
J. Wileman 

I. Green 

The George W. Woodruff School of 
Mechanical Engineering, 

Georgia Institute of Technology, 
Atlanta, GA 30332 

The Rotordynamic Coefficients of 
Mechanical Seals Hawing Two 
Flexibly Mounted Rotors 
The Reynolds equation is derived for a mechanical seal in which both elements are 
flexibly mounted to rotating shafts. Stiffness and damping coefficients for the fluid 
film are calculated for the three degrees of freedom of each element based upon a 
small perturbation analysis. The analogous coefficients for simpler configurations 
{e.g., flexibly mounted rotor, flexibly mounted stator) contained in the literature 
are shown to be obtainable as degenerate cases of the more general results presented 
in this work. 

Introduction 

Most current mechanical seal designs consist of a single 
rotating element (the rotor) which is separated by a thin film 
of the sealed fluid from a nonrotating element (the stator). 
These seals can have one of three basic configurations. In the 
flexibly mounted stator configuration (FMS) the stator is at
tached to the seal housing by means of a flexible support and 
anti-rotation locks, and the rotor is rigidly mounted to its 
shaft. Conversely, in the flexibly mounted rotor (FMR) con
figuration the stator is rigidly mounted to the seal housing 
while the rotor is attached to the shaft by means of a flexible 
support and positive drive devices. In either configuration 
misalignments resulting from imperfections in manufacturing 
and assembly are inevitable, and the purpose of the flexible 
support is to minimize the relative misalignment between the 
elements by allowing the flexibly mounted element to track the 
element which is rigidly attached, thus minimizing the leakage 
and reducing the probability of face contact. 

Metcalfe (1981) has described these two configurations as 
well as a third, which we shall denote the FMSR configura
tion, in which both the stator and the rotor are flexibly 
mounted (Fig. 1 (a)). Dynamic investigations of seals having 
either the FMS or FMR configuration date back almost three 
decades. Extensive literature reviews have been provided by 
Allaire (1984), Tournerie and Frene (1985), and Etsion (1982 
and 1985). To date, however, no treatment of the dynamics of 
the FMSR configuration has appeared in the literature. 

Technological advances in the aerospace and high-speed 
turbomachinery industries have spurred interest in seals which 
have two flexibly mounted elements. Moreover, applications 
in aircraft gas turbine engines have stimulated interest in a 
configuration in which both seal elements rotate. We shall 
denote this configuration by FMRR since it contains two 
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flexibly-mounted rotors (Fig. 1(b)). Dynamic analyses of the 
FMS (Green and Etsion, 1985) and FMR (Green, 1989 and 
1990) configurations have demonstrated that the FMR is 
superior with regard to both stability and steady-state dynamic 
response. Since the dynamic effects which enhance the perfor
mance of FMR seals are present in both elements of an FMRR 
seal, there is reason to believe that the FMRR configuration 
will provide even better performance. Additionally, a dynamic 
analysis of the FMRR configuration will allow the determina
tion of the dynamic response of any configuration, since the 
FMSR, FMR, and FMS systems can easily be obtained as 
degenerate cases by substituting appropriate values for the 
kinematic variables. 

To exactly determine the dynamic response of a mechanical 
seal system, the equations of motion for the seal elements 
must be solved simultaneously with the Reynolds equation, 
which governs the behavior of the fluid contained within the 
sealing dam. Determination of the equations of motion, 
however, requires a priori knowledge of the fluid pressures, so 
that the problem requires an iterative, numerical solution such 
as that provided by Green and Etsion (1986a). Although this 
technique is useful for the analysis of a specific seal design, it 
is time-consuming and cannot provide general, qualitative in
formation as to which types of designs and modes of opera
tion yield the best performance. 

This work exploits the fact that, in most typical mechanical 
seal systems, the magnitude of the relative tilt between the seal 
elements is very small and the width of the sealing dam is small 
compared to the seal radius. The standard assumptions of 
lubrication theory for an incompressible, isoviscous fluid are 
employed, as well as the requirement that the hydrostatic 
pressure in the sealing dam be sufficient to prevent cavitation. 
When these conditions are satisfied, a closed-form, linearized 
solution for the seal element motion can be obtained in terms 
of rotordynamic coefficients which describe the effects of 
small perturbations about an equilibrium position. These stiff
ness and damping coefficients introduce the fluid behavior 
directly into the equations of motion, eliminating the need to 
solve them simultaneously with the Reynolds equation. The 
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Fig. 1 Schematics of (a) FMSR and (b) FMRR mechanical face seals 

equations of motion can then be analyzed for stability or 
steady-state response. Green and Etsion (1983) provided stiff
ness and damping coefficients for the fluid film in the FMS 
configuration, and Green (1987) provided similar coefficients 
for the FMR configuration. 

To determine rotordynamic coefficients for the FMRR con
figuration, the appropriate form of the Reynolds equation is 
derived based upon the kinematic description of the system. 
The Reynolds equation is then solved to obtain the hydrostatic 
and hydrodynamic pressure distribution within the sealing 
dam, and these pressures are integrated over the surface area 
of the seal faces to determine the forces and moments applied 
by the fluid film. Finally, the rotordynamic coefficients are 
obtained as derivatives of these forces and moments about the 
equilibrium configuration of the system. 

Kinematic Description 

In an FMRR seal, the forces and moments applied to the 
seal elements by the fluid film and the flexible support depend 
upon many different types of relative motion, while the iner-

tial forces and moments depend upon the absolute motion of 
each element. In order to describe each of these relationships 
in its most useful manner, this analysis utilizes six different 
coordinate systems. Each of the coordinate systems described 
below is right-handed. Superscripted asterisks are used with 
some variables to distinguish them from their normalized 
counterparts defined later. 

The £, 7], and f axes describe an inertial coordinate system 
whose origin coincides with the center of element 1 when the 
seal is at rest (Fig. 2). The £ and r\ axes are orthogonal and lie 
in a plane which is perpendicular to the system centerline. £ is 
the axis from which the rotations of the shafts and the ab
solute precessions of the seal elements are measured. The f 
axis lies along the common centerline of the concentric shafts, 
and its positive sense is defined to be directed from element 1 
toward element 2. 

