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The Rotor Dynamic Coefficients 
of Eccentric Mechanical 
Face Seals 
The Reynolds equation is extended to include the effects of radial deflection in a seal 
with two flexibly mounted rotors. The resulting pressures are used to obtain the 
forces and moments introduced in the axial and angular modes by the inclusion of 
eccentricity in the analysis. The rotor dynamic coefficients relating the forces and 
moments in these modes to the axial and angular deflection are shown to be the same 
as those presented in the literature for the concentric case. Additional coefficients 
are obtained to express the dependence of these forces and moments upon the radial 
deflections and velocities. The axial force is shown to be decoupled from both the 
angular and radial modes, but the angular and radial modes are coupled to one 
another by the dependence of the tilting moments upon the radial deflections. The 
shear stresses acting upon the element faces are derived and used to obtain the 
radial forces acting upon the rotors. These forces are used to obtain rotor dynamic 
coefficients for the two radial degrees of freedom of each rotor. The additional rotor 
dynamic coefficients can be used to obtain the additional equations of motion neces­
sary to include the radial degrees of freedom in the dynamic analysis. These coeffi­
cients introduce additional coupling between the angular and radial degrees of free­
dom, but the axial degrees of freedom remain decoupled. 

Introduction 
In high-speed applications, the dynamic behavior of a me­

chanical face seal is an important consideration in predicting 
its performance. Instability in the seal may lead to premature 
failure resulting from face contact, and excessive vibration at 
steady-state will increase both the wear and the leakage of the 
seal. 

Analyses of the dynamic behavior of mechanical face seals 
date back almost three decades. Extensive reviews of the litera­
ture in this field have been provided by Allaire (1984), Tour-
nerie and Frene (1985), and Etsion (1982, 1985, and 1991). 
More recent work in the field has been done by Green (1987, 
1989, and 1990) and by Wileman and Green (1991). 

The majority of the literature deals with seals in which the 
seal ring and the seal seat remain concentric with respect to 
each other and the shaft. Such a concentric analysis may provide 
a good prediction of the dynamic behavior of a system with a 
very stiff structure. Trends in modern turbomachinery, however, 
are toward increasingly lighter machine components which are 
likely to be quite flexible. In these systems it is necessary to 
include the effect of eccentricity upon the seal, as the ring, seat, 
and shafts are likely to deflect in the radial deflection so that 
their axes of rotation are no longer coincident. 

The literature dealing with analysis of eccentric seals is lim­
ited. Findlay (1969) showed that a seal which is both eccentric 
and misaligned will exhibit a ' 'pumping'' action, and he verified 
this result experimentally. Sneck (1969) verified the pumping 
effect and showed that eccentricity will also affect the separating 
force in the seal. He noted, however, that these effects occur 
only in conjunction with misalignment or waviness. Griskin 
(1987) determined the dynamic response using numerical inte-' 
gration for a seal design having a fixed eccentricity. 
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To determine the dynamic response of a lubricated system 
such as a face seal, it is normally necessary to solve the equa­
tions of motion simultaneously with the Reynolds equation, 
which governs the behavior of the sealed fluid. Such an analysis 
requires an iterative numerical solution such as that presented 
by Green and Etsion (1986) for a concentric seal. Green and 
Etsion (1983) demonstrated that an analytical solution can be 
obtained in closed form if the fluid behavior is modeled using 
linearized rotor dynamic coefficients. Their original result was 
for a concentric seal with a flexibly mounted stator (FMS) and 
was used to obtain the stability criteria and steady-state response 
for the system (Green and Etsion, 1985). Green (1987, 1989, 
and 1990) extended this work to the flexibly mounted rotor 
(FMR) configuration, finding the FMR configuration superior 
to the FMS in every aspect of dynamic performance. 

Wileman and Green (1991) obtained rotor dynamic coeffi­
cients for a seal configuration (denoted FMRR) in which both 
elements are flexibly mounted to rotating shafts (Fig. 1), but 
they maintained the assumption of concentricity in the system. 
These coefficients were used by Wileman (1994) to obtain the 
equations of motion for the system. 

Frequently the designer has the choice of which configuration 
(FMS, FMR, FMRR) he prefers. If speeds are high enough that 
dynamic effects are expected to be a problem, a dynamic analy­
sis can assist in this decision. Sometimes, however, the applica­
tion dictates the seal configuration. In drilling equipment or in 
gas turbines (Miner, 1992), for example, there is sometimes a 
need to seal between two rotors, in which case the FMRR 
configuration is required. 

The dynamic analysis of an eccentric system requires two 
significant extensions of the concentric results. First, the radial 
deflection of the elements may create additional axial forces 
and tilting moments which affect the response in the axial and 
angular modes. Thus, additional rotor dynamic coefficients will 
be necessary to incorporate eccentricity effects into the equa­
tions of motion for these modes. Because the Reynolds equation 
for incompressible fluids is linear, the eccentricity effects can 
be obtained independently and combined with the previously 
derived concentric results using superposition. 
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analysis, results can be obtained which will be applicable to all 
of the possible configurations. 

In a concentric analysis it is sufficient to use a single cylindri­
cal coordinate system with inner radius, r,, and outer radius, 
r„. These radial boundaries are based upon the geometry of the 
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Fig. 1 Schematic of an FMRR mechanical seal 

Second, the inclusion of eccentricity adds two degrees of 
freedom for each rotor. These two degrees of freedom are repre­
sented by two perpendicular radial motions, and it is necessary 
to derive additional rotor dynamic coefficients to model the 
radial forces and derive the equations of motion in these two 
directions. This work presents a derivation of both sets of rotor 
dynamic coefficients. 

Kinematic Description 
The FMRR configuration is the most general of the kinematic 

models in the literature; both the FMS and FMR configurations 
represent degenerate cases of the FMRR configuration. Thus, 
by using the FMRR configuration as the basis for the eccentric 

When the ring and the seat are concentric, it is not necessary 
to specify which of the elements is the seat and which the ring, 
since this will not affect the geometry of the sealing dam. 

