Flexibly Mounted Rotors (Fig. 1(b)). Dynamic analyses of the FMS (Green and Etsion, 1985) and FMR (Green, 1989 and 1990) configurations have demonstrated that the FMR is superior with regard to both stability and steady-state dynamic response. Since the dynamic effects which enhance the performance of FMR seals are present in both elements of an FMRR seal, there is reason to believe that the FMRR configuration will provide even better performance. Additionally, a dynamic analysis of the FMRR configuration will allow the determination of the dynamic response of any configuration, since the FMSR, FMR, and FMS systems can easily be obtained as degenerate cases by substituting appropriate values for the kinematic variables.

To exactly determine the dynamic response of a mechanical seal system, the equations of motion for the seal elements must be solved simultaneously with the Reynolds equation, which governs the behavior of the fluid contained within the sealing dam. Determination of the equations of motion, however, requires a priori knowledge of the fluid pressures, so that the problem requires an iterative, numerical solution such as that provided by Green and Etsion (1986a). Although this technique is useful for the analysis of a specific seal design, it is time-consuming and cannot provide general, qualitative information as to which types of designs and modes of operation yield the best performance.

This work exploits the fact that, in most typical mechanical seal systems, the magnitude of the relative tilt between the seal elements is very small and the width of the sealing dam is small compared to the seal radius. The standard assumptions of lubrication theory for an incompressible, isoviscous fluid are employed, as well as the requirement that the hydrostatic pressure in the sealing dam be sufficient to prevent cavitation. When these conditions are satisfied, a closed-form, linearized solution for the seal element motion can be obtained in terms of rotordynamic coefficients which describe the effects of small perturbations about an equilibrium position. These stiffness and damping coefficients introduce the fluid behavior directly into the equations of motion, eliminating the need to solve them simultaneously with the Reynolds equation. The
The Reynolds equation is then solved to obtain the hydrostatic
configuration, and Green (1987) provided similar coefficients
for the FMR configuration.

To determine rotordynamic coefficients for the FMRR config-
uration, the appropriate form of the Reynolds equation is
derived based upon the kinematic description of the system.

Kinematic Description

In an FMRR seal, the forces and moments applied to the
seal elements by the fluid film and the flexible support depend
upon many different types of relative motion, while the iner-
tial forces and moments depend upon the absolute motion of
each element. In order to describe each of these relationships
in its most useful manner, this analysis utilizes six different
coordinate systems. Each of the coordinate systems described
below is right-handed. Superscripted asterisks are used with
some variables to distinguish them from their normalized
counterparts defined later.

The ξ, η, and ζ axes describe an inertial coordinate system
whose origin coincides with the center of element 1 when the
seal is at rest (Fig. 2). The ξ and η axes are orthogonal and lie
in a plane which is perpendicular to the system centerline. ξ is
the axis from which the rotations of the shafts and the abso-
olute precessions of the seal elements are measured. The ζ
axis lies along the common centerline of the concentric shafts,
and its positive sense is defined to be directed from element 1
toward element 2.

The coordinate systems $X_1 Y_1 Z_1$ and $X_2 Y_2 Z_2$ are fixed to
the shafts to which elements 1 and 2, respectively, are at-
tached. The Z_1 and Z_2 axes are coincident with the ζ axis, and
the $X_1 Y_1$ and $X_2 Y_2$ planes always remain parallel to the $\xi\eta$
plane and, thus, perpendicular to the system centerline. At

Nomenclature

- C: seal centerline clearance
- C_0: equilibrium centerline clearance
- d_{ij}: damping coefficient (element 2)
- d_{i}: damping coefficient (element 1)
- E: stiffness parameter, equation (19)
- F_i: generalized force
- F_{n}: axial force
- C^n: normalized axial force, F^n/S_r^2
- G: damping parameter, equation (33)
- h: film thickness
- H: normalized film thickness, h/C
- k_{ij}: stiffness coefficient (element 2)
- k_{ij}: stiffness coefficient (element 1)
- M_i: moment
- M_{i}: normalized moment, M_i/S_r^2
- p: pressure
- P: normalized pressure, p/S
- R: normalized radius, r/r_o
- S: seal parameter, $S_0(r_o/C_o)^2(1-R_i)^2$
- t^*: normalized time, $\omega_2 t^*$
- z_n: axial translation of element n
- z: relative axial translation
- Z_n, Z_n: normalized axial translations, z/C_0
- β^*: coning angle
- β: normalized coning angle, $\beta^{*}r_o/C_0$
- γ^*: nutation (tilt)
- γ: normalized nutation, $\gamma^{*}r_o/C_0$
- δ: coning parameter, $\beta^{*}r_o/C$
- ϵ: tilt parameter, $\gamma^{*}r_o/C$
- θ: angular coordinate
- μ: viscosity
- ϕ_n: precession angle
- ψ_{ff}: absolute precession of fluid film system
- ψ_n: relative precession angle
- ω_n: shaft angular speed

Subscripts

- 0: equilibrium value
- d: hydrodynamic component
- i: inner radius
- m: mean radius
- n: element number ($n=1$ or 2)
- o: outer radius
- s: hydrostatic component
The analysis of the fluid film behavior in the sealing dam utilizes the assumptions of lubrication theory, so that inertia effects within the fluid film are neglected and the fluid behavior depends upon the relative positions and motions of the two sealing faces rather than upon their absolute positions and motions. Therefore, it is most convenient to determine the fluid film pressures (i.e., solve the Reynolds equation) using a coordinate system which describes the position of one sealing face with respect to the other. We designate this system using the 1, 2, and 3 axes.