The coordinate systems XlYlZl and X2Y2Z2 are fixed to 
the shafts to which elements 1 and 2, respectively, are at
tached. The Zl and Z2 axes are coincident with the f axis, and 
the Xx Yx and X2 Y2 planes always remain parallel to the £TJ 
plane and, thus, perpendicular to the system centerline. At 

N o m e n c l a t u r e 

C = seal centerline clearance 
C0 = equilibrium centerline 

clearance 
djj = damping coefficient (ele

ment 2) 
dy = damping coefficient (ele

ment 1) 
E = stiffness parameter, equa

tion (19) 
Fj - generalized force 
F* = axial force 
F„ = normalized axial force, 

F*/Sr2
0 

G = damping parameter, equa
tion (33) 

h = film thickness 
H = normalized film thickness, 

h/C 
ktJ = stiffness coefficient (ele

ment 2) 
kjj = stiffness coefficient (ele

ment 1) 

M*j = moment 
MnJ = normalized moment, 

M*/Srl 
p = pressure 
P — normalized pressure, p/S 
r = radius 

R = normalized radius, r/r0 

S = seal parameter, 
6pu2(r0/C0)m-R,)2 

t* = time 
t = normalized time, w2t* 

V„t = translation velocity on seal 
surface 

z„ = axial translation of element 
n 

z = relative axial translation 
Z, Z„ = normalized axial transla

tions, z/C0 

/3* = coning angle 
/3 = normalized coning angle, 

P*ro/C0 

y* = nutation (tilt) 

7 = normalized nutation, 
y*ro/c0 

5 = coning parameter , fi*r0/C 
e = tilt parameter , y*r0/C 
d = angular coordinate 
ix = viscosity 

4>n = precession angle 
\pff = absolute precession of fluid 

film system 
\j/„ = relative precession angle 

\j/m = absolute precession angle 
o>„ = shaft angular speed 

Subscripts 
0 = equilibrium value 
d = hydrodynamic component 
; = inner radius 

m = mean radius 
n = element number (n = 1 or 2) 
o = outer radius 
s = hydrostatic component 
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every instant the origin of the Xn YnZn system coincides with 
the center of element n, so that either of the shaft-fixed 
systems can be related to the inertial system by a single planar 
rotation transformation and a translation along the f axis. 
When the seal is at rest, the Xx YlZl system coincides with the 
inertial system, and the X2 Y2Z2 system differs only in that its 
origin is translated in the f direction through a distance equal 
to C0, the initial centerline clearance between the seal 
elements. When the shafts begin to rotate, the X„ axis leads 
the £ axis by an angle u„t, where o>„ is the constant angular 
velocity of element n. 

The xxyxzx and x2y2z2 systems are principal systems of their 
respective seal elements and may have both a precession and a 
nutation with respect to their corresponding shaft-fixed 
systems as well as with respect to the inertial system. The x„ 
and y„ axes form a plane which coincides with the sealing face 
of element n, and 7* represents the nutation of the z„ axis with 
respect to the f axis. In a practical seal design, touchdown 
usually occurs if the magnitude of 7* exceeds a few millira-
dians, so that it is quite accurate to make the approximations 

cos7* = l; sin 7* =7* (1) 

where 7* can represent the nutation of either element. 
The x„ axis always remains parallel to the Xn Yn plane (i.e., 

it always remains perpendicular to the shaft centerline) and the 
yn axis is always directed toward the point of maximum 
separation between the face of element n and the X„ Y„ plane; 
these constraints are sufficient to uniquely describe the orien
tation of the system. The angle by which axis x„ leads axis X„ 
is denoted by t/<„, and the angle by which xn leads £ is denoted 
by \pan, since the latter represents the absolute precession of 
the x„ynz„ system. The two precession angles are thus related 
by the expression 

and the two precession rates are related by 

The analysis of the fluid film behavior in the sealing dam 
utilizes the assumptions of lubrication theory, so that inertia 
effects within the fluid film are neglected and the fluid 
behavior depends upon the relative positions and motions of 
the two sealing faces rather than upon their absolute positions 
and motions. Therefore, it is most convenient to determine the 
fluid film pressures (i.e., solve the Reynolds equation) using a 
coordinate system which describes the position of one sealing 
face with respect to the other. We designate this system using 
the 1, 2, and 3 axes. 

To maintain consistency throughout the derivation, we 
define 123 to be a principal system of element 1. Thus, axes 1 
and 2 form a plane which coincides with the xxyx plane (the 
sealing face of element 1) and axis 3 is orthogonal to the plane 
and directed toward element 2. Axes 1 and 2 precess about zx 

so that axis 1 is always parallel to the x2y2 plane (the sealing 
face of element 2) and axis 2 is always directed toward the 
point of maximum film thickness, which represents the max
imum separation between the sealing faces. Axis 3 coincides 
with axis Z\ and is nutated with respect to axis z2 through an 
angle 7*, which represents the relative tilt between the two 
elements. As mentioned previously, the nutations in any prac
tical mechanical seal are extremely small; thus, the nutation 
angles can be treated as vectors which satisfy the relation 

7* = 7 ! -T * 

The angle <j>x is defined to be the angle, measured in the xxyx 

plane, by which axis 1 leads axis xx, and the absolute preces
sion of the fluid film system, 1/^, satisfies 

^ / /= 1̂ 1 +01 C°S 7* 
Substituting (1) into this expression yields. 

Figure 3 is a vector diagram which shows the relationships 
among the orientations of the various coordinate systems for 
an element and the associated precession angles. This diagram 
includes all of those axes which would be seen by an observer 
looking down upon element n (where n is either 1 or 2) along 
the centerline of the seal. 

The angle <f>2 is defined to be the angle by which a projection 
of axis 1 into the x2y2 plane leads axis x2. (Recall that, by 
definition, axis 1 lies in the xxyx plane and is parallel to the 
x2y2 plane.) This definition allows us to define an alternate ex
pression for the absolute precession of the fluid film system: 

*l/ff = i/a2 + (l>2 COS 7 | 

Again substituting (1), we obtain 

^ff=Tpal+<t>2 

so that 

^ff=^a2+^2 = ̂ a\+^l (2) 
is an identity. 