An eccentric analysis, however, requires a way to express 
position and velocity on the surfaces of two elements which 
have different centers. The position vector of a point on the 
sealing dam surface will depend upon which of the centers is 
used as the origin of the reference frame. Because it is conve­
nient to evaluate integrals over areas which have constant inner 
and outer radii, we choose a reference frame which has its 
origin at the center of the seal ring. In such a system, the sealing 
dam will be axisymmetric about the origin when the faces are 
parallel. The relative eccentricity vector, e, is defined as the 
vector from this origin to the center of the seal seat (Fig. 2) . 
For convenience in the derivation, we will establish the conven­
tion that element 1 is the seal ring and element 2 is the seat. 
Once the origin has been chosen, the (123)£ system is defined 
in which the 2£ axis is parallel to the direction of the relative 
eccentricity, so that there is no component of the relative deflec­
tion in the direction of the perpendicular 1£ axis (Fig. 3). 

If we define the center of element 1, the seal ring, as O and 
the center of element 2, the seat, as O', then the vector describ­
ing the eccentricity is 

roo' = " e 

where e is the distance between the two centers. The velocity 
of O' with respect to O will be 

y0'/o 
drn dr0 + txi(l23)c X Too' (1) 

dt dt 

since the (123)£ system will rotate unless the shaft centers are 

Nomenclature 

C 

c0--

Fj = 

Ff = 
Fe = 

Fi2 = 
G0 = 

h = 

k = 
""vi tr 

: instantaneous seal centerline 
clearance 
equilibrium centerline clearance 
fluid film damping coefficient (el­
ement 2) 
damping coefficient relating tilt­
ing moments and eccentric de­
flections 
damping coefficient relating ra­
dial forces and eccentric deflec­
tions 
generalized force 
dimensional axial force 
normalized axial force, F'flSrl 
radial forces 
damping parameter, Eq. (27) 
film thickness 
normalized film thickness, hIC 
fluid film stiffness coefficient (el­
ement 2) 
stiffness coefficient relating tilt­
ing moments and eccentric de­
flections 
stiffness coefficient relating radial 
forces and eccentric deflections 
stiffness coefficient relating radial 
forces and rotor tilt 

Mnj = normalized moment, M%ISrl 
p = pressure 
P = normalized pressure, pIS 
r = radius 
R = normalized radius, rlr„ 
S = seal parameter, 6/uujref(ro/C0)2(l 

- R > ) 2 

t* = dimensional time 
t = normalized time, uitctt* 

Vni = translational velocity on seal sur­
face 

W0 = eccentric force parameter, Eq. 
(34) 

z = relative axial translation 
Z = normalized axial translations, 

z/C0 

(3* — coning angle 
P = normalized coning angle, p*r0ICQ 

y* = nutation (tilt) 
y = normalized nutation, y*ro/C0 

8 = coning parameter, P*r0IC 
e* = dimensional relative eccentric de­

flection, e = e*/C0 

e = normalized relative eccentric de­
flection 

e„ = normalized absolute eccentric de­
flection 

K = tilt parameter, y*r„IC 
9 = angular coordinate referenced to 

axis 2 
9e = angular coordinate referenced to 

axis 2£ 

p, = viscosity 
4>n = precession angle 
</f„£ = absolute precession of relative ec­

centricity system 
ui„ = shaft angular speed of element n 

uim{ = reference shaft speed (used for 
normalization) 

Subscripts 

0 = equilibrium value 
i = inner radius 

m = mean radius 
n = element number (« = 1 or 2) 
o = outer radius 
e = axis or variable in eccentric 

analysis 

M*, = dimensional moment 
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Fig. 2 Eccentric seal kinematic model and coordinate systems 

fixed in space, in which case the eccentricity vector will be 
constant. t//„£ is defined as the angle between this system and 
the inertial axis £ as illustrated in Fig. 4 where, for complete­
ness, the vectors and angles for the eccentric analysis have been 
appended to those described by Wileman and Green (1991) for 
the concentric analysis. 

Since the relative velocity between the two centers in (1) 
results from eccentricity, we shall adopt the less cumbersome 
notation v£ to represent it. Substituting the expression for the 
eccentricity vector and the angular velocity then yields 

v£ = e% + !//„£3 X e% = -ej,Jc + e% 

The relative velocity between the two seal elements induces 
shear stresses which produce radial forces acting upon the faces 
of the elements. To compute these shear stresses it is necessary 
to express v£ in a cylindrical coordinate system, where r is 
measured from the origin O and 9t is measured from axis 2£ 

(Fig. 4) . The relationship between the cartesian system and the 
cylindrical system is 

Fig. 3 Vector diagram of relative and absolute eccentric deflections 

Fig. 4 Vector diagram of the eccentric and shaft-fixed reference frames 

ie] / - s i n 0£ -cos <9£\ fe£,.j 

2£J \ cos 9e - s in Oj\eeej 

where ecr and etS are unit vectors in the radial and circumferen­
tial directions, respectively. When expressed in this system, the 
relative velocity between the centers of mass is 

ve = (eipac sin 9C + e cos 0e)eer 

+ (etj/ae cos 9C - e sin 9c)ia (3) 

The relative velocities of adjacent points on the two elements 
will include this velocity difference between the centers, but 
will have an additional component which results from the shaft 
rotations and which we shall denote v„. The additional velocity 
is obtained for each element as the cross product of the angular 
velocity of the seal element and the vector from the center of 
rotation to the point at which the velocity is desired. Recall that 
the reference frame origin coincides with the center of element' 
1, the seal ring, so that the position of a point on element 1 is 
expressed in the cylindrical system as ri = reer. 