To maintain consistency throughout the derivation, we define 123 to be a principal system of element 1. Thus, axes 1 and 2 form a plane which coincides with the x1,y1 plane (the sealing face of element 1) and axis 3 is orthogonal to the plane and directed toward element 2. Axes 1 and 2 precess about z1, so that axis 1 is always parallel to the x2,y2 plane (the sealing face of element 2) and axis 2 is always directed toward the point of maximum film thickness, which represents the maximum separation between the sealing faces. Axis 3 coincides with axis z1 and is nutated with respect to axis z2 through an angle γ*, which represents the relative tilt between the two elements. As mentioned previously, the nutations in any practical mechanical seal are extremely small; thus, the nutation angles can be treated as vectors which satisfy the relation

\[\gamma^* = \gamma^* - \gamma^* \]

The angle \(\phi_1 \) is defined to be the angle, measured in the \(x_1,y_1 \) plane, by which axis 1 leads axis 2, and the absolute precession of the fluid film system, \(\psi_1^* \), satisfies

\[\psi_1^* = \psi_{a1} + \phi_1 \cos \gamma^* \]

Substituting (1) into this expression yields.

\[\psi_1^* = \psi_{a1} + \phi_1 \cos \gamma^* \]

Figure 3 is a vector diagram which shows the relationships among the orientations of the various coordinate systems for an element and the associated precession angles. This diagram includes all of those axes which would be seen by an observer looking down upon element 1 (where \(n \) is either 1 or 2) along the centerline of the seal.

The angle \(\phi_1 \) is defined to be the angle by which a projection of axis 1 into the \(x_1,y_1 \) plane leads axis 2. (Recall that, by definition, axis 1 lies in the \(x_1,y_1 \) plane and is parallel to the \(x_2,y_2 \) plane.) This definition allows us to define an alternate expression for the absolute precession of the fluid film system:

\[\psi_1^* = \psi_{a1} + \phi_2 \cos \gamma^* \]

Again substituting (1), we obtain

\[\psi_1^* = \psi_{a1} + \phi_2 \]

so that

\[\psi_1^* = \psi_{a1} + \phi_2 = \psi_{a1} + \phi_1 \] (2)

is an identity.

The definitions of \(\phi_1 \) and \(\phi_2 \) can be used to relate the scalar magnitudes of the relative nutation angle to the magnitudes of the absolute nutation angles:

\[\gamma^* = \gamma^* \cos \phi_2 - \gamma^* \cos \phi_1 \] (3)

From this expression and (1), it is clear that we can also make the approximations

\[\cos \gamma^* = 1; \quad \sin \gamma^* = \gamma^* \] (4)

Because the definition of the 123 coordinate system supposes no relative tilt about the 2 axis, it follows that

\[\gamma^* \sin \phi_2 \cos \gamma^* - \gamma^* \sin \phi_1 = 0 \]

is an identity, and substituting (4) yields

\[\gamma^* \sin \phi_2 \cos \gamma^* - \gamma^* \sin \phi_1 = 0 \]
justify, the derivation of the Reynolds equation for the FMRR configuration is based upon a more fundamental form of the equation. In cylindrical coordinates in terms of the translation velocities on the boundary surfaces, which are the seal faces in our case, and we shall base our derivation upon this equation. Etsion (1980) has shown that the effects of the circumferential pressure gradient and of the sealing dam curvature become insignificant as the ratio of the inner radius of the sealing dam to the outer radius \(r_i/r_o \) approaches unity (the "narrow seal" approximation). Applying these simplifications to the equation of Haardt and Godet, the form of the equation applicable to the cylindrical coordinate system is (Wileman, 1990)

\[
\frac{\partial}{\partial r} \left(\frac{h^2}{\mu} \frac{\partial p}{\partial r} \right) = \frac{12r}{r_o} \left(V_{2r} - V_{1r} \right) - 6\left(V_{2\theta} - V_{1\theta} \right) \frac{\partial h}{\partial \theta} - 6r \left(V_{2r} - V_{1r} \right) \frac{\partial h}{\partial r} + 6h \frac{\partial}{\partial r} \left(V_{2\theta} + V_{1\theta} \right) + 6hr \frac{\partial}{\partial r} \left(V_{2r} + V_{1r} \right)
\]

(7)

The velocities, \(V_{ij} \), in the right-hand side of the equation represent the translational velocities with respect to inertial of a point on the surface of a seal element. The numeral in the subscript denotes which element is being considered, and the letters \(r, \theta, \) and \(z \) denote, respectively, the radial, circumferential, and axial velocity components.

The velocity of a point on the face of a seal element is a superposition of the velocity of axial translation of the center of the element and the velocity of the point with respect to the center which results from the element rotation. The latter component of velocity is obtained at any point as a cross-product of the angular velocity of the element with the \(r\theta z \) position of the point. Thus, to perform this computation we would like to obtain the absolute angular velocity of each element expressed in the cylindrical coordinate system. Green and Etsion (1986b) obtained the absolute angular velocity for the FMR case expressed in the element principal coordinate system. With an appropriate substitution of variable names, that expression may be applied to both elements in the FMRR configuration; thus,

\[
\begin{align*}
\lambda_1 &= \gamma^1_{\theta} \dot{t}_1 + \psi^1_{\theta} \sin \gamma^1_{\phi} + \psi^1_{\phi} \cos \gamma^1_{\phi} - 1 + \omega_1 \dot{k}_1 \\
\lambda_2 &= \gamma^2_{\theta} \dot{t}_2 + \psi^2_{\theta} \sin \gamma^2_{\phi} + \psi^2_{\phi} \cos \gamma^2_{\phi} - 1 + \omega_2 \dot{k}_2
\end{align*}
\]

(8a)

(8b)

We wish to resolve both of these angular velocities into the \(r\theta z \) system. We note that for element 1, 3 and \(k_1 \) are coincident; thus, only the \(t_1 \) and \(j_1 \) components need be resolved. From Figure 3 we see that the unit vectors in the two systems are related by

\[
\begin{align*}
\dot{t}_1 &= -\dot{e}_r \sin(\theta + \phi_1) - \dot{e}_\theta \cos(\theta + \phi_1) \\
j_1 &= \dot{e}_r \cos(\theta + \phi_1) - \dot{e}_\theta \sin(\theta + \phi_1)
\end{align*}
\]