The definitions of 4>x and 4>2 can be used to relate the scalar 
magnitude of the relative nutation angle to the magnitudes of 
the absolute nutation angles: 

7* =72 cos </>2-Yi cos </>, (3) 

From this expression and (1), it is clear that we can also make 
the approximations 

cos7* = l; sin 7* =7* (4) 

Because the definition of the 123 corddinate system supposes 
no relative tilt about the 2 axis, it follows that 

72 sin 4>2 cos 7* - 7* sin </i, = 0 

is an identity, and substituting (4) yields 
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Fig. 3 Vector diagram showing relationship of coordinate axes for a 
single element as viewed down the system centerline 

72*sin</>2-7f sin </>,=0 (5) 

As stated previously, the purpose of the 123 system is to 
allow a description of the position of element 2 with respect to 
element 1. However, when deriving and solving the Reynolds 
equation it will be convenient to work with a cylindrical, 
rather than rectangular, system. To this end we define a cylin
drical system in which the position of a point in the sealing 
dam is denoted by its distance r from the origin of the 123 
system and the angle 0 between axis 2 and a line through the 
origin and the point (represented by either A or B in Figs. 2 
and 3). The axial direction of the cylindrical system is the 3 
axis. Because 123 is a principal system of element 1, the value 
of coordinate 3 on the sealing face of element 1 is always zero. 
On element 2 the value of coordinate 3 is the local value of h, 
which is the separation between the elements (i.e., the film 
thickness). For a coned-face seal the film thickness is defined 
by (see, for example, Green, 1987) 

A = C + 7 * r c o s 0 + 0*(r - r ( ) (6) 

where C is the clearance between the elements at the shaft 
centerline, (3* is the coning angle, and r, is the inner radius of 
the sealing dam. It is important to note that h varies with time 
(since 7* and C are time-varying) and with both radial and cir
cumferential position on the sealing dam. 

The Reynolds Equation 

Because of the kinematic complexity of the FMRR con
figuration, it will be more rigorous to derive the applicable 
form of the Reynolds equation than to rely upon the standard 
forms commonly used in the analyses of simpler systems. For 
example, when only one seal element rotates, the sqeeze effect 
is represented by a term containing dh/dt, but for the FMRR 
case the evaluation of dh/dt depends upon assumptions re
garding the velocities of the seal faces at the point where it is 
evaluated. To avoid making assumptions which are difficult to 
justify, the derivation of the Reynolds equation for the FMRR 
configuration is based upon a more fundamental form of the 
equation. 

Haardt and Godet (1975) present the Reynolds equation in 
cylindrical coordinates in terms of the translation velocities on 
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the boundary surfaces, which are the seal faces in our case, 
and we shall base out derivation upon this equation. Etsion 
(1980) has shown that the effects of the circumferential 
pressure gradient and of the sealing dam curvature become in
significant as the ratio of the inner radius of the sealing dam to 
the outer radius (r,/r0) approaches unity (the "narrow seal" 
approximation). Applying these simplifications to the equa
tion of Haardt and Godet, the form of the equation applicable 
to the cylindrical coordinate system is (Wileman, 1990) 

d /h3 dp \ dh 
r^iT^) = l2r{v*-v^-6(V2°-Vw)-W 

-6r(V2r-Vlr)^- +6h-^-(V2e+Vle) (7) 

+ 6rh— (V2r+Vlr)+6h(V2r+Vlr) 
or 

The velocities, Ky, in the right-hand side of the equation 
represent the translational velocities with respect to inertial of 
a point on the surface of a seal element. The numeral in the 
subscript denotes which element is being considered, and the 
letters r, 0, and z denote, respectively, the radial, circumferen
tial, and axial velocity components. 

The velocity of a point on the face of a seal element is a 
superposition of the velocity of axial translation of the center 
of the element and the velocity of the point with respect to the 
center which results from the element rotation. The latter 
component of velocity is obtained at any point as a cross-
product of the angular velocity of the element with the r03 
position of the point. Thus, to perform this computation we 
would like to obtain the absolute angular velocity of each ele
ment expressed in the cylindrical coordinate system. Green 
and Etsion (1986b) obtained the absolute angular velocity for 
the FMR case expressed in the element principal coordinate 
system. With an appropriate substitution of variable names, 
that expression may be applied to both elements in the FMRR 
configuration; thus, 

X, = -yfr + to sin 7fy! + [to (cos 7f - 1) + w, ]k1 (8a) 

*2 = Y2'2 + to sin 72/2 + ito(c°s 72* - 1) + "2^2 (8*) 

We wish to resolve both of these angular velocities into the r03 
system. We note that for element 1, 3 and kl are coincident; 
thus, only the lx and y, components need be resolved. From 
Figure 3 we see that the unit vectors in the two systems are 
related by 

?! = -er sin^ + ^ j ) - ^ cos(0 + </>i) 

y, =er cos(0 + 0 , ) - e0 sin(0 + <£,) 

Substituting these relations into (8a) and utilizing the approx
imations (1), we obtain the absolute angular velocity of ele
ment 1 expressed in cylindrical coordinates: 

\i=[-yj sirHO + tJ + toyl co&iO + We, 

+ [-yt cosid + ̂ O-toyt sin(e + <t>l)]ee + oll3 

Expressing the angular velocity of element 2 in the fluid film 
coordinate system requires a more complex procedure because 
the r63 system is not a principal system of element 2; the z2 

axis is nutated with respect to the 3 axis, and the x2y2 plane is 
inclined to the rd plane. The value of the 3 coordinate at any 
point on element 2 will be the film thickness at that point. 

To resolve the angular velocity into r, 0, and 3 components, 
we shall derive a rotation transformation from the element 
relative system, x2y2z2, to the fluid system, rd3. It will be most 
convenient to define this rotation transformation in terms of 
three successive body-fixed rotations, then to obtain the com
plete transformation using matrix multiplication. 

The first rotation, Rlt transforms the components refer
enced to the x2y2z2

 s y s t e m m t o components of an intermediate 
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system, xmymzR\. The second rotat ion, R2, t ransforms the 
components with respect to this intermediate system into com
ponents with respect to a second intermediate system, 
xR2yR2ZR2- The final rotat ion, R}, t ransforms the xR2yR2ZR2 
components into components with respect to the r03 system. 
The complete rotat ion transformation, R, is then obtained us
ing 

(9) R-R3R2R1 

so that 

= R (10) 

To obtain i?[ we rotate through an angle 4>2 about axis z2 so 
that 

12;f" 
COS (/)2 

- sin (/>2 

0 

sin <#>2 

COS 4>2 

0 

<n 
0 
i ^ 

r*0 \yi 

UJ 
= R, 

fx2 
\y2 

U2 

(11) 

Since (j>2 is defined as the angle by which a projection of axis 1 
into the x2y2 plane leads axis x2 (Figure 3), the transformation 
R, is equivalent to rotat ing the *2.y2Z2 system about axis z2 un
til axis x2 coincides with the projection of axis 1. 