The position vector for a point on element 2 will be the same 
as that of the adjacent point on element 1, noting that r is always 
measured from the center of element 1. To compute the velocity 
at a point on element 2, however, we need the vector to the 
point from the center of rotation of element 2 rather than the 
vector from the origin at the center of element 1. Thus, we need 
to subtract the relative eccentricity vector from the position 
vector (Fig. 3) . Transform the eccentricity vector into the cylin­
drical system using (2) to obtain 

e = e2£ = e cos 9Eeer — e sin 6tee8 

Then subtracting this from the position vector yields the vector 
needed to obtain the velocity on element 2 

F2 = reer - e% = (r - e cos 9e)ecr + e sin 9sea (4) 

The velocities are obtained as simple cross-products, not­
ing that the spin axis is always parallel to the 3 direction. For 
element 1 the velocity is 

vul = w,3 X reer = rw,e i8 (5) 

For element 2, the velocity is 
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V 2̂ = w23 X {recr - t%) = ru>2e,e + eto2ic 

= oj2i X [ ( r — e cos 0 e)e„ + e sin 6ee£g] 

= (rw2 — eoj2 cos 6^)e,,s — eui2 sin 9ceer (6) 

The velocities which result from eccentricity lead to two 
different types of rotor dynamic coefficients, which we shall 
derive separately. The first type relates the axial forces and 
tilting moments to the radial displacement and velocity. These 
coefficients are obtained by solving the Reynolds equation for 
the incremental pressures which result from eccentricity, then 
integrating the pressures to determine the resulting axial forces 
and tilting moments. 

The second set of rotor dynamic coefficients relates the kine­
matic variables to the forces which act in the radial direction. 
These coefficients are obtained by deriving the shear stresses 
which result from the radial motion and integrating them over 
the sealing faces to determine the resulting radial forces. 

Reynolds Equation Solution 
To evaluate the effect of the eccentric velocity components 

upon the axial forces and tilting moments, we start with the 
Reynolds equation and obtain a solution for the fluid film pres­
sure. Because the Reynolds equation for incompressible fluids 
is linear, the additional pressure resulting from eccentricity can 
be obtained independently, along with its resulting forces and 
moments. Adding these forces and moments to those already 
obtained for the concentric case yields the totals for the system. 

The complete form of the Reynolds equation applicable to 
the FMRR configuration is presented by Wileman (1994). The 
equation is expressed in terms of velocity components in the 
cylindrical system. As in the concentric analysis (Wileman and 
Green, 1991), the Reynolds equation is simplified using the 
narrow seal approximation, neglecting the effects of curvature 
and of the circumferential pressure gradient. The fluid film is 
assumed to have a hydrostatic pressure sufficient to prevent 
cavitation. 

The total eccentric velocity at any point in the sealing dam 
is the sum of the rotation component, contained in (5) and (6), 
and the motion of the center of mass, contained in (3). For the 
Reynolds equation solution we can assume, without loss of 
generality, that the relative motion of the centers is applied 
completely to element 2. In this case, the total velocity of a 
point on element 1 is 

v, = ru>iea (7) 

and the velocity of a point on element 2 is 

v2 = [e(iA„e ~ w2) sin 9C + e cos 9c]eer 

+ [rw2 + e(i/foe - ui2) cos 9e - e sin 0Jee9 (8) 

The velocity terms containing rwi and roj2 can be omitted in 
the eccentric analysis because they are accounted for in the 
concentric analysis (Wileman and Green, 1991). 

When (7) and (8) are substituted into the Reynolds equation, 
several terms vanish completely, and others add out. The Reyn­
olds equation for the eccentric analysis becomes (Wileman, 
1994) 

dr \ dr 
\V29 ™g- 6KV2r - Vlr) 

dh 

dr 
(9) 

where the subscripts of the velocity valuables contain the ele­
ment number and the coordinate direction in the cylindrical 
system. 

To solve the equation, a more precise description of the ge­
ometry of the seal elements and the fluid film is necessary. 
Assume that element 1 is a thin ring which satisfies the narrow 
seal hypothesis. Then element 2 must be assumed to be a disk 

Fig. 5 Effect of eccentricity upon centerline clearance 

which extends radially well inside and outside the ring, so that 
the limiting radial dimensions of the sealing dam are always 
those of the thin ring. This is a reasonable approximation of a 
real seal, where the thin ring of element 1 corresponds to the 
carbon ring of the seal, and the disk of element 2 corresponds 
to the steel seat. 

Using this definition, it is clear that the relative orientation 
of the two elements does not change when their geometric 
centers undergo a relative displacement. Wileman and Green 
(1991) defined the 123 reference frame to describe the relative 
orientation of the two rotors in the concentric analysis. The 
relative nutation between the two elements is about axis 1, and 
axis 2 represents the direction of maximum film thickness. The 
expression for the film thickness in a concentric seal is 

h = C + yr cos 9 + /3{r - rt) (10) 

where the angle 9 is measured from axis 2. The second and 
third terms, which represent tilt and coning effects, respectively, 
depend only upon the relative orientation of the two elements. 
Only the first term, which represents the centerline clearance, 
will change when the shaft centers undergo a relative deflection. 
If C remains defined as the centerline clearance when the shafts 
are concentric, the effects of eccentricity can all be combined 
into a single additional term representing the additional center-
line separation which results from eccentricity. The value of 
this term will depend upon both the magnitude and direction 
of the eccentric deflections. 

The eccentricity is defined in terms of its magnitude, e, and 
the direction of the deflection, <f>e. The angle </>e is measured 
from axis 2 and represents the relative rotation between the 
(123) and (123)£ reference frames (Fig. 4) . Then the total 
centerline clearance is 

^total ^concentric T ^ COS <j>e 

so that the film thickness becomes (see Fig. 5) 

h = C„ ye cos (/>E + yr cos 9 + (3(r — r() 

Thus, the only effect of the eccentricity upon the film thickness 
is a second-order term. Further, the additional term does not change 
either dhld9 or dh/dr. Since h does not appear directly in the 
right-hand side of (9), but only as a derivative, the effects of 
eccentricity upon the definition of the film thickness can be ne­
glected in the Reynolds equation, and the expression for the con­
centric film thickness, (10), can be used. 