Substituting these relations into (8a) and utilizing the approximations (1), we obtain the absolute angular velocity of element 1 expressed in cylindrical coordinates:

\[
\begin{align*}
\lambda_1 &= \left(-\gamma^1_{\theta} \sin(\theta + \phi_1) + \psi^1_{\theta} \gamma^1_{\phi} \cos(\theta + \phi_1) \right) \dot{e}_r + \left(-\gamma^1_{\theta} \cos(\theta + \phi_1) - \psi^1_{\theta} \gamma^1_{\phi} \sin(\theta + \phi_1) \right) \dot{e}_\theta + \omega_1 \dot{k}_1 \\
\lambda_2 &= \left(-\gamma^2_{\theta} \sin(\theta + \phi_2) + \psi^2_{\theta} \gamma^2_{\phi} \cos(\theta + \phi_2) \right) \dot{e}_r + \left(-\gamma^2_{\theta} \cos(\theta + \phi_2) - \psi^2_{\theta} \gamma^2_{\phi} \sin(\theta + \phi_2) \right) \dot{e}_\theta + \omega_2 \dot{k}_2
\end{align*}
\]

Expressing the angular velocity of element 2 in the fluid film coordinate system requires a more complex procedure because the \(r\theta z \) system is not a principal system of element 2; the \(z_2 \) axis is nutated with respect to the 3 axis, and the \(x_2y_2z_2 \) plane is inclined to the \(r\theta \) plane. The value of the 3 coordinate at any point on element 2 will be the film thickness at that point.

To resolve the angular velocity into \(r, \theta, \) and 3 components, we shall derive a rotation transformation from the element relative system, \(x_3y_3z_3 \), to the fluid system, \(r\theta z \). It will be most convenient to define this rotation transformation in terms of three successive body-fixed rotations, then to obtain the complete transformation using matrix multiplication.

The first rotation, \(R_1 \), transforms the components referenced to the \(x_3y_3z_3 \) system into components of an intermediate
system, \(x_{p1} x_{p2} z_{p1} \). The second rotation, \(R_3 \), transforms the components with respect to this intermediate system into components with respect to a second intermediate system, \(x_{p2} x_{p2} z_{p2} \). The final rotation, \(R_3 \), transforms the \(x_{p2} x_{p2} z_{p2} \) components into components with respect to the \(r_03 \) system. The complete rotation transformation, \(R \), is then obtained using

\[
R = R_3 R_2 R_1
\]

so that

\[
\begin{bmatrix} r \\ \theta \\ 3 \end{bmatrix} = R \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}
\]

To obtain \(R_1 \) we rotate through an angle \(\phi_2 \) about axis \(z_2 \) so that

\[
\begin{bmatrix} x_{p1} \\ y_{p1} \\ z_{p1} \end{bmatrix} = \begin{bmatrix} \cos \phi_2 & \sin \phi_2 & 0 \\ -\sin \phi_2 & \cos \phi_2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}
\]

Since \(\phi_2 \) is defined as the angle by which a projection of axis 1 into the \(x_2 y_2 \) plane leads axis \(x_2 \) (Figure 3), the transformation \(R_1 \) is equivalent to rotating the \(x_2 y_2 z_2 \) system about axis \(z_2 \) unti l axis \(x_2 \) coincides with the projection of axis 1.

After performing this rotation, we rotate the system through the angle \(\gamma^* \), defined in (3), about axis \(x_{p1} \), which represents the new position of the \(x_2 \) axis. This body-fixed rotation is denoted \(R_2 \) and is defined by

\[
\begin{bmatrix} x_{p2} \\ y_{p2} \\ z_{p2} \end{bmatrix} = \begin{bmatrix} 1 & 0 & -\sin \phi_2 \\ 0 & \cos \phi_2 & \cos \phi_2 \\ 0 & -\sin \phi_2 & \cos \phi_2 \end{bmatrix} \begin{bmatrix} x_{p1} \\ y_{p1} \\ z_{p1} \end{bmatrix}
\]

After \(R_1 \) and \(R_2 \) have been performed, the new position of the \(z_2 \) axis, denoted by \(z_{p2} \), will coincide with the 3 axis, and we perform a third body-fixed rotation about this axis to bring \(z_{p2} \) into coincidence with the \(r \) axis. The angle through which the system must be rotated is \(\theta + \pi/2 \), and after substituting appropriate trigonometric identities, the transformation \(R_3 \) is defined by

\[
\begin{bmatrix} r \\ \theta \\ 3 \end{bmatrix} = \begin{bmatrix} -\sin \theta & \cos \theta & -\gamma^* \sin \theta \\ -\cos \theta & -\sin \theta & \gamma^* \cos \theta \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{p2} \\ y_{p2} \\ z_{p2} \end{bmatrix}
\]

Before multiplying to obtain the complete transformation, we utilize the approximations of (4) to simplify the trigonometric functions contained in \(R_2 \). Then, substituting (11), (12), and (13) into (9), we obtain

\[
R = \begin{bmatrix} -\sin(\theta + \phi_2) & \cos(\theta + \phi_2) & -\gamma^* \cos \theta \\ -\cos(\theta + \phi_2) & -\sin(\theta + \phi_2) & \gamma^* \sin \theta \\ -\sin \phi_2 & \gamma^* \cos \phi_2 & 1 \end{bmatrix}
\]

We substitute this into (10), and use it to transform the angular velocity of element 2 expressed in (8b) into the cylindrical coordinate system. The result is

\[
\lambda_2 = [-\gamma^* \sin(\theta + \phi_2) + \hat{\psi}_2 \gamma^* \cos(\theta + \phi_2) - \gamma^* \omega_2 \cos \theta] \hat{e}_r + [1 - \gamma^* \cos(\theta + \phi_2) - \psi_2 \gamma^* \sin(\theta + \phi_2) + \gamma^* \omega_2 \sin \theta] \hat{e}_\theta + \omega_2 \hat{e}_z
\]

