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The step jump method is used to characterize the stiffness and
damping of flat-faced gas lubricated squeeze film dampers.
Analytic solution of a linearized form of the isothermal and com-
pressible Reynolds equation yields closed form expressions for the
step and frequency responses of the gas film. Results from the step
jump method obtained both analytically and numerically are
shown to be good approximations of the gas film stiffness and
damping. A Prony series is proven to be an effective constitutive
model capable of representing the stiffness and damping of the gas
film in both the time and frequency domains in analytic form.
Using the analytic constitutive model, closed form solutions for
the motion of squeeze film dampers are now possible.
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INTRODUCTION

The gas film has a significant effect on the motion of squeeze
film dampers. It stores and dissipates energy, and these properties
are time transient and frequency dependent. Ideally, the designer
would like to know the stiffness and damping provided by the gas
film at an early stage in the design process. This would allow opti-
mization of the operating characteristics for the specific applica-
tion, whether it is maximizing stiffness and damping or predicting
stability of the overall mechanism. Therefore, it is important to
quantify the contribution from the gas film. Also, the method of
determining these characteristics should be time efficient and
accurate.

NOMENCLATURE

A = surface area of Annuli A and B

A.8.c, D4, = constant coefficients

b_. bk, k,= Kelvin functions

d.d, = support damping constants in axial and angular modes,
respectively

E. = constant coefficient

SF _,‘ = net gas film force in z direction on Annulus A

oF = nondimensional net gas film force in z direction on Annulus
A, 8F, (P o1,

8F (jo) = Fourier transform of 8F,

G (jw) = gas film frequency response

G(jo) = nondimensional gas film frequency response,
G (jo)*h, /(Per, )

G'(jo) = real part of G(jo), storage modulus

G"(jo) = imaginary part of G(jo), loss modulus

'y = gas film thickness

h{: = clearance between centers of Annulus A and Annulus B at
equilibrium

h = nondimensional gas film thickness, h,,fh[:

AR = displacement amplitude

Ah. = nondimensional displacement amplitude, Ah.fho.

oh = perturbation film thickness

o = nondimensional perturbation film thickness, 5h‘.’h;

SH(jo) = Fourier transform of 8h

r = transverse moment of inertia of Annulus A about any
diameter

I = nondimensional moment of inertia of Annulus A,

I'Poh /(144 pPor ™)
J = imaginary unit, -
J = Bessel function of the first kind of order n

kﬁ ) = axial force step response
kmy = moment step response
kfz = nondimensional axial force step response,
K')hy (Pery ™) e

km}, = nondimensional moment step response, k (t)=h,, /(P *r_ 4)
K(s) = Laplace transform of k(t)
K(jo) = Fourier transform of k(t)

kfe=) = long time asymptotic value of k(t)
L = pseudo spring moduli
k’i ke, = support spring moduli
m = mass of Annulus A
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m = nondimensional mass of Annulus A, m.«l:'a-h{:5 /
2
(144 poer, )
oM, = net gas film moment about x axis on Annulus A
M, = nondimensional net gas film moment about x axis on

Annulus A, M, /)Per,”)
= pressure
= nondimensional pressure, p.fPa
= ambient pressure
perturbation pressure
= nondimensional perturbation pressure, Sp.fPa
constant coefficient

'8"8’;“ = 'El'
I n

S
I

radial coordinate

= nondimensional radial coordinate, r,frn.
inner radius

outer radius

= radius location for support spring and damper
= radius ratio, ri‘fro-

= Laplace variable

= time

= nondimensional time, ot

= Bessel function of the second kind of order n
= axial coordinate

z = nondimensional axial coordinate, z*fho'

=
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Z(s) = Laplace transform of z(t)

Az = step jump magnitude in axial direction

Az = nondimensional step jump magnitude, Az‘fho'

Z(s) = Laplace transform of z(t)

2'(0) = initial position of Annulus A

#(0) = initial velocity of Annulus A

#(0) = initial nondimensional velocity of Annulus A, '(0)
« (12+per, )/(P,+h, ")

o, = decay parameter

Y = tilt coordinate

¥ = nondimensional tilt coordinate, '{t-ro‘;"h;

Iis) = Laplace transform of y(t)

af = step jump in tilt coordinate

Ay = nondimensional magnitude of step jump in tilt coordinate,

A Y"fa, fh;
A = root of characteristic equation, decay parameter
H = gas viscosity

a = squeeze number, 12-p-r°,2-(|#(Pa-h;2)