Substitute the velocities (7) and (8) and the expression for h 
into (9). The resulting expression can be simplified further by 
noting that 9C = 9 — 4>t (Figure 4) and substituting the angle 
difference trigonometric identities. The Reynolds equation be­
comes 

d_ 
dr 

,dpt 
h -r1 ) = 6fiy[e(tjja, u>2) sin 4>e — £ cos cf>c] 

6fj,p[e(iftae •— u>2) sin 9e + e cos (ID 

218 / Vol. 118, JANUARY 1996 Transactions of the ASME 

Downloaded From: http://tribology.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/jotre9/28517/ on 01/05/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



The pressure solution is obtained by integrating the Reynolds 
equation. Zero boundary conditions are used since the effect of 
the pressures at the inner and outer radius of the seal has been 
accounted for in the homogeneous solution of the concentric 
analysis. 

The integration is performed as in Wileman and Green 
(1991) . If the right-hand side of (11) is abbreviated as 
(R.H.S.) , the pressure which results from integrating (11) twice 
and setting pc = 0 at r = r, and r = r0 is 

where 

a(R) = 

+ 2 ( 1 - * , ) • 

KR 

1 + S(R - Ri) 

a(R,„) + 2y 

1 + 6(R,„- R,) 
(18) 

a'(R) = In [1 + 8(R - R^] 

Pe = - ( R . H . S . ) 
(r„ ~ r)(r -> , - ) 

2h2h,„ 

The pressure is normalized using the definitions 

y*r„ 

This substitution allows the integration over 9 to be performed 
in closed form. 

When (17) is substituted into ( 1 4 ) , the integral for the axial 
force becomes 

„ R,„ 

P £ = ^ ; * = - ; 
S' r' Co 

P 
C0 

— t 
C0 

y = 

Wreff* 

2 ( 1 + Z ) 2 ( 1 - Rtf 

(12) 
f 
Jo 

where asterisks represent dimensional variables. The seal pa­
rameter, S, is defined by 

R,Y 6fJ>u}Kl ( - 7 ) (1 
\CQ/ 

and u>,ef is a reference speed of the same order of magnitude as 
the larger of the two shaft speeds. The resulting normalized 
pressure is 

(l-R)(R-Ri) . 
"e = ^ ^ n j[e(Vae ~ W2) Sin 0 , 

2H,„H2(1 + Z)2(l - R,)2 ' v r 

- e cos <pe] — f3[e(ipae — ui2) sin 9C + e cos 8e]} (13) 

The Axial Force and Tilting Moments 
The axial force and the moments about the 1 and 2 axes are 

obtained by integrating the pressure in (13) over the sealing 
dam surface. For element 2 the definitions are 

Ff = R,„ I | PedRd9 

T(9) {y[e(ijjae - u>2) sin <£«,-£ cos 4>c] 

- PU(4>ae ~ OJ2) sin 9C + e cos 9E]}d8 (19) 

Note the integrand in (19) consists of two terms: one resulting 
from the tilt, y, and one from the coning, (5. The tilt term is 
independent of 9, and most of this portion of the integrand can 
be moved outside the integral. 

The necessary integrals involving T{9) are evaluated by 
Wileman (1994) and are listed in the appendix. When these 
are substituted into (19) the tilt term becomes 

F. rill 
2ityR,„ 

5 \ \ + Z ) 2 ( 1 -R,)2 « ' ( ! ) • 

6(1-R,) 

1 +S(R„,-Ri) 

X [e(i/fae - w2) sin 4>e - e cos </>e] (20) 

To evaluate the coning term substitute 9e = 9 - <fie and simplify 
using the angle difference identities. Substituting the appro­
priate integrals from the appendix yields 

Fcc 

Tv/3Rm 

Mu 

M2, 

p2ir fl 

A2-IT / • ! 

Ri P. 
Jo J Rj 

/*2TT fli 

Ri Pc 

Jo JR, 

cos OdRdO 

sin OdRdO 

(14) 

(15 ) 

(16) 

6 3 (1 + Z ) 2 ( l - ^ , ) 2 

x [ —e(<Aii£ ~ u2) sin 0 e + e cos 4>e] 

X\[a(l)-a(Ri)-3a'(l)y] 

The numeral in the moment subscript indicates the axis, in the 
(123) reference frame, about which the moment is applied. The 
£ indicates that the component results from eccentricity effects. 

The integration over R in each of these equations can be 
reduced to the expression T{9) defined by (Wileman and Green, 
1991) 

T{9) = r i l - R ) ( R - R l ) d R 

iRl HmH2 

_ T In H„ - In Hj 1 - R, 

\_(6 + K cos 8)3 H„,(S + K cc 

+ S(l-Ri) a ^ + 2y l (21) 
,J1 +6{R„, -Ri) [ 

To obtain the integral for the moment about axis 1, substitute 
(17 ) and (18) into ( 1 5 ) . The resulting expression will again 
consist of a tilt component and a coning component. The tilt 
component can be evaluated by moving the ^-independent terms 
outside of the integral and substituting the appropriate integrals 
from the appendix, yielding 

Mlctm = -
nyR2, 

cos 8)2 
(17) 

where S = /3 / ( l + Z ) and K = y / ( l + Z ) . Define y = K/S, 
and assume that (K/S)2 <^ 1. Then T(6) can be approximated 
by (Green and Etsion, 1983) 

W ) = ^ + ^wi)-*)-v(i)^] 
0 0 

2 ( 1 -Ri) 

<53(1 + Z ) 2 ( l - Ri)2 

x [^('/'at — w2) sin (j>e — e cos 4>e] 

X \[a(\) -a(Ri)-3a'(l)y] 

+ 6(1 R,) aiRJ") + 2^ } (22) 
" l+6(Rm-Ri)j 

62[1 +6(R,„-Ri)] 

The coning term is evaluated as before by substituting for 
#E, applying the angle difference identities, and substituting the 
applicable integrals from the Appendix. The result is 
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M 
2n(3Rl 

le coning 
(53(1 + Z ) 2 ( 1 - R,)2 

6(1 -Ri) 
« ' ( ! ) -

1 + 5(R,„-Ri)] 

