeability has a rel-
atively small effect on the triboelement’s dynamic performance;
however, with the coupled viscoelasticity, the dynamic perform-
ance is significantly altered. This is apparent in the fit parameters
given in Table 4, where the K, �, and a values are tangibly differ-
ent for the flexible/porous and flexible/nonporous cases.

3.4 Tunable Dynamic Performance. It has been shown that
the dynamic performance of a triboelement is changed with the
introduction of a porous substrate. From a design standpoint, a
number of degrees-of-freedom exist in the triboelement character-
istics. These include geometric changes in the bearing (inclina-
tion, etc.) and in the porous pad (pad length, depth, etc.), as well
as material changes (permeability, viscoelastic properties, etc.).

The HDL/PVE system has two important mechanisms that
influence the storage and loss: the permeability and the visco-
elastic action. In particular, as the permeability drops in the
coupled HDL/PVE system, the viscoelastic flexibility in the
porous pad still acts to change the dynamic properties of the tribo-
element. Having two mechanisms that influence the dynamic

Fig. 7 Compliance, storage and loss in the rigid/nonporous
and flexible/nonporous cases: (a) compliance in the rigid/non-
porous case versus the flexible/nonporous case and (b) storage
and loss in the rigid/nonporous case versus the flexible/
nonporous case

Fig. 8 Two element chain of fractional Kelvin–Voigt elements

Fig. 9 Final steady-state results of rigid/nonporous and
flexible/nonporous solutions: (a) film thicknesses of the rigid/
nonporous and flexible/nonporous cases and (b) pressure pro-
files of the rigid/nonporous and flexible/nonporous cases
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storage and loss gives a great deal of flexibility in triboelement
design.

The takeaway of this analysis is that there exists a tradeoff
between the storage and loss properties of a flexible/porous bear-
ing. The porous cases presented are able to sustain loads compara-
ble to the rigid case. Therefore, the penalty of using a flexible/
porous bearing is likely not prohibitive. Loss is increased in the
flexible/porous triboelements. In certain applications, this is a
preferable operating condition. Some additional benefits are
hypothesized too. These include the following: lubricant availabil-
ity in the porous pad if a loss of lubricant occurs, increased ability
to mitigate shock events, and potential operation in a full film
regime for longer compared to the rigid case.

3.5 Region of Applicability. The storage and loss results
given herein are determined from a 2% load perturbation. In the
small region around the operating load, the results are assumed
linear with the load perturbation. Therefore, the perturbation mag-
nitude does not influence the storage and loss results. In limited
testing, this assumption has proven to be correct, and the load per-
turbation has been tested up to approximately 5% before the simu-
lation fails to converge.

The simulations presented herein are stable across a spectrum
of frequencies. In other words, the PVE/HDL concept did not
introduce instabilities in an otherwise stable thrust bearing.
Clearly, any system must be designed to be stable. For example,
in rotordynamic systems, “internal damping” is known to instigate

dynamic instabilities [21,22]. That is, systems should possess
positive-definite stiffness, and the eigenvalues must contain
decaying real parts [21,22]. This study does not replace that need
for any general tribo-system.

4 Discussion

The Reynolds equation (see Ref. [20]) is modified from the
rigid case to describe the fluid mechanics of a thin film interacting
with a porous substrate. Permeability is shown to have a strong
coupling effect on the porous Reynolds equation. In order to simu-
late the transient behavior of the PVE/HDL system, continuously
updating numerical schemes are required.

The results presented here are promising in a number of ways.
First, the simulations prove that a coupled PVE/HDL problem is
feasible in a tribological sense. Specifically, a porous/flexible pad
can sustain a load that is comparable to its rigid counterpart [14].
However, the load support of the triboelement is strongly influ-
enced by the permeability of the porous pad [14,23,24]. Ideally, a
tradeoff exists between permeability and the dynamic properties
of interest. In the rigid/porous cases, Fig. 5 indicates that the com-
pliance changes with respect to permeability. This has the effect
of changing the storage and loss values for the triboelement. How-
ever, the character of the storage and loss (i.e., the frequency-
dependent shape) is relatively unchanged by the permeability.
This is noted by the fit value a remaining nearly 1, meaning that
the fractional spring-pot is a simple viscous damper. This indi-
cates that permeability alone will not give the designer a great
deal of control over the dynamic properties of the triboelement. A
flexible interface is considered for this purpose.