After performing this rotat ion, we nutate the system 
through the angle 7*, defined in (3), about axis xRi, which 
represents the new position of the x2 axis. This body-fixed 
rotation is denoted R2 and is defined by 

yu2 
ZR, 

1 0 
0 cos 7* 
0 sin 7* 

0 
-sin 7* 
cos 7* 

fxRl 
] y R l 

l z R . 

= R, yR} 

(12) 

After Rt and R2 have been performed, the new position of the 
z2 axis, denoted by zR., will coincide with the 3 axis, and we 
perform a third body-fixed rotation about this axis to bring 
ZR. into coincidence with the r axis. The angle through which 
the system must be rotated is 8 + i r /2 , and after substituting 
appropriate tr igonometric identities, the transformation R3 is 
defined by 

(13) 

Before multiplying to obtain the complete t ransformation, we 
utilize the approximations of (4) to simplify the trigonometric 
functions contained in R2. Then, substituting (11), (12), and 
(13) into (9), we obtain 

sin 8 
cos 6 
0 

cos 6 ( P 
- sin 0 0 

0 \ j 

f-%1 
1 y*2 f 

U 2 J 
= R3 

[xRj 
y*i 

1**2 

R-
- s i n ( 0 + </>2) cos(0 + </>2) —7* cos 0" 
- c o s ( 0 + </>2) - s i n ( 0 + </>2) 7* sin 8 
— 7* sin 4>2 y* cos 4>2 1 

We substitute this into (10), and use it to transform the 
angular velocity of element 2 expressed in (8b) into the cylin
drical coordinate system. The result is 

A2 = [ - 7 f sm(,8 + <t>2) + i*2y2 cos(0 + 0 2 ) - 7 * " 2 cos 8]er 

+ [ - 72* cos(0 + 0 2) - i*2j2 sin(0 + 0 2 ) + 7*co2 sin 0]e„ + co23 

To obtain the velocity components to be substituted into 
(7), we recall that the definition of the fluid film system re
quires that the 3 coordinate of every point on element 1 be 
zero. Thus , the position vector of any point on element 1 in 
the r03 system is simply r, =rer, and the velocity of the point 
which results from the element rotat ion is obtained from the 
cross-product V! = Xj x r , . Evaluating the cross-product and 
adding the axial translation velocity, i\, yields 

v,=/-co1e s + [/-7*cos(6l + 0 1 ) + ^ * 1 7 * s i n ( 0 + 0 1 ) + Zi]3 

and the velocity components which we substitute into equation 
(7) are 

Vw = 0 (14a) 

K 1 9 = T O l (146) 

K u = r y f cos(6> +</>!) + ^ 7 ? s i n ^ + ^ + Zi (14c) 

On element 2 the value of the 3 coordinate at each location 
is equal to the film thickness at that location, and the position 
vector becomes ' r 2 =re/+ h3, where h is defined in (6). The 
velocity is computed as the sum of the cross product , 
v2 = X2 x r2, and the axial velocity, z 2 , so that 

v2 = roi2eg + [ry2 cos(0 + <t>2) + r\p*2y2 sin(0 + <£2) 

-ry*o>2sm 0 + z2]3 

where products of h and 7* have been neglected because they 
are second order . The velocity components which we 
substitute into equation (7) are 

V2r = 0 (15a) 

K » = R O 2 (15b) 

Viz^nl cos(8 + (t>2) + ri*2y^ sin(0 + </>2)-ry*o>2 sin 8 + z2 

(15c) 

Because the value of the radial coordinate, r, changes very 
little across the width of the sealing dam, we can replace it 
with its mean value, /•,„, in equations (14) and (15). (This is an 
outcome of the narrow seal approximation.) Substituting the 
resulting velocities into (7), noting that dh/dd = — 7 V sin 0 and 
assuming that the sealed fluid is isoviscous, the final form of 
the Reynolds equation becomes 

dr -(*•-£•) l2A""miY2* cos(0 + 0 2 ) - 7 f cos(0+ (£,)] 

fe)-l/-:i7i sin(0 + «,)] + 12/xr„,[^272*sin(0 + < 

-6/iA-m7*(co2+u1)sin 8 

+ I2n(z2-zl) 
= (R. H . S.) (16) 

For brevity we shall use the notat ion " (R . H . S . )" to denote 
the right-hand side of (16) when integrating to determine the 
hydrodynamic pressure solution. 

The Hydrostat ic So lut ion 

Because (16) is a linear differential equation, its 
homogeneous and nonhomogeneous solutions can be obtained 
separately and superposed. The hydrostatic solution describes 
the pressure resulting from the flow across the sealing dam in
duced by the pressure difference between the inner and outer 
radii. It is obtained by solving the homogeneous form of the 
Reynolds equation 

d 

17 
( " • # - ) 

= 0 (17) 

using the nonhomogeneous boundary conditions 

P=Po at /• = /•<, 

P=Pi a t /• = /•,• 

When expressed in the fluid film coordinate system, the solu
tion of Etsion and Sharoni (1980), originally obtained for the 
FMS configuration, is applicable to (17). The normalized 
form of their solution for the hydrostatic pressure is 

P s = P , - ( P , - P 0 ) ^ r [ ( § ) 2 - i ] 

Because this pressure profile is symmetric about axis 2 (since 
/ / i s symmetric about axis 2), it will generate only an axial load 

Journal of Tribology OCTOBER 1991, Vol. 113 / 799 

Downloaded From: http://tribology.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/jotre9/28492/ on 01/05/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



and a tilting moment about axis 1 upon each of the seal 
elements. 