X [ — e(ipae — ui2) sin <j6£ + e cos </>J (23) 

The integral for the moment about axis 2, M2e, is obtained 
using (16) and making the same substitutions as for Mu. When 
the integrals are evaluated, the tilt component of M2c is zero. 
The coning term is evaluated as previously, with the result 

M-
2n/3Rl 

2e coning 
63(1 + Z) 2 (1 - Ri)2 

5(1 -R,) 
X tt'(l) 

1 + 6(R,„-Ri)_ 

X [e(<A«£ - w2) cos 4>c + e sin </>e] (24) 

The Rotor Dynamic Coefficients 
in the Axial and Angular Modes 

The general definitions of the stiffness and damping coeffi­
cients have the form 

k- = 
dFj 

dXi 
da = 

dXi 

respectively, where Fj represents a generalized force acting in 
degree of freedom j ; Xj represents a displacement perturba­
tion occurring in degree of freedom i, and X, represents a 
velocity perturbation in degree of freedom i. For axial deflec­
tions, i = 3, and for tilts about axes 1 and 2, i takes the number 
corresponding to the axis. 

The equilibrium configuration is defined to be that in which 
both seal elements are perpendicular to the seal centerline; in 
which the centerline clearance, C, takes on its initial value, C0; 
in which the magnitude of the eccentricity, e, is zero; and in 
which the velocities in each degree of freedom are zero. Thus, 
in the equilibrium configuration all of the position variables (Z, 
7i > 72, 7, and e) and their time derivatives are zero, and these 
zero values are substituted into the evaluations of the partial 
derivatives to determine the expressions for the stiffness and 
damping coefficients. The generalized forces can then be ob­
tained from the coefficients using the relation 

3 3 

Fj = Fj | eq — 2J hjX, — X dyX i 
; = i ; = i 

These generalized forces represent the forces and moments ap­
plied to the individual rotors by the fluid film, and each is 
substituted directly into the equation of motion for the appro­
priate degree of freedom. 

In a concentric analysis, only the axial and tilt degrees of 
freedom are important. Thus, the rotor dynamic coefficients 
presented by Wileman and Green (1991) represent only the 
derivatives of the axial forces and the tilting moments taken with 
respect to the axial deflection, Z, and the relative tilt between the 
elements, y. When these same derivatives are evaluated using 
only the incremental axial forces and tilting moments which 
result from eccentricity, the results vanish at equilibrium (Wile­
man, 1994). Thus, the rotor dynamic coefficients derived by 
Wileman and Green (1991) are unchanged by the inclusion of 
eccentricity. 

In the eccentric analysis, however, the forces and moments 
will also vary with the relative eccentricity, e, and additional 
rotor dynamic coefficients must be obtained to include this de­

pendence in the equations of motion for the axial forces and 
tilting moments. These coefficients are defined as 

hi = 

del = 

de 

8M, 
de 

eq 

hi = 

dc2 = 

dM2 

de 

dM2 

de 

dF 
k« = ~Te 

dF 
d6i = - —-de (25) 

The subscript e indicates that the coefficient represents a change 
with eccentricity, and the numeral represents the degree of free­
dom of the generalized force, as before. 

Taking the derivatives of the axial force and setting y — 0 
yields h3 = 0 and <ie3 = 0. Thus, the axial equations of motion 
are independent of the radial motion. 

When the'derivatives of Mx and M2 in (25) are evaluated at 
equilibrium, only the coning terms will remain. Substituting 
(23) and (24) into the definitions yields 

K\ = dMc(ijfac - w2) sin (j>€ 

dE\ = ~dMe cos 4>e 

Kt = -dmei^m - W2) COS <££ 

de2 = ~~dMc sin 4>c 

where dMc is a shorthand term defined as 

dMt = 2n/3RlG0 

G0 is defined as 

2/9(1 - * , ) 

(26a) 

(26b) 

(26c) 

(26d) 

(27) 

l n [ l +/3(1 - * , ) ] 
G0 = 

2 + /3(l -Rt) 

P\l -R,)2 

The linearized moments acting upon rotor 2 are then expressed 
in the fluid film system as 

Mi = —dMie(ijjae — UJ2) sin 4>c + dMee cos 4>e (28a) 

M2 = <iMee(i/foe - w2) cos cj)c + dMte sin 4>t (286) 

The moments acting upon rotor 1 will be the negatives of these. 

The Radial Forces 
Etsion and Sharoni (1980) showed that radial forces will 

result from misalignment and coning in concentric seals. In a 
concentric system these forces are usually of interest only be­
cause of the loads they apply to the bearings in the system. If 
eccentric motion is possible, however, each rotor will have two 
additional degrees of freedom, each requiring its own equation 
of motion. In order to incorporate the radial forces applied by 
the fluid film into these equations, it will be necessary to obtain 
additional rotor dynamic coefficients. 

In contrast to the axial force and tilting moments, the radial 
forces in a seal depend upon shear stresses rather than normal 
stresses; it is not necessary to solve the Reynolds equation to 
obtain these forces. Rather, we simply use the velocities of the 
seal surfaces as boundary conditions and assume Couette flow 
within the 'fluid film to obtain the shear stresses. There will 
actually be a small Poiseuille component contributing to the 
shear stresses, but Etsion and Sharoni (1980) have shown that 
this effect is negligible in narrow seals. 

The radial forces in an eccentric FMRR seal are more com­
plex than those obtained by Etsion and Sharoni for the concen­
tric FMS configuration. They consist of two separate effects. 
The first component results from the interaction between the 
rotation of the seal seat and the radial distance between the 
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centers of the ring and the seat. This component of the total 
radial force exists even when the eccentricity of the system is 
constant; that is, if the element centers are fixed in space. It 
depends only upon the velocity components contained in (5) 
and (6). We shall refer to this component as the displacement 
force. 