Figure 7 compares the compliance of a rigid/nonporous and
flexible/nonporous design. The viscoelastic action changes the
compliance relative to the viscous action of the rigid case. In the
flexible case, there exists a coupled response that is partially
viscous (from the fluid) and partially viscoelastic (from the pad).
A second modeling element (fractional Kelvin–Voigt) is required
to adequately capture this response. The flexible case displays
additional loss in the frequency domain compared to the rigid/
nonporous case. This is due to the secondary dissipation mecha-
nism of the porous pad. However, the character of the loss modu-
lus is essentially unchanged, while the storage modulus picks up a
frequency-dependent component from the complex stiffness mod-
ulus. The real component of the fractional spring-pot element con-
tributes to the storage modulus and is multiplied by x, which
explains its trend as x grows.

When the flexible and permeable cases are combined, the
dynamic properties take a new shape relative to the previously
discussed cases. Figure 10(b) shows the effect of the coupled dis-
sipation mechanisms, particularly when those mechanisms have
different time-scales. Here, there appears to be an element of user
control, or tunability, in the dynamic properties. This can be seen
between the permeability cases k�14 and k�15. The application of
the loss modulus, which is related to damping, could be tuned to
mitigate vibrations in a particular band of frequencies. This is one
goal of the current study, and the results indicate that there is
promise in the unique coupling of PVE/HDL.

The “big-picture” view of this work is that it proves the feasibil-
ity of a coupled flexible/porous material with a hydrodynamic fluid
load. Not only can bearing designs of this nature support tribologi-
cal loads, the material properties can be manipulated to change the
dynamic storage and loss characteristics. The importance of this
should not be understated. The current work provides both insight
into how certain natural systems work, and also a toolbox for
exploring tribological applications. More complicated porous
mediums and fluid mechanics can be extended from this work.

5 Conclusions

The genesis of coupled PVE/HDL comes from biomimetics,
where biological solutions exist for many tribological problems.

Fig. 10 Compliance, storage and loss in the flexible/porous
cases: (a) compliance in the flexible/porous cases and (b) stor-
age and loss in the flexible/porous cases

Table 4 Storage and loss fit to simulation data

k (m2) Kfn ðN=mÞ �n (s) an ho (lm)

Flexible/nonporous 1.59� 108 2.568 0.968 9.06
3.68� 108 23.764 0.934

10�15 1.86� 108 8.32� 10�6 0.5367 6.01
5.19� 107 176.93 0.6278

10�14 1.46� 108 5.17� 10�6 0.5125 5.08
5.56� 107 29.60 0.9779
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With biological materials, the engineer cannot control the material
properties; however, the physics can be described. The proposed
PVE/HDL model describes the physics of a flexible/porous mate-
rial interacting with a fluid film load. Potentially, the model has
use in the study of biological mechanisms, as well as biomimetic
tribological applications. Articular cartilage is of particular inter-
est in biomimetics because of its adaptability and longevity. Cou-
pling mechanisms like a fluid film and porous pad helps to
translate from biomechanical to tribological applications.

New demands in triboelement performance require innovative
technology. A coupled HDL/PVE bearing is a feasible configura-
tion for certain applications. These include biomechanics, flexible
bearing technology, and sealing elements. In addition, PVE mate-
rials have strong dissipation characteristics, making them suitable
for shock absorption and damping elements. The results of the
coupled HDL/PVE simulation indicate that flexible, porous sub-
strates can promote tunable triboelement performance. While the
current work shows improved loss at low frequencies, different
material combinations could give more dissipation at other fre-
quency spectra (e.g., frequencies experienced in rotating machin-
ery). This can potentially improve tribological considerations,
especially wear and damping. However, there are tradeoffs associ-
ated with these gains, namely, with film thicknesses and storage
values at certain frequencies. Additional study is required to quan-
tify this performance and make comparisons between conven-
tional and bio-inspired systems.

Nomenclature

a ¼ film inlet to outlet ratio (hi/ho)
B ¼ dynamic damping
C ¼ compliance modulus
D ¼ displacement
F ¼ force
h ¼ fluid film thickness
hi ¼ inlet fluid film thickness
ho ¼ outlet fluid film thickness
H ¼ bearing pad height
k ¼ permeability
K ¼ stiffness modulus
Kf ¼ fractional spring constant

Kkv ¼ Kelvin–Voigt spring constant
K0 ¼ storage modulus
K00 ¼ loss modulus

L ¼ bearing pad length
t ¼ time

U1 ¼ bearing velocity
a ¼ fractional derivative
b ¼ spring-pot constant
c ¼ dummy variable

eij ¼ strain
g ¼ dashpot constant
l ¼ lubricant viscosity
� ¼ fractional time constant

rij ¼ stress
s ¼ time constant
x ¼ frequency
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