To obtain the velocity components to be substituted into (7), we recall that the definition of the fluid film system requires that the \(\hat{3} \) coordinate of every point on element 1 be zero. Thus, the position vector of any point on element 1 in the \(r_03 \) system is simply \(r_1 = \hat{r}_e \), and the velocity of the point which results from the element rotation is obtained from the cross-product \(\mathbf{v}_1 = \lambda_1 \times \hat{r}_e \). Evaluating the cross-product and adding the axial translation velocity, \(\hat{z}_1 \), yields

\[
\mathbf{v}_1 = \lambda_1 \hat{r}_e + [\gamma^* \hat{r}_e \cos(\theta + \phi_1) + \hat{\psi}_1 \gamma^* \sin(\theta + \phi_1)] \hat{e}_r + \hat{z}_1 \hat{e}_z
\]

and the velocity components which we substitute into equation (7) are

\[
\begin{align*}
V_{1r} &= 0 \quad (14a) \\
V_{1\theta} &= \gamma_1 \omega_1 \quad (14b) \\
V_{1z} &= \gamma_1 \gamma^* \cos(\theta + \phi_1) + \psi_1 \gamma^* \sin(\theta + \phi_1) + \hat{z}_1 \quad (14c)
\end{align*}
\]

On element 2 the value of the \(\gamma \) coordinate at each location is equal to the film thickness at that location, and the position vector becomes \(r_2 = r_2 + \hat{h} \hat{z}_2 \), where \(h \) is defined in (6). The velocity is computed as the sum of the cross product, \(\mathbf{v}_2 = \lambda_2 \times \hat{r}_e \), and the axial velocity, \(\hat{z}_2 \), so that

\[
\mathbf{v}_2 = \gamma_2 \hat{r}_e + [\gamma^* \hat{r}_e \cos(\theta + \phi_2) + \hat{\psi}_2 \gamma^* \sin(\theta + \phi_2)] \hat{e}_r - \gamma^* \omega_2 \sin \theta + \hat{z}_2 \hat{e}_z
\]

where products of \(h \) and \(\gamma^* \) have been neglected because they are second order. The velocity components which we substitute into equation (7) are

\[
\begin{align*}
V_{2r} &= 0 \quad (15a) \\
V_{2\theta} &= \gamma_2 \omega_2 \quad (15b) \\
V_{2z} &= \gamma_2 \gamma^* \cos(\theta + \phi_2) + \hat{\psi}_2 \gamma^* \sin(\theta + \phi_2) - \gamma^* \omega_2 \sin \theta + \hat{z}_2 \quad (15c)
\end{align*}
\]

Because the value of the radial coordinate, \(r \), changes very little across the width of the sealing dam, we can replace it with its mean value, \(r_m \), in equations (14) and (15). (This is an outcome of the narrow seal approximation.) Substituting the resulting velocities into (7), noting that \(\partial \phi/\partial \theta = -\gamma^* \sin \theta \) and assuming that the sealed fluid is isoviscous, the final form of the Reynolds equation becomes

\[
\frac{\partial}{\partial r} \left(h^3 \frac{\partial p}{\partial r} \right) = 12 \mu \rho \left[\gamma^*_2 \cos(\theta + \phi_1) - \gamma^*_1 \cos(\theta + \phi_1) \right]
\]

\[
+ 12 \mu \rho \left[\hat{\psi}_2 \gamma^* \sin(\theta + \phi_2) - \hat{\psi}_1 \gamma^* \sin(\theta + \phi_1) \right] - 6 \mu \rho \gamma^*_2 \omega_2 \sin \theta + 12 \mu \left(\hat{z}_2 - \hat{z}_1 \right) = (R. H. S.)
\]

For brevity we shall use the notation "(R. H. S.)" to denote the right-hand side of (16) when integrating to determine the hydrodynamic pressure solution.

The Hydrostatic Solution

Because (16) is a linear differential equation, its homogeneous and nonhomogeneous solutions can be obtained separately and superposed. The hydrostatic solution describes the pressure resulting from the flow across the sealing dam induced by the pressure difference between the inner and outer radii. It is obtained by solving the homogeneous form of the Reynolds equation

\[
\frac{\partial}{\partial r} \left(h^3 \frac{\partial p}{\partial r} \right) = 0
\]

using the nonhomogeneous boundary conditions

\[
\begin{align*}
p &= p_0 \quad \text{at } r = r_0 \\
p &= p_i \quad \text{at } r = r_i
\end{align*}
\]

When expressed in the fluid film coordinate system, the solution of Etsion and Sharoni (1980), originally obtained for the FMS configuration, is applicable to (17). The normalized form of their solution for the hydrostatic pressure is

\[
P = \frac{P_i}{P_i - (P_i - P_o) \left(\frac{H_o}{H^2} - \frac{H_o}{H^2} \right)^2 - 1}
\]

Because this pressure profile is symmetric about axis 2 (since \(H \) is symmetric about axis 2), it will generate only an axial load.
effects ambiguous. squeeze effects, but we shall not attempt to demarcate the two because the complexity of motion in the FMRR configuration fluid pressure which results only from the relative motion of Thus, the particular solution will represent that portion of the homogeneous boundary conditions solution, we solve the nonhomogeneous equation using the /C.

\[7, \text{ is contained completely within the dimensionless tilt} \]

where, following the normalization procedure of Green and Etsion (1983)

\[E = \frac{(1-R_i)R _m}{2 + \delta(1-R_i)} \] (19)

The first term of (18) represents the force which would result if the seal elements were perfectly aligned and unstoned. The second term is the deviational component which results from coning. The relative tilt between the two elements, \(\gamma \), does not appear in the hydrostatic expression because the result of the integration contains \(\gamma \) only to second order and higher.