The second component results from the relative motion of 
the centers of the two elements. This component of the radial 
force exists only if the shafts are flexible and is not directly 
affected by the shaft rotation. It depends upon the relative veloc­
ity between the centers of rotation defined by (3). This compo­
nent will be referred to as the velocity force. 

To simplify the derivation, we shall examine the displacement 
and velocity components separately and add the final results to 
obtain the total radial force. 

where W0 is defined using normalized variables as 

l n [ l +/3(1 - * , ) ] 

Wo 

1(1 - * , ) ( ! -PR,) 

1 + 0 ( 1 -R,) 

P\l-Rl) 

These forces result only from relative tilt and are independent 
of the eccentricity. This component of the displacement force 
will exist even in a seal with concentric shafts if the two ele­
ments are misaligned. 

The remaining terms of the shear stresses in (30) result from 
the eccentric displacement. The resulting forces are obtained 
by resolving the shear stress components in the cylindrical sys­
tem into components parallel to the -le and 2E axes and integ­
rating these over the area of the sealing faces. The forces are 
defined as 

The Displacement Force 

Because the fluid film is very thin, we make the usual assump­
tion that the velocities in the axial direction are negligible. Using 
this assumption, and assuming Couette flow, the shear stresses 
in the radial and circumferential directions, respectively, are 
defined by 

dvcr 

dz 
Tee = (J. 

dz 
(29) 

The velocity derivatives in (29) are obtained by computing 
the difference between the two velocities of (5) and (6) and 
dividing by the clearance, h. Thus, 

a: (rer cos 6C — TeS sin 9t)rdrd0 (33a) 

( —r„ sin 8e — TeS cos 9e)rdrd0 (33£>) 

When the eccentric terms of the shear stresses in (30) are 
substituted into (33), the two terms in the integrand of (33a) 
add out. Thus, F2 will be zero. 

When integrating to obtain Fx, the relative tilt between the 
two elements leads only to second order effects in the resulting 
force. This can be shown by comparing the force which results 
from parallel faces to that which results when a relative mis­
alignment exists. For parallel faces the film thickness, h = C, 
is constant, and the radial force which results from (33£>) is 

T £ r = -
/j,eu>2 sin i 

h 
(30a) 

F, = 
2-njj.eu)2r,„(,r0 - r,-) 

C 
(34) 

rtf) 

jir{u>2 — uj\) fieu>2 cos 
h h 

(30£>) When the faces are tilted (but the coning is not included), the 
film thickness is defined by 

To obtain the total displacement force, we shall divide the 
shear stresses in (30) into concentric and eccentric terms. The 
first term of (30£>) represents stresses which occur even when 
the seal is concentric. This concentric term will produce a radial 
force only in the presence of relative misalignment, as it inte­
grates to zero over the seal ring surface if the faces are parallel. 

For faces which are both coned and misaligned, the film 
thickness in the seal is described by (10). The concentric term 
of (30i>) is symmetric about the 2 axis, and will produce a 
radial force only in the direction parallel to the 1 axis. This 
force, denoted F, can be obtained by integration directly in the 
fluid film (123) system, then resolved into components, denoted 
F\ and F2, in the eccentric (123)£ system. Thus, 

F = -2pLrl,(u2 - Wi) 
" 0 J r, h 

•drdd (31) 

The integral is evaluated by Etsion and Sharoni (1980). When 
the result is resolved into components in the (123),. system, the 
radial forces become 

h = C + yr cos (35) 

Substituting the eccentric shear stresses into (33&), the expres­
sion for F, becomes 

F\ = fieoj2r„ n; f2w /"° drdB 

h 
(36) 

The integration over r is performed by substituting dh 
y cos 9 dr. Thus, 

f ° it. - l f"° ^L 
J, h y cos 8 Ji,. h y cos 6 

(37) 

In order to evaluate (36), the logarithms in (37) must be ex­
panded as a series. Separate the logarithm of the quotient into 
two terms by dividing both the numerator and the denominator 
of the argument by C0 to obtain log (h„/C0) — log (h(/C0). 
Then, when y is small, we can use the approximation 

F2 = -nrl(co2 RJWoJ sin <k(32a) log ( - f ) = log 1 + 
yr0 cos 8 

Co . 

F[ = fJ.rl(u>2 - u>i)ir (1 - Rf)W0y cos 4>e (32b) yr„ cos 
Co 

y2r2„ cos2 3 3 3 

y ra cos 
2C0 

(38) 
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Substi tut ing this into the first term of ( 3 6 ) yields 

de i 
, l o g \ r 
2T \ C 
o y cos 

2 + i f ^ 
3 \C0 Co 

Performing a similar substitution for the second term yields, 
after some simplification, 

F, = 
7i>ea>2r„,(;-„.- r,) 

C0 
2 + y2[ .-

rl + r0r, + r 2 

3C2, 
(39) 

Comparing (39) with (34), it is clear that the tilt contributes 
only a second order term to the radial force, and this term will 
vanish during the linearization process by which rotor dynamic 
coefficients are obtained. Thus, for the remainder of the radial 
force analysis we will neglect the tilt. The effect of this approxi­
mation upon the accuracy of the final result will depend upon 
the actual magnitude of the tilt in the system. For simplicity, 
the preceding analysis of the effects of tilt has not included the 
effects of coning, but coning will generally further reduce the 
effects of tilt. 

Neglecting the tilt (but not the coning) greatly simplifies the 
derivation of the radial force. The expression for the film thick­
ness becomes 

h = C + /?( / • - r,) 

The integration over r in (33b) takes the form 

(40) 

r- dr = l Ch- dh = 

Jr. h ~ p J,,, h 

= ilog[l + 

p 

0ro(l - Ri) 
C 

Substituting this into (33b) and evaluating the 8 integration 
yields the radial force which results from a fixed eccentricity 
between the two elements: 

2-KrLeuJ1rm log 

F, = 

1 + 
0ro(l -R,) 

C 

p 
(41) 

In the limit as P goes to zero (i.e., flat faces), (41) ap­
proaches (34). 