The hydrostatic forces acting upon the seal elements are ob
tained by integrating the hydrostatic pressure over the surface 
area of the sealing dam; thus, 

F2s = 2R,„ j * J^ P, dRdO; Fls = - F * 

where the narrow seal approximation has again allowed us to 
replace R with Rm and remove it from the integral. Since, in 
general, the forces and moments which act upon element 1 are 
simply the negatives of those which act upon element 2 (when 
expressed in the fluid film coordinate system), we shall 
hereafter consider only those forces and moments which act 
upon element 2. Utilizing the evaluation of the integral by Et-
sion and Sharoni (1980) for small nutations, we obtain 

7T 

~2~ 
( i - # ? ) ( p , + p 0 ) + T T ( P 0 - p , ) 5 ( i - ; ? , ) £ (18) 

where, following the normalization procedure of Green and 
Etsion(1983) 

E = i}-R,)R„ (19) 
2 + 5(1 -/?,-) 

The first term of (18) represents the force which would result if 
the seal elements were perfectly aligned and unconed. The se
cond term is the deviational component which results from 
coning. The relative tilt between the two elements, 7, does not 
appear in the hydrostatic expression because the result of the 
integration contains 7 only to second order and higher. 

The definition of the hydrostatic moment about the 1 axis 
acting upon element 2 is 

M2ls = 2Rl[ * [ Ps cos 6 dRdd 
J0 J R: 

(20) 

where the first digit of the subscript denotes the element to 
which the moment is applied and the second denotes the axis 
(in the fluid film system) about which the moment acts. The 
positive sign for (20) is obtained by noting that a positive 
pressure at 8 = 0 results in a positive moment applied to ele
ment 2 about axis 1. Again utilizing the evaluation of Etsion 
and Sharoni (1980), the moment is 

M 2„ = x ( P 0 - P , ) £ 2 ( l - f i i J / ) £ (21) 

In this expression the dependence upon the relative tilt angle, 
7, is contained completely within the dimensionless tilt 
parameter, e, where e = y*r0/C. 

The Hydrodynamic Solution 

The hydrodynamic pressure is obtained by solving equation 
(16). However, since the effect of the pressure difference 
across the sealing dam is contained within the hydrostatic 
solution, we solve the nonhomogeneous equation using the 
homogeneous boundary conditions 

(22) 
p = 0 at /• = /•„ 

p = 0 at /• = /•,-

Thus, the particular solution will represent that portion of the 
fluid pressure which results only from the relative motion of 
the two seal elements. It will include both hydrodynamic and 
squeeze effects, but we shall not attempt to demarcate the two 
because the complexity of motion in the FMRR configuration 
makes the definition of separate hydrodynamic and squeeze 
effects ambiguous. 

Integrating (16) once and dividing by h3, we obtain 

dp r—r' 
= (R. H. S.) dr h3 

tion of the extremum of hydrodynamic pressure. Integrating a 
second time, we obtain 

p = (R. H. S.) 
f r-r' 

dr (23) 

If the hydrodynamic solution is nontrivial, (R. H. S.) will be 
nonzero. Therefore, if the boundary conditions (22) are ap
plied to (23), the value of the integral at /• = /•,• and r = r0 must 
be zero. These two conditions can be used to evaluate r' and 
the constant resulting from the second integration with the 
result 

dr = 
{r0-r)(r~ri) 

J h3 2h2hm 

We substitute this into (23) to obtain the hydrodynamic 
pressure, then normalize the result by dividing the equation by 
the seal parameter, 5, and substituting the identity 

C = C 0 ( 1 + Z ) 

= C 0 ( 1 + Z 2 - Z , ) 

into the normalization for H. The resulting normalized 
hydrodynamic pressure is 

A 
( l_R'){Rm[y2cos(d+4>2) (1+Z) 3 

-7 , cos(6> + 0,)]+i?m[72i/-K2 sin(0 + <j!>2)-71i/<ol sin(0+ <£,)] 

^ 0 + ^ ) 7 sin 6 + Z2-z] (24) 

where 

\-R 

Hmmi-R,) 
The hydrodynamic pressure alone will normally be negative at 
some point on the seal circumference. However, this work 
assumes that the total pressure, which is the sum of the 
hydrodynamic and hydrostatic pressure solutions, will be 
greater than zero around the entire circumference, so that 
there is a full fluid film in the sealing dam. If a negative total 
pressure occurs, the fluid film will cavitate, and the pressure 
solutions used to obtain the hydrodynamic moments will be 
invalid. 

The definitions of the hydrodynamic forces and moments 
acting upon element 2 are 

F2d=Rm\2
Q

T \l
RPddRd6 (25) 

Mr 

Mr. 

J 2?r (• 1 

{ 2TT p 1 

0 L 

cos 6 dRdd 

P, sin 6 dRdd 

(26) 

(27) 

When (24) is substituted into each of these definitions, the R 
dependence in each integrand is contained within the term 

(1-R)(R-R:) 

Green and Etsion (1983) denote the integral of this expression 
with respect to R as T(d)\ i.e., 

" (l-R)(R-R,) 
T(d)=\ dR 

The integral is evaluated in their appendix, and the result is 

\nHn-\nH, l-R, 1 

(28) 

™=>m 
where r' is a constant of integration equal to the radial loca-

(<5 + e cos0)3 Hm{S + e cos 6)2 J 

When (28) is substituted into (25) through (27), the integration 
over R in each expression becomes 
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r 
JR: 

PddR = 
T(6) 

(1 + Z) 3 (1- /? , ) 
~T{Rm[y2cos(d + <t>2) 

-7, cos(6 + (t>i)]+Rm[72^2 sin(0 + 4>2)-7i'/'oi sin(0 + <Ml 

^ ( l + ^ T s i n f l + Z . - Z , ] , v- . . . (29) 
2 \ co2 

In order to simplify the integration with respect to 6, we 
employ the approximation of Green and Etsion (1983) and 
define e = e/5, assuming that ( e / 5 ) 2 « l , so that T(6) can be 
rewritten as 

2a'(1) 2 cos 6 

ne)= —-~ + —-=— [«(i)r-«(/j,)-3a'(i)£i 53 

2(1-/?,) 
5 2 [ l+5( /? m - /? , ) ] 

where 

+ 2(1-/?,) 
cos 8 r a (/?,„) +2e 

52 

1 r a 

17+ 5(/?„,-/?,-) 

a(R) = 
eR 

l + 5 ( / ? - / ? , ) 

and 

a ' ( / ? ) = l n [ l + 5 ( / ? - / ? , ) ] 

This'substitution eliminates all dependence upon 6 from the 
arguments of the logarithms and removes all trigonometric 
functions from the denominator of the integrand. 