The definition of the hydrostatic moment about the 1 axis acting upon element 2 is

\[M_{21s} = 2R^3_m \int_0^{\pi} \int_{R_i} P_s \cos \theta \, dR \, d\theta \] (20)

where the first digit of the subscript denotes the element to which the moment is applied and the second denotes the axis (in the fluid film system) about which the moment acts. The positive sign for (20) is obtained by noting that a positive pressure at \(\theta = 0 \) results in a positive moment applied to element 2 about axis 1. Again utilizing the evaluation of Etsion and Sharoni (1980), the moment is

\[M_{21s} = \pi (p_o - p_s) E^2 (1 - \delta R_i) \epsilon \] (21)

In this expression the dependence upon the relative tilt angle, \(\gamma_i \), is contained completely within the dimensionless tilt parameter, \(\epsilon \), where \(\epsilon = \gamma r_o / C \).

The Hydrodynamic Solution

The hydrodynamic pressure is obtained by solving equation (16). However, since the effect of the pressure difference across the sealing dam is contained within the hydrostatic solution, we solve the nonhomogeneous equation using the homogeneous boundary conditions

\[p = 0 \text{ at } r = r_o \]
\[p = 0 \text{ at } r = r_i \] (22)

Thus, the particular solution will represent that portion of the fluid pressure which results only from the relative motion of the two seal elements. It will include both hydrodynamic and squeeze effects, but we shall not attempt to demarcate the two because the complexity of motion in the FMRR configuration makes the definition of separate hydrodynamic and squeeze effects ambiguous.

Integrating (16) once and dividing by \(h^3 \), we obtain

\[\frac{\partial p}{\partial r} = -p (R. H. S.) \frac{r - r'}{h^3} \]

where \(r' \) is a constant of integration equal to the radial location of the extremum of hydrodynamic pressure. Integrating a second time, we obtain

\[p = (R. H. S.) \int_0^{r - r'} \frac{r - r'}{h^3} \, dr \] (23)

If the hydrodynamic solution is nontrivial, (R. H. S.) will be nonzero. Therefore, if the boundary conditions (22) are applied to (23), the value of the integral at \(r = r_o \) and \(r = r_i \) must be zero. These two conditions can be used to evaluate \(r' \) and the constant resulting from the second integration with the result

\[\int_0^{r - r'} \frac{r - r'}{h^3} \, dr = -\frac{(r_o - r)(r - r_i)}{2h^2 h_m} \]

We substitute this into (23) to obtain the hydrodynamic pressure, then normalize the result by dividing the equation by the seal parameter, \(S \), and substituting the identity

\[C = C_0 (1 + Z) \]
\[C = C_0 (1 + Z_2 - Z_1) \]

into the normalization for \(H \). The resulting normalized hydrodynamic pressure is

\[P_d = -\frac{A}{(1 + Z)^3} \left(\frac{R - R_i}{1 - R_i} \right) \left[R_m (\gamma_2 \cos(\theta + \phi_2) - \gamma_1 \cos(\theta + \phi_1)) + R_m (\gamma_2 \psi_{d2} \sin(\theta + \phi_2) - \gamma_1 \psi_{d1} \sin(\theta + \phi_1)) \right] - \frac{R_m}{2} \left(1 + \frac{\omega_1}{\omega_2} \right) \gamma \sin \theta + Z_2 - Z_1 \] (24)

where

\[A = \frac{1 - R}{H_m H^2 (1 - R_i)} \]

The hydrodynamic pressure alone will normally be negative at some point on the seal circumference. However, this work assumes that the total pressure, which is the sum of the hydrodynamic and hydrostatic pressure solutions, will be greater than zero around the entire circumference, so that there is a full fluid film in the sealing dam. If a negative total pressure occurs, the fluid film will cavitate, and the pressure solutions used to obtain the hydrodynamic moments will be invalid.

The definitions of the hydrodynamic forces and moments acting upon element 2 are

\[F_{2d} = R_m \int_0^{2\pi} \int_{R_i} P_d \cos \theta \, dR \, d\theta \] (25)

\[M_{21d} = R^3_m \int_0^{2\pi} \int_{R_i} P_d \cos \theta \, dR \, d\theta \] (26)

\[M_{22d} = R^3_m \int_0^{2\pi} \int_{R_i} P_d \sin \theta \, dR \, d\theta \] (27)

When (24) is substituted into each of these definitions, the \(R \) dependence in each integrand is contained within the term

\[A(R - R_i) = \frac{1 - R}{H_m H^2 (1 - R_i)} \]

Green and Etsion (1983) denote the integral of this expression with respect to \(R \) as \(T(\theta) \), i.e.,

\[T(\theta) = \int_{R_i}^{1} \frac{(1 - R)(R - R_i)}{H_m H^2} \, dR \] (28)

The integral is evaluated in their appendix, and the result is

\[T(\theta) = 2 \left[\ln H_0 - \ln H_1 \right] \left(\frac{1 - R_i}{(\delta + \epsilon \cos \theta)^3} \right) \]

When (28) is substituted into (25) through (27), the integration over \(R \) in each expression becomes
In order to simplify the integration with respect to \(\theta \), we employ the approximation of Green and Etsion (1983) and define \(\varepsilon = \varepsilon/\beta \), assuming that \((\varepsilon/\beta)^3 \ll 1 \), so that \(T(\theta) \) can be rewritten as

\[
T(\theta) = \frac{2\alpha'(1)}{\beta^3} + \frac{2 \cos \theta}{\beta^3} \left[\alpha(1) - \alpha(R_1) - 3\alpha'(1) \right]
- \frac{2(1-R_1)}{\beta^2 [1+\delta(R_m-R_1)]} + 2(1-R_1) \frac{\cos \theta}{\beta^2} \left[\frac{\alpha(R_m) + 2\varepsilon}{1+\delta(R_m-R_1)} \right] \]

where

\[
\alpha(R) = \frac{\varepsilon R}{1+\delta(R-R_1)}
\]

and

\[
\alpha'(R) = \ln[1+\delta(R-R_1)]
\]

This substitution eliminates all dependence upon \(\theta \) from the arguments of the logarithms and removes all trigonometric functions from the denominator of the integrand.