It is interesting to note that the rotation of the seal ring does 
not contribute to the radial force. Only the angular velocity of 
the seat affects the force. The sealing dam is bounded by the 
seal ring, and the center of the ring is the origin of the system 
used to integrate the shear stresses to obtain the radial forces. 
Since the shear stresses which result from the motion of the 
ring are axisymmetric with respect to the eccentric system, they 
will integrate to zero over the complete circumference. The 
sealing dam is not axisymmetric with respect to the center of 
the seal seat, however. Thus, the shear stresses resulting from 
the seat motion integrate to produce net radial forces. 

The Velocity Force 
If the shafts can deflect radially from their equilibrium posi­

tions, then the radial motion and the orbit of the center of 
rotation will cause a uniform velocity over the entire sealing 
face. The velocity of the center of element 2 with respect to 
that of element 1 (i.e., the relative velocity) is expressed in Eq. 
(3), and this relative velocity will produce a linear velocity 
profile between the two elements. 

The derivation of the force which results from this velocity 
resembles the analysis previously performed for the eccentric 
components of the displacement force. Substituting the velocity 
components in (3) into the shear stress definitions in (29), 
these new shear stresses are 

r„ = H 
dv£r 

dz 

dvel 

h 
sin 6>e + e cos 9t) 

e sin 8e) (42) 

Analysis of the effects of tilt for the velocity force resembles 
that already performed for the displacement force. Thus, as 
before, the effects of tilt are second order and can be neglected 
so that h is as defined in (40). The shear stresses are integrated 
using (33), as before, to determine their contributions to the 
radial forces. For F2 the first term in each of the shear stresses 
adds out of the integrand, leaving only the second term. Thus, 

F2 = Lier,, 
drdQ r2* r-drc 

Jo Jr. h 

2iTLierm log 1 + 
Pr0(l -R,) 

C 
(43) 

For Fi the second term in each of the shear stresses adds out, 
and following a similar development yields 

2irLieij/aerm log 

Fx = - • 

1 + 
Pr„(l -R,)' 

C 

P 
(44) 

The Rotor Dynamic Coefficients in the Radial Modes 
The total radial force components are obtained by summing 

the velocity forces, (43) and (44), and the concentric (32) 
and eccentric (41) components of the displacement force. The 
resulting forces are then normalized using the definitions (12) 
with the result 

F2 = 
7refl,„ log [1 + p(l -R,)] 

3p(l - i ? , ) 2 

7ryl — ] (w 2 - w , ) 

W0 sin <f>e (45a) 

F, = 
ne(co2 - i/jae)R,„ log [ 1 + ^ ( 1 - R,)] 

3/8(1 -R,)2 

• C°\, s 
ny\ — \(w2 - u)i) 

-^—- Wo cos <k ( 4 5 6 ) 
6 

Because the eccentricity in the relative system is defined by 
the single variable, e, there will be only two stiffness and two 
damping coefficients for the radial forces relating the radial forces 
to the radial deflections and velocities. These are defined as 

kt2r — 

de2r = 

dF2 

de 

dF2 

de 

eq 

eq 

Ku = 

delr = 

dFt 

de 

dF, 

de 
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where the r in the subscript distinguishes the coefficients in the 
radial modes from those derived previously for the angular 
modes. Because Fx and F2 also depend upon the relative tilt, y, 
there will be two additional coefficients defined as 

S d r 
dFi 

dy 

dFi 

dy 

Since the derivatives of the radial forces with respect to the axial 
deflection will vanish at equilibrium, the axial modes remain 
completely decoupled from both the angular and radial modes. 

When (45) is substituted into these definitions, kc2r and d€lr 

are zero. The remaining rotor dynamic coefficients in the eccen­
tric system are 

7r(w2 - j,ae)Rm log [1 + 0(1 - R,)] 

3/3(1 -R,)2 

nRm log [1 + /?(! - Ri)] 

3^(1 -R,y 

Ky\r ~~ 

7r( — ) ( W 2 - W | ) 

W0 cos 4>e 

7T| — )(uj2 W l ) 

Ky2r W0 sin (f)e 

(46a) 

(46b) 

(46c) 

(46 cf) 

Note that the stiffness term kcir is related to the damping term 
de2r by 

Ku = dc2r(uj2 - ij/ac)" 

Note also that the two tilt coefficients share a common factor 
which it will be convenient to divide out. Define 

7r( — )(u)2 - u>i)W0 

Substituting into (46) yields 

kyir = — ky cos <f>e; ky2r = k7 sin </>e 

Since only one of the damping coefficients is nonzero, we 
shall refer to de2 as de. Using all of the simplifications, the radial 
forces acting upon element 2 in the eccentric system become 

F,e = -dc(u>2 - ij/a€)e - ky cos qbey (41a) 

F2e = -dee + ky sin 4>ty (41b) 

The forces acting upon element 1 will be the negatives of these. 

Conclusions 
This work provides the tools necessary to incorporate the 

effects of eccentricity into the dynamic analysis of a mechanical 
seal. The kinematic model used to obtain the rotor dynamic 
coefficients can also be used to describe the radial motion of 
the rotors in the equations of motion. 

Including eccentricity has no effect upon the change in the' 
axial force and tilting moments with respect to either tilt or 
axial deflection. Thus, the rotor dynamic coefficients derived 
by Wileman and Green (1991) for the concentric case remain 
unchanged in the eccentric analysis. Further, the effect of radial 
deflections upon the axial force is negligible, as is the effect of 
the axial deflection upon the tilting moments and radial forces. 
Thus, the axial mode remains completely decoupled from all 
of the others. 

The tilting moments are shown to be dependent upon the 
radial deflections and velocities, leading to stiffness and damp­
ing coefficients which will couple the tilting modes with the 
radial modes. These rotor dynamic coefficients must be incorpo­
rated into the equations of motion for the angular modes. 