The integration over 8 is performed in the Appendix, and 
the hydrodynamic forces and moments which result are 

F2d=-A*RmG(Z2-Zl) (30a) 

(306) F\d = ~F2d 

M2ld= -2irRlp{y2 cos </>2-7i cos 4>{ 

+ y2^a2 sin </>2-7iiai sin <t>i\ (31«) 

Mud=-M2ld (316) 

M22d = 2irRlp\[y2 sin </>2-7i sin 0,] 

- [ 7 2 ^ 2 cos tf>2-7itai cos (/>,]+ - ^ - ( 1 + — ^ — J T J (32a) 

(326) Mm=-M2: 

where 

ln [ l+5(1- /? , ) ] -
26(1-/?,) 

2 + 5(1-/?,) 

53(1 + Z) 3 (1 - / ? , ) 2 
(33) 

Since we wish to express the stiffness and damping coeffi
cients with respect to the fluid film coordinate system, we 
must first express the fluid film moments with respect to this 
system. The hydrostatic moment, (21), presents no problem as 
it is already expressed with respect to the fluid film system. 
However, the hydrodynamic moments, (31) and (32), are ex
pressed in terms of the nutations 72 and yu which are 
referenced to the element principal systems x , / ^ ! and x2y2z2. 
Thus, (31) and (32) must be transformed so that the 
hydrodynamic moments are expressed with respect to the 
relative nutation angle, 7, and its time derivative, 7. 

We begin this transformation by taking the derivative with 
respect to time of the kinematic relations (3) and (5) to obtain 

7 = 72 cos <j>2 - 7 , cos 4>i -72^2 s i n </>2 + 7i0i sin <f>l (34a) 
0 = 72 sin </>2-7i sin <£, +y24>2 cos </>2—Ti<Ai cos </>, (346) 

Substituting (2), (5), and (34a) into (31a), M2Xd can be ex
pressed as 

M2ld=-2TrRlPy 
To express M22d in terms of the relative nutation, we first 

take the time derivative of (2) to obtain 

Substituting into (32a) yields 

M22rf = 27r/?3p^[72 sin 4>2~yi sin 0 J 

- [ 7 2 ( ^ - * 2 > c ° s </>2-7i('/'//-0i)cos <£[] 

.•-rO • - * > ] 
Then substituting (346) and (3) we obtain 

Stiffness and Damping Coefficients 

A rotordynamic coefficient represents the change in the 
magnitude of a generalized force which results when a single 
degree of freedom is perturbed while all others are held at their 
equilibrium positions. Stiffness coefficients, k, correspond to 
perturbations of position while damping coefficients, d, cor
respond to perturbations of velocity. 

A rotordynamic coefficient represents a relationship be
tween the degree of freedom in which the perturbation occurs 
and the degree of freedom in which the generalized force acts. 
To uniquely describe which two degrees of freedom are related 
by a particular coefficient, this work will adopt a notation in 
which each rotordynamic coefficient contains two subscripts. 
The first subscript will denote the degree of freedom in which 
the perturbation occurs, and the second will denote the degree 
of freedom in which the generalized force acts. It is most con
venient to express the rotordynamic coefficients with respect 
to the fluid film coordinate system; therefore, both degrees of 
freedom denoted in each subscript will be refer
enced to this system. Rotations and moments about axes 1 and 
2 will be denoted by the numerals 1 and 2 while the numeral 3 
will denote axial translations and forces. 

The definitions of the stiffness and damping coefficients are 
of the form 

ku=- du=-
dX, 

where Fj represents a generalized force acting in degree of 
freedom j , Xt represents a perturbation occurring in degree of 
freedom /, and Xt represents a perturbation of the velocity in 
degree of freedom /. The equilibrium configuration is defined 
to be that in which both seal elements are perpendicular to the 
seal centerline; in which the centerline clearance, C, takes on 
its initial value, C0; and in which the velocities in each degree 
of freedom are zero. Thus, in the equilibrium configuration all 
of the position variables (Z, 7, , y2, and 7) and their time 
derivatives are zero, and these zero values are substituted into 
the evaluations of the partial derivatives to determine the ex
pressions for the stiffness and damping coefficients. The 
generalized forces can then be obtained from the coefficients 
using the relation 

FJ=FJ\ - E M O - I X * / (35) 

For most seal designs, the inner and outer radii of the sealing 
dam are selected in such a way that the equilibrium forces and 
moments which act upon the seal sum to zero, a process 
known as balancing, so that Fj \eq =0 . 

Since each generalized force which results from fluid film 
effects acts upon both element 1 and element 2, we define our 
coefficients k,j and dy as derivatives of the generalized forces 
which act upon element 2. Then, since the generalized forces 
which act upon element 1 are the negatives of those which act 
upon element 2, the fluid film coefficients which will be used 
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to derive the equations of motion for element 1 will simply be 
the negatives of the ky and dy values determined for element 
2. 

The Axial Modes 

From (18) and (30) it is clear that the degrees of freedom 
corresponding to axial translations are uncoupled from those 
which represent rotations of the seal elements. Each of the ax
ial forces is affected only by perturbations in the axial posi
tions and velocities of the two elements so that kn and k23 are 
identically zero, as are the analogous damping coefficients. 
The nonzero rotordynamic coefficients in the axial mode are 
defined as follows: 

k\\ — 

dn = 

dF2 

dZ 

dF2 

Hz 

(36a) 

(366) 

To obtain kn from (36a), we perform the derivative, then 
require that all velocities and displacements be zero. Since 
Z = 0, the hydrodynamic component of the axial force will not 
contribute to kn. The first term of the hydrostatic load of 
equation (18) is a constant and vanishes when differentiated, 
so that the expression for the axial stiffness reduces to 

k3i=-ir(P0-Pl)(l-Rl)—-(SE) (37) 
oz 

We substitute equation (19) and the relation 

l+Z 

to evaluate the derivative in (37), then substitute Z = 0 into the 
result to obtain 

k3i=*{P0-Pi) 
R,„ 

2/3 

where E0 is the value of E when all displacements and 
velocities are zero: 

En = 
(1 - * , ) * „ 

2 + 0 ( 1 - * , ) 

The damping coefficient in the axial mode is obtained from 
the hydrodynamic component of the axial force; thus, 

di3 = - -L[-4irRmGZ] 

Since G is independent of the velocity, the result is simply 

dn=4irRmG0 

where G0 is the value of G at equilibrium: 

l n [ l + 0 ( 1 - « , ) ] • 

G0 = 

2 0 ( 1 - * , ) 
2 + 0(1-*, . ) 

0 3 ( l - « , ) 2 

The Angular Modes 

As mentioned previously, the rotordynamic coefficients are 
derived in terms of perturbations which are referenced to the 
fluid film coordinate system. Since, by definition, no relative 
rotation about the 2 axis of this system ever occurs, the stiff
ness coefficients k22 and k2l are identically zero, as are the 
associated damping coefficients. 