The integration over \(\theta \) is performed in the Appendix, and

\[
M_{22d} = 2\pi R_2^3 G \left[\frac{\gamma_2 \sin \phi_2 - \gamma_1 \sin \phi_1}{1} \right]
- \left[\gamma_2 (\psi_{yf} - \phi_2) \cos \phi_2 - \gamma_1 (\psi_{yf} - \phi_1) \cos \phi_1 \right]
+ \frac{1}{2} \left[1 + \frac{\omega_1}{\omega_2} \right] \gamma \]

Then substituting (34b) and (3) we obtain

\[
M_{22d} = -2\pi R_2^3 G \left[\psi_{yf} - \frac{1}{2} \left(1 + \frac{\omega_1}{\omega_2} \right) \gamma \right]
\]

Stiffness and Damping Coefficients

A rotordynamic coefficient represents the change in the magnitude of a generalized force which results when a single degree of freedom is perturbed while all others are held at their equilibrium positions. Stiffness coefficients, \(k \), correspond to perturbations of position while damping coefficients, \(d \), correspond to perturbations of velocity.

A rotordynamic coefficient represents a relationship between the degree of freedom in which the perturbation occurs and the degree of freedom in which the generalized force acts. To uniquely describe which two degrees of freedom are related by a particular coefficient, this work will adopt a notation in which each rotordynamic coefficient contains two subscripts. The first subscript will denote the degree of freedom in which the perturbation occurs, and the second will denote the degree of freedom in which the generalized force acts. It is most convenient to express the rotordynamic coefficients with respect to the fluid film coordinate system; therefore, both degrees of freedom denoted in each subscript will be referred to this system. Rotations and moments about axes 1 and 2 will be denoted by the numerals 1 and 2 while the numeral 3 will denote axial translations and forces.

The definitions of the stiffness and damping coefficients are of the form

\[
k_{ij} = -\frac{\partial F_j}{\partial X_i} \Bigg|_{eq} \quad d_{ij} = -\frac{\partial F_j}{\partial X_i} \Bigg|_{eq}
\]

where \(F_j \) represents a generalized force acting in degree of freedom \(j \), \(X_i \) represents a perturbation occurring in degree of freedom \(i \), and \(\frac{\partial F_j}{\partial X_i} \) represents a perturbation of the velocity in degree of freedom \(i \). The equilibrium configuration is defined to be that in which both seal elements are perpendicular to the seal centerline; in which the centerline clearance, \(C \), takes on its initial value, \(C_0 \); and in which the velocities in each degree of freedom are zero. Thus, in the equilibrium configuration all of the position variables \((Z_1, \gamma_1, \gamma_2, \phi_1) \) and their time derivatives are zero, and these zero values are substituted into the evaluations of the partial derivatives to determine the expressions for the stiffness and damping coefficients. The generalized forces can then be obtained from the coefficients using the relation

\[
F_j = F_j \left|_{eq} \right. = -\sum_{i=1}^{3} k_{ij} X_i - \sum_{i=1}^{3} d_{ij} X_i \quad (35)
\]

For most seal designs, the inner and outer radii of the sealing dam are selected in such a way that the equilibrium forces and moments which act upon the seal sum to zero, a process known as balancing, so that \(F_j \mid_{eq} = 0 \).

Since each generalized force which results from fluid film effects acts upon both element 1 and element 2, we define our coefficients \(k_{ij} \) and \(d_{ij} \) as derivatives of the generalized forces which act upon element 2. Then, since the generalized forces which act upon element 1 are the negatives of those which act upon element 2, the fluid film coefficients which will be used...
to derive the equations of motion for element 1 will simply be
the negatives of the \(k_{ij} \) and \(d_{ij} \) values determined for element 2.

The Axial Modes

From (18) and (30) it is clear that the degrees of freedom corresponding to axial translations are uncoupled from those which represent rotations of the seal elements. Each of the axial forces is affected only by perturbations in the axial positions and velocities of the two elements so that \(k_{33} \) and \(k_{3j} \) are identically zero, as are the analogous damping coefficients. The nonzero rotordynamic coefficients in the axial mode are defined as follows:

\[
k_{33} = - \frac{\partial F_z}{\partial Z} \bigg|_{eq} \quad (36a)
\]
\[
d_{33} = - \frac{\partial F_z}{\partial Z} \bigg|_{eq} \quad (36b)
\]

To obtain \(k_{33} \) from (36a), we perform the derivative, then require that all velocities and displacements be zero. Since \(Z = 0 \), the hydrodynamic component of the axial force will not contribute to \(k_{33} \). The first term of the hydrostatic load of equation (18) is a constant and vanishes when differentiated, so that the expression for the axial stiffness reduces to

\[
k_{33} = - \pi (P_o - P_i)(1 - R_j) \frac{\delta}{\delta Z} (\delta E) \quad (37)
\]

We substitute equation (19) and the relation

\[
\delta = - \frac{\beta}{1 + Z}
\]
to evaluate the derivative in (37), then substitute \(Z = 0 \) into the result to obtain

\[
k_{33} = \pi (P_o - P_i) \frac{E_0}{R_m} - 2\beta \quad (38)
\]

where \(E_0 \) is the value of \(E \) when all displacements and velocities are zero:

\[
E_0 = \frac{(1 - R_j) R_m}{2 + \beta (1 - R_j)}
\]

The damping coefficient in the axial mode is obtained from the hydrodynamic component of the axial force; thus,

\[
d_{33} = - \frac{\partial}{\partial Z} [- 4\pi R_m G Z L]
\]

Since \(G \) is independent of the velocity, the result is simply

\[
d_{33} = 4\pi R_m G_0
\]

where \(G_0 \) is the value of \(G \) at equilibrium:

\[
G_0 = \frac{\ln[1 + \beta (1 - R_j)] - \frac{2\beta (1 - R_j)}{\beta (1 - R_j)^2}}{\beta (1 - R_j)^2}
\]

The Angular Modes

As mentioned previously, the rotordynamic coefficients are derived in terms of perturbations which are referenced to the fluid film coordinate system. Since, by definition, no relative rotation about the 2 axis of this system ever occurs, the stiffness coefficients \(k_{22} \) and \(k_{3j} \) are identically zero, as are the associated damping coefficients.