The forces in the radial direction are obtained and are shown 
to be dependent upon both the radial and the angular deflections 
of the rotors. The rotor dynamic coefficients obtained from these 
forces can be used to obtain two additional equations of motion 
for each element. Each of these equations will represent a force 
balance in one of the radial directions and will contain coupling 
between the radial and tilting modes. The equations of motion 
can ultimately be solved for the dynamic response. Only a com­
plete solution will reveal the relative significance of the re­
sponses to the axial, tilt, and eccentricity effects. The impor­
tance of eccentricity in the analysis will depend particularly 
upon the shaft inertia and flexibility and the magnitudes of the 
eccentric displacements and velocities. In many cases it may 
be possible to neglect eccentricity entirely, but such a judgement 
can only be made by comparing the forces and moments which 
occur in a particular seal design. 

The advantage of using linearized rotor dynamic coefficients 
is that it allows direct solution for the dynamic response, rather 
than the iterative approach necessary when the full nonlinear 
equations are used. Furthermore, the assumptions inherent in 
the linearized solution are very representative of the conditions 
which exist in real seal applications. 

References 
Allaire, P. E., 1984, "Noncontacting Face Seals for Nuclear Applications—A 

Literature Review," Lubrication Engineering, Vol. 40, No. 6, pp. 344-351. 
Etsion, I., and Sharoni, A., 1980, "The Effect of Coning on Radial Forces in 

Misaligned Radial Face Seals," ASME JOURNAL OF LUBRICATION TECHNOLOGY, 
Vol. 102, pp. 139-144. 

Etsion, I., 1982, "A Review of Mechanical Face Seal Pynamics," The Shock 
and Vibration Digest, Vol. 14, No. 2, pp. 9-14. 

Etsion, I., 1985, "Mechanical Face Seal Dynamics Update," The Shock and 
Vibration Digest, Vol. 17, No. 4, pp. 11-15. 

Etsion, I., 1991, "Mechanical Face Seal Dynamics 1985-1989," The Shock 
and Vibration Digest, Vol. 23, No. 4, pp. 3-7. 

Findlay, J. A., 1969, "Inward Pumping in Mechanical Face Seals," ASME 
JOURNAL OF LUBRICATION TECHNOLOGY, Vol. 91, No. 3, pp. 417-426. 

Green, I„ and Etsion, I., 1983, "Fluid Film Dynamic Coefficients in Mechanical 
Face Seals," ASME JOURNAL OF LUBRICATION TECHNOLOGY, Vol. 105, pp. 297-
302. 

Green, I., and Etsion, I., 1985, "Stability Threshold and Steady-State Response 
of Noncontacting Coned-Face Seals," ASLE Transactions, Vol. 28, No. 4, pp. 
449-460. 

Green, I., and Etsion, I., 1986, "Nonlinear Dynamic Analysis of Noncontacting 
Coned-Face Mechanical Seals," ASLE Transactions, Vol. 29, No. 3, pp. 383-393. 

Green, I., 1987, "The Rotor Dynamic Coefficients of Coned-Face Mechanical 
Seals with Inward or Outward Flow," ASME JOURNAL OF TRIBOLOGY, Vol. 109, 
pp. 129-135. 

Green, I., 1989, "Gyroscopic and Support Effects on the Steady-State Response 
of a Noncontacting Flexibly Mounted Rotor Mechanical Face Seal," ASME 
JOURNAL OF TRIBOLOGY, Vol. I l l , pp. 200-208. 

Green, I., 1990, "Gyroscopic and Damping Effects on the Stability of a Non-
contacting Flexibly Mounted Rotor Mechanical Face Seal," Dynamics of Rotating 
Machinery, Hemisphere Publishing Company, pp. 153-173. 

Griskin, E. N., 1987, "Study of Face Seals with Eccentric Rotation," Soviet 
Journal of Friction and Wear, Allerton Press, New York. 

Miner, J. R., et al., 1992, "High Speed Seal Development, Part I," United 
Technologies, Pratt and Whitney, Interim Report to Wright Laboratory, Air Force 
Materiel Command, WL-TR-92-2101. 

Sneck, H. J., 1969, "The Misaligned, Eccentric Face Seal," ASME JOURNAL 
OF LUBRICATION TECHNOLOGY, Vol. 91, No. 4, pp. 695-703. 

Tournerie, B., and Frene, J., 1985, "Les joints d'etancheite a faces radiales: 
etude bibliographique," Materiaux Mechanique Electicite, No. 410, pp. 44-52. 

Wileman, J. M., and Green, I., 1991, "The Rotordynamic Coefficients of Me­
chanical Seals Having Two Flexibly Mounted Rotors," ASME JOURNAL OF 
TRIBOLOGY, Vol. 113, No. 4, pp. 795-804. 

Wileman, J. M., 1994, "Dynamic Analysis of Eccentric Mechanical Face 
Seals,'' Doctoral dissertation, Georgia Institute of Technology. 

A P P E N D I X 
Integrals Involving T(0) 

The following integrals evaluated by Wileman (1994) are 
used to obtain the axial force and the tilting moments resulting 
from the hydrodynamic pressure field: 
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J * 
Jo 

T(0)d6 = 2n 2«'(1) 2(1 -R,) 
62[1 +6(Rm-Rt)] 

A2TT 

T(9) cos W6> = ^ [o!(l) - <*(#,) - 3a'(l)y] 
" 0 

2TT 

<53 

+ 2TT(1 - f l , ) 
g(/?m) + 2y 

82[l + 6(R,„-R,)] 

f 
Jo 

(48a) 

T(0) sin ^ 5 = 0 

(48b) 

(48c) 

f 

J* 

Jo 
7\0) cos 0 sin W0 = 0 

T{0) cos2 W0 

2 a ' ( l ) 

r(6») sin2 0d9 

' 2 a ' ( l ) 

2(1 - J ! , ) 
<52[1 + 5 ( / ? , „ - i ? , ) ] 

2(1 - / t , ) 
52[1 + 6(R„,-Ri)] 

(48 d) 

(48e) 

(48/) 
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