Although the fluid film moments contain dependencies 
upon the axial translation, Z, taking the derivatives of these 
moments with respect to Z always yields an expression which 
contains either y or 7 as a factor. Since both 7 and 7 are zero 

at equilibrium, all those coefficients which relate moments to 
perturbations of the axial translation will be zero. Thus, for 
the linearized model the axial and angular modes are com
pletely decoupled, and the coefficients kn and k3l are zero 
along with the associated damping terms. 

The nonzero stiffness coefficients in the angular mode are 
defined as follows: 

kw — 
dM„ bMr 

dy \eq dy leg 

Since neither the hydrostatic nor the hydrodynamic moment 
about axis 2 depends upon 7, -the damping coefficient dt2 is 
zero. Thus, the only nonzero damping coefficient in the 
angular mode is 

rf„ = -
3Mr 

dy 
(38) 

Since M2ld is independent of 7, only the derivative of M2ls 

need be evaluated to obtain kn. Because no hydrostatic mo
ment occurs about axis 2, only the derivative of M22d need be 
evaluated to obtain kl2. The stiffness coefficients which result 
are 

^ 1 1 = 7 T ( P o - P / ) ( 0 * / 

CO, \ 

1 + — ) 

(39a) 

(39b) 
2 \ co2 

Since the hydrostatic moment is independent of 7, we ob
tain the damping coefficient by substituting the expression for 
M2ld into (38) and evaluating the derivative; thus, 

tfn=27r/^G0 

We would like to express the variable ^ in equation (396) 
in terms of angles referenced to the element principal systems. 
Since the substitution will be different for elements 1 and 2, we 
shall recall our convention that k12 refers to a stiffness coeffi
cient associated with element 2, and we shall define kn = - kn 

to be the corresponding stiffness coefficient for element 1. For 
element 2 we substitute 

and 

into (396) to obtain 
i<a = ii +1 

k12 = 2TRlp0[t2 + 42+ - 2 ~ ( l - - ^ - ) 

To eliminate rj/^ from ku, we substitute 
C.J. 

tff=tai+<t>\ and ^ a I = ^ , + 

(40) 

co2 

to obtain 

k12=-2irRlf}0[il+<j>1~ ~ ( } - - ^ - ) (41) 

Discussion 

As mentioned previously, the rotordynamic coefficients ob
tained in this analysis are based upon a more rigorous deriva
tion of the Reynolds equation than previous analyses of the 
FMS and FMR configurations. However, the rotordynamic 
coefficients obtained for the FMRR case can be applied with 
equal validity to the FMS and FMR configurations if ap
propriate kinematic conditions are applied. Since both time 
and the angular velocities have been normalized using o2 , if a 
system in which only one shaft rotates is to be analyzed, it 
must be defined in such a way that the rotating shaft is at
tached to element 2 (i.e., so that cu2?*0). Thus, in either the 
FMS, FMR, or FMSR configurations, the stator will always 
be represented by element 1. 

In general the FMRR seal will have six equations of motion 
obtained by equating the applied moments of equation (35) to 
the dynamic moments of the seal elements. The two equations 

802/Vol . 113, OCTOBER 1991 Transactions of the ASME 

Downloaded From: http://tribology.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/jotre9/28492/ on 01/05/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



for the axial modes will be uncoupled from the four for the 
angular modes because the axial and angular rotordynamic 
coefficients are not coupled. These six equations can be re
duced to three for the FMR and FMS configurations because 
three degrees of freedom are eliminated for the rigidly-
mounted element. The remaining three equations, when the 
appropriate kinematic conditions are substituted, will reduce 
to those presented by Green (1990) for the FMR case and 
Green and Etsion (1985) for the FMS case. For the FMSR 
case, all six equations of motion will be used, but o>t = 0 will be 
substituted into the expressions for the rotordynamic coeffi
cients. For the general FMRR case, counterrotating shafts will 
be represented by shaft velocities wi and co2 having different 
signs. 

Comparing the rotordynamic coefficients obtained for ele
ment 2 of the FMRR case to those obtained by Green (1987) 
for the FMR case, we note that the expressions for all of the 
coefficients are identical with the exception of kn. This is ex
pected since most of the fluid film effects depend only upon 
the coning angle or the relative tilt between the two elements, 
and the absolute motion of the seal is involved only indirectly 
through the definition of the relative system. The cross-
coupled coefficient, kn, however, depends directly upon the 
absolute precessions of the two elements, and is therefore dif
ferent for the FMRR and FMR systems. For the FMR system 
Green (1987) obtained 

*12 = 2**2po(* i+4-) (42) 

where he defines 4>i as the angle by which his fluid film system 
leads the rotor shaft. (This should not be confused with the 
usage of the variable <j>l in this work.) Expressed in the 
variables of this work it is equivalent to \//2 + <f>2. Substituting 
co, = 0 into equation (40), the expression for kn reduces to 

k12=2irRlp0[i2 + <j>2+ — ] 

which is equivalent to (42). Thus, the FMRR results 
degenerate to those obtained by Green when the FMR case is 
considered. 

For the FMS configuration, the rotordynamic coefficients 
associated with element 1 are of interest. The values of kn, 
k33, dn, and d3i are the same as those obtained by Green and 
Etsion (1983) except for a negative sign which results because 
their definitions of Z and y are the negatives of those used in 
this work. For kl2 they obtained 

k12=-2icRlp0(4--L) 

where they defined \p as the precession rate of the fluid film 
system with respect to the inertial system. Using the defini
tions of this work, this precession rate is 1/-̂ = i/», + 4>x since we 
have assumed u, =0 . If we substitute wj = 0 into (41), we ob
tain 

kl2=-2TrRlG0[ti+i>i- - ^ - ] 

and we see that the results of the degenerate FMRR solution 
are the same as those of the previously derived FMS solution. 