Although the fluid film moments contain dependencies upon the axial translation, \(Z \), taking the derivatives of these moments with respect to \(Z \) always yields an expression which contains either \(\gamma \) or \(\dot{\gamma} \) as a factor. Since both \(\gamma \) and \(\dot{\gamma} \) are zero at equilibrium, all those coefficients which relate moments to perturbations of the axial translation will be zero. Thus, for the linearized model the axial and angular modes are completely decoupled, and the coefficients \(k_{12} \) and \(k_{3j} \) are zero along with the associated damping terms.

The nonzero stiffness coefficients in the angular mode are defined as follows:

\[
k_{11} = - \frac{\partial M_{21}}{\partial \gamma} \bigg|_{eq} \quad (39a)
\]
\[
k_{12} = - \frac{\partial M_{22}}{\partial \gamma} \bigg|_{eq} \quad (39b)
\]

Since neither the hydrostatic nor the hydrodynamic moment about axis 2 depends upon \(\gamma \), the damping coefficient \(d_{12} \) is zero. Thus, the only nonzero damping coefficient in the angular mode is

\[
d_{11} = - \frac{\partial M_{31}}{\partial \dot{\gamma}} \bigg|_{eq} \quad (40)
\]

Since \(M_{31} \) is independent of \(\gamma \), only the derivative of \(M_{31} \) need be evaluated to obtain \(k_{11} \). Because no hydrostatic moment occurs about axis 2, only the derivative of \(M_{32} \) need be evaluated to obtain \(k_{12} \). The stiffness coefficients which result are

\[
k_{11} = \pi (P_o - P_i)(\beta R_j - 1)E_0 \quad (39a)
\]
\[
k_{12} = 2\pi R_m^3 G_0 \left[\psi_2 + \frac{1}{2} \left(1 + \frac{\omega_1}{\omega_2} \right) \right] \quad (39b)
\]

Since the hydrostatic moment is independent of \(\gamma \), we obtain the damping coefficient by substituting the expression for \(M_{31d} \) into (38) and evaluating the derivative; thus,

\[
d_{11} = 2\pi R_m^3 G_0 \quad (40)
\]

We would like to express the variable \(\psi_2 \) in equation (39b) in terms of angles referenced to the element principal systems. Since the substitution will be different for elements 1 and 2, we shall recall our convention that \(k_{12} \) refers to a stiffness coefficient associated with element 2, and we shall define \(\dot{k}_{12} = - k_{12} \) to be the corresponding stiffness coefficient for element 1. For element 2 we substitute

\[
\psi_2 = \psi_{20} + \phi_2 \quad \text{and} \quad \psi_{20} = \psi_2 + 1
\]

into (39b) to obtain

\[
k_{12} = 2\pi R_m^3 G_0 \left[\psi + \phi_2 + \frac{1}{2} \left(1 + \frac{\omega_1}{\omega_2} \right) \right] \quad (40)
\]

To eliminate \(\psi \) from \(k_{12} \), we substitute

\[
\psi = \psi_{10} + \phi_1 \quad \text{and} \quad \psi_{10} = \psi_{10} + \phi_1
\]

to obtain

\[
k_{12} = 2\pi R_m^3 G_0 \left[\psi_{10} + \phi_1 + \frac{1}{2} \left(1 - \frac{\omega_1}{\omega_2} \right) \right] \quad (41)
\]

Discussion

As mentioned previously, the rotordynamic coefficients obtained in this analysis are based upon a more rigorous derivation of the Reynolds equation than previous analyses of the FMS and FMR configurations. However, the rotordynamic coefficients obtained for the FMRR case can be applied with equal validity to the FMS and FMR configurations if appropriate kinematic conditions are applied. Since both time and the angular velocities have been normalized using \(\omega_2 \), if a system in which only one shaft rotates is to be analyzed, it must be defined in such a way that the rotating shaft is attached to element 2 (i.e., so that \(\omega_2 \neq 0 \). Thus, in either the FMS, FMR, or FMSR configurations, the stator will always be represented by element 1.

In general the FMR seal will have six equations of motion obtained by equating the applied moments of equation (35) to the dynamic moments of the seal elements. The two equations

802 / Vol. 113, OCTOBER 1991 Transactions of the ASME
for the axial modes will be uncoupled from the four for the angular modes because the axial and angular rotordynamic coefficients are not coupled. These six equations can be reduced to three for the FMR and FMS configurations because three degrees of freedom are eliminated for the rigidly-mounted element. The remaining three equations, when the appropriate kinematic conditions are substituted, will reduce to those presented by Green (1990) for the FMR case and Green and Etsion (1985) for the FMS case. For the FMSR case, all six equations of motion will be used, but \(\omega_1 = 0 \) will be substituted into the expressions for the rotordynamic coefficients. For the general FMR case, counterrotating shafts will be represented by shaft velocities \(\omega_1 \) and \(\omega_2 \) having different signs.

Comparing the rotordynamic coefficients obtained for element 2 of the FMR case to those obtained by Green (1987) for the FMR case, we note that the expressions for all of the coefficients are identical with the exception of \(k_{12} \). This is expected since most of the fluid film effects depend only upon the coning angle or the relative tilt between the two elements, and the absolute motion of the seal is involved only indirectly through the definition of the relative system. The cross-coupled coefficient, \(k_{12} \), however, depends directly upon the absolute precessions of the two elements, and is therefore different for the FMR and FMR systems. For the FMR system Green (1987) obtained

\[
k_{12} = 2 \pi R_1^2 g_0 \left(\phi_1 + \frac{1}{2} \right)
\]

(42)

where he defines \(\phi_1 \), as the angle by which his fluid system leads the rotor shaft. (This should not be confused with the usage of the variable \(\phi \) in this work.) Expressed in the variables of this work it is equivalent to \(\phi_2 + \phi_1 \). Substituting \(\omega_1 = 0 \) into equation (40), the expression for \(k_{12} \) reduces to

\[
k_{12} = 2 \pi R_1^2 g_0 \left(\psi_2 + \phi_2 + \frac{1}{2} \right)
\]

which is equivalent to (42). Thus, the FMRR results degenerate to those obtained by Green when the FMR case is considered.

For the FMS configuration, the rotordynamic coefficients associated with element 1 are of interest. The values of \(k_{11} \), \(k_{13} \), \(d_{11} \), and \(d_{13} \) are the same as those obtained by Green and Etsion (1983) except for a negative sign which results because their definitions of \(Z \) and \(\gamma \) are the negatives of those used in this work. For \(k_{12} \) they obtained

\[
k_{12} = -2 \pi R_1^2 g_0 \left(\psi - \frac{1}{2} \right)
\]

where they defined \(\psi \) as the precession rate of the fluid film system with respect to the inertial system. Using the definitions of this work, this precession rate is \(\psi = \psi_1 + \psi_2 \) since we have assumed \(\omega_1 = 0 \). If we substitute \(\omega_1 = 0 \) into (41), we obtain

\[
k_{12} = -2 \pi R_1^2 g_0 \left(\psi_1 + \phi_1 - \frac{1}{2} \right)
\]

and we see that the results of the degenerate FMR solution are the same as those of the previously derived FMS solution.

Conclusions

This work provides the rotordynamic coefficients of a mechanical face seal in which both of the elements are flexibly mounted and both are attached to rotating shafts (the FMRR configuration). These coefficients can be used to formulate the equations of motion for the system and, ultimately, to obtain the dynamic response.

To obtain the rotordynamic coefficients, the form of the Reynolds equation appropriate to an FMRR seal was derived, and the forces and moments resulting from the fluid film pressure were obtained for uncavitating seals using the narrow seal approximation. The stiffness and damping coefficients for the flexibly mounted rotor and flexibly mounted stator cases were shown to be obtainable as degenerate cases of the FMRR results.

Acknowledgment

The authors gratefully acknowledge the support given to this work by the National Science Foundation under grant number MSM-8619190.

References

APPENDIX

Evaluation of the Integrals With Respect to \(\theta \) in the Expressions for Fluid Film Forces and Moments

The axial force, \(F_{2a} \), is defined in equation (25). If the result of the integration with respect to \(R \), contained in (29), is substituted into (25), we obtain

\[
F_{2a} = -\frac{R_n}{(1 + Z)^{2}(1 - R_s)^{2}} \left\{ \begin{array}{c}
\gamma_2 \int_{0}^{2\pi} T(\theta) \cos(\theta + \phi_2) d\theta \\
\gamma_1 \int_{0}^{2\pi} T(\theta) \sin(\theta + \phi_2) d\theta
\end{array} \right\}
\]

\[
-\frac{R_n}{(1 + Z)^{2}(1 - R_s)^{2}} \left\{ \begin{array}{c}
\gamma_2 \int_{0}^{2\pi} T(\theta) \cos(\theta + \phi_2) d\theta \\
\gamma_1 \int_{0}^{2\pi} T(\theta) \sin(\theta + \phi_2) d\theta
\end{array} \right\}
\]

\[
-\gamma_1 \int_{0}^{2\pi} T(\theta) \sin(\theta + \phi_2) d\theta
\]

\[
-\gamma_1 \int_{0}^{2\pi} T(\theta) \sin(\theta + \phi_2) d\theta
\]

\[
-\gamma_1 \int_{0}^{2\pi} T(\theta) \sin(\theta + \phi_2) d\theta
\]

\[
-\gamma_1 \int_{0}^{2\pi} T(\theta) \sin(\theta + \phi_2) d\theta
\]

\[
-\gamma_1 \int_{0}^{2\pi} T(\theta) \sin(\theta + \phi_2) d\theta
\]

\[
-\gamma_1 \int_{0}^{2\pi} T(\theta) \sin(\theta + \phi_2) d\theta
\]
where the expression has been separated into four terms to facilitate the process of integration.

The trigonometric functions in the third term integrate to zero over the interval between \(\theta = 0 \) and \(\theta = 2\pi \). The integrations of the first and second terms result in expressions which are an order higher in the perturbation variables than the result of the integration of the fourth term. Thus, the first and second terms can be neglected in the final result, and substituting for \(T(\theta) \) in the fourth term and performing the integration yields the axial force upon element 2:

\[
F_{2d} = -\frac{(\dot{Z}_2 - \dot{Z}_1)R_m}{(1 + Z)^3(1 - R_i)^2} \int_0^{2\pi} \frac{2\alpha^2(1)}{\delta^3} d\theta
\]

The result of integrating the fourth term is an order higher in the perturbation variables, so that adding (48) and (47) yields the moment about axis 1:

\[
M_{2d} = -2\pi R_m^3 G \{ \gamma_2 \cos \phi_2 - \gamma_1 \cos \phi_1 \}
\]

Finally, substituting (29) into the definition of \(M_{2d} \) contained in (27) yields

\[
M_{2d} = -\frac{R_m^3}{(1 + Z)^3(1 - R_i)^2} \int_0^{2\pi} T(\theta) \left[R_m \gamma_2 \cos(\theta + \phi_2)
\right.
\]

Substituting the trigonometric identities (46) and eliminating the terms which integrate to zero over the interval, we obtain

\[
M_{2d} = 2\pi R_m G \left\{ \gamma_2 \sin \phi_2 - \gamma_1 \sin \phi_1 \right\} + \gamma_2 \sin \phi_2 \gamma_1 \sin \phi_1
\]

(32a)