Conclusions 

This work provides the rotordynamic coefficients of a 
mechanical face seal in which both of the elements are flexibly 
mounted and both are attached to rotating shafts (the FMRR 
configuration). These coefficients can be used to formulate 
the equations of motion for the system and, ultimately, to ob
tain the dynamic response. 

To obtain the rotordynamic coefficients, the form of the 
Reynolds equation appropriate to an FMRR seal was derived, 

and the forces and moments resulting from the fluid film 
pressure were obtained for uncavitated seals using the narrow 
seal approximation. The stiffness and damping coefficients 
for the flexibly mounted rotor and flexibly mounted stator 
cases were shown to be obtainable as degenerate cases of the 
FMRR results. 
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A P P E N D I X 

Evaluation of the Integrals With Respect to 0 in the Expres
sions for Fluid Film Forces and Moments 

The axial force, F2d, is defined in equation (25). If the result 
of the integration with respect to R, contained in (29), is 
substituted into (25), we obtain 

F ^3 \ y [ * T(6)cos(d + <l>2)cl6 
. 2d ( l + Z ) 3 ( l - « , ) 2 l /2Jo 

- 7 ! [ * T(6)cos(e + (pi)M 

~ (l + Z)*i-*,)4^r rWsintf+W* 

-7itajo
2'7'(fl)siii(0 + *1)dfl] 
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*24}+—)•> 2 
\ CO, / p2ir 

: T(6)sin Odd (43) 
* , ) 2 Jo 

2(1 + Z)3(1 -Rt) 

(Z2-Z,)Rm [2* R C2lr 

R:)1 JO . ( 1 + Z ) 3 ( 1 - * , ) 

where the expression has been separated into four terms to 
facilitate the process of integration. 

The trigonometric functions in the third term integrate to 
zero over the interval between 0 = 0 and 6 = 2ir. The integra
tions of the first and second terms result in expressions which 
are an order higher in the perturbation variables than the 
result of the integration of the fourth term. Thus, the first and 
second terms can be neglected in the final result, and 
substituting for T(8) in the fourth term and performing the 
integration yields the axial force upon element 2: 

FM=-
(Z2-Zl)R„, f 2 * r 2 a ' ( l ) 

* , ) 2 Jo L ( 1 + Z ) 3 ( 1 - * , ) 2 Jo L 53 

2 ( 1 - * , ) 

*,)d 5 2 [ l+5(* ,„-* , - ) ] 

4 7 r ( Z 2 - Z , ) * 

dd 

(44) 
H(Z2-Zl)Rm r 
( l + Z ) 3 ( l - * f ) » i l n [ 1 + * 1 - * ' ) 1 

_ 25(1-* , ) -) 

2 + 5(1-*,) J 

Using the definition of Green and Etsion (1983), 

25(1-* , ) 
l n [ l + 5 ( 1 - * , ) ] -

G = -
2 + 5 ( 1 - * , ) 

5 3 ( l + Z ) 3 ( l - * ; )
2 

equation (44) simplifies to 

F2d=-4irRmG(Z2-Z1) (30a) 

The moment about axis 1, M2 W , is defined in (26). Again 
substituting (29) into the definition and separating the result 
into four terms, we obtain 

Mzw=~ (i+Z)f(i_*,)2^2r T{8) c ° s e c°^+^de 

i f * T(8) cos0cos(0 + 0,)e?0J • 7 i 

ra-(T2^ \^ T(B) cos 0sin(0 
( 1 + Z ) 3 ( 1 - * , ) 

-yiiai \ * T(e)cos e sm(e+^i)del (45) 

* \ co2 / 

2 ( 1 + Z ) 3 ( 1 - * , ) 2 

( Z 2 - Z , ) * m [•* 

i 2vr 

T(8) cos 0 sin 0 dd 

T(6) cos 6» dd 
( l + Z ) 3 ( l - * , ) 2 - „ 

The third term clearly integrates to zero over the specified in
terval. The first and second terms are evaluated using the 
trigonometric identities 

cos(0„ + 0) =cos 0„ cos 8 — sin 0„ sin 8 (46a) 

sin(0„ + 8) =sin 0„ cos 6 + cos 0„ sin 0 (466) 

When (46a) is substituted into the first term, the contributions 
of sin <(>„ sin 6 integrate to zero over the interval. The contribu
tions of cos 4>„ cos 6 result in an integrand which contains 
cos26 and which is first order in the perturbation variables. 
Evaluating the integral, the first term of (45) becomes 

-2TTRIPIJ2 COS 0 2 - 7 , COS 0,] (47) 

When (46b) is substituted into the second term of (45), the 
cos </>„ sin 8 contributions integrate to zero, and the sin </>„ 
cos 8 contributions again produce first-order terms which con
tain cos2 8 in the integrand. The resulting expression for the 
second term is 

- 2ir*3/?[72i/-a2 sin c/>2 - 7, \pal sin 0,] (48) 

The result of integrating the fourth term is an order higher in 
the perturbation variables, so that adding (48) and (47) yields 
the moment about axis 1: 

M2,d= -2irRlP{y2 cos 0 2 - 7 i cos 0, 

+ 72^2 sin </>2-7itai sin 0, J (31a) 
Finally, substituting (29) into the definition of M22d con

tained in (27) yields 

( ' o
I : r (0)[*m [7 2cos(6 ' + </>2) 

-7, cos(0 + </>,)] +Rm[y2^a2 sin(e + 0 2 ) - 7 i ^ i sin(0 + 0,)] 

Mnd ( 1 + Z ) 3 ( 1 - * , ) 2 

^ ( l + - ^ - ) 7 s i n 0 + Z 2 - Z 1 ) sin 6 d8 

Substituting the trigonometric identities (46) and eliminating 
the terms which integrate to zero over the interval, we obtain 

Rl, f2' f 
Mlu~ (1 + Z)3(1 - 7! sin • 

\lli>al COS 0 2 - 7 1 ^ 1 COS 0 l ] 

1 / CO, 
+ T ' (l+ - ^ - ^ j s i n 2 6 dd 

and the integration yields 

M22d = 2irR lp{[J2 si sin 0 2 - 7 i sin 0,] 

lyita2 COS 0 2 - 7 1 ^ 1 COS 0 , ] 

1 / CO, 
+ --('•-*-)*] (32a) 
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