T = modified nondimensional time parameter, t/c
] = excitation frequency

The gas film dynamic properties are found by solving the
isothermal and compressible form of the Reynolds equation. This
process is non-trivial since the Reynolds equation is nonlinear in
pressure. For practical applications, no analytic solution is avail-
able for the flill nonlinear form of the Reynolds equation.
Recently, however, Miller and Green (1998) have introduced an
analytic technique for incorporating the gas film properties into
the dynamic analysis of gas lubricated triboelements. This tech-
nique is called the gas film correspondence principle, and it will
be used here to analyze the dynamics of squeeze film dampers.

The gas film correspondence principle requires that the gas
film be modeled by a constitutive model. This constitutive model
represents analytically the stiffliess and damping of the gas film
for all time and frequencies. The important consequence of this
technique is that the constitutive model must only be calculated
once foy a given set of gas film parameters. Once it is available,

it completely characterizes the dynamic properties of the gas
film. Then, using the gas film correspondence principle, the con-
stitutive model is integrated into the equations of motion, and the
analysis continues analytically, yielding closed form expressions
for motion, transfer functions, and stability.

Choosing a thermodynamically valid analytic function to rep-
resent the constitutive model is important. Elrod et al. (1967) use
a series of Laguerre Polynomials to model the gas film properties
in a journal bearing, but Miller and Green (1997) prove that the
model can violate the Second Law of Thermodynamics. Later,
Miller and Green (1998) show that a Prony series is a flexible,
thermodynamically valid gas film model useful for a wide range
of applications. For this reason, a Prony series is used for the con-
stitutive model in this work.

The gas film correspondence principle relies on the premise
that the gas film forces and moments are linear with respect to the
displacements. If this linearity assumption is valid, then the gas
film properties can be represented by the step response (Elrod et
al., 1967) or by the frequency response (Ono, 1975, and Blech,
1985).

The step response characterizes the gas film properties in the
time domain. For the annular squeeze film damper, the step
response can be calculated analytically by solution of the linear
form of the Reynolds equation. For applications where the step
response cannot be found analytically, a direct numerical tech-
nique introduced by Elrod et al. (1967) can be used. The frequen-
cy response characterizes the gas film properties in the frequency
domain. Blech (1985) gives an analytic solution for the frequency
response for annular squeeze film dampers. For applications
where analytic solutions for the frequency response are not possi-
ble, the perturbation technique suggested by Ono (1975) can be
used. The numerical technique introduced by Miller and Green
(1998) for rectangular slider bearings can also be adapted to
squeeze film dampers. Furthermore, any of the step responses cal-
culated by the techniques discussed earlier can be transformed
into the frequency domain to give the frequency response and vice
versa. Once the step response or frequency response is calculated,
the coefficients for the constitutive model are carefully chosen by
a curve fit procedure.

For most practical tribological applications, the linearity
assumption implied by the gas film correspondence principle and
the step jump method is valid if motion is relatively small about
the equilibrium state. Previous attempts to validate this assump-
tion have relied solely on numerical solutions for the frequency
response and step response (Miller and Green, 1997 and 1998). In
this work, however, a squeeze film damper is considered for
which analytic solutions for the frequency response and the step
response are obtained. Just for comparison, the frequency
response and step response are calculated numerically as well, and
constitutive models for the gas film are derived from the four solu-
tions. Then, closed form expressions for the motion are found with
these four models using the gas film correspondence principle;
these expressions are then compared to results from a direct
numerical simulation. In all four cases, the results from the corre-
spondence principle compare well with the direct numerical sim-
ulation.
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Fig. 1—Schematic of annular squeeze film damper.

TABLE 1—SQUEEZE FILM DAMPER PARAMETERS

Ambient Pressure, P, - 0.1 MPa

Viscosity (air), p ] 1.8 (10)” Ns/m

Outer Radius, r,° 0.04 m

Clearance, h, - B ) 2.0 pm

Axial support stiffness, k,, 5.0 (10) N/m

Axial support darnping‘ d, | 300 Ns/m

Angular support stiffne.s.s. kST | 4.0 (llfl)‘1 Nmj/rad
_ Angular support damping, d_ - 024 Nm s/rad

Initial vertical velocity, Z (0) 0.002 m/s

Initial angular velocity, ¥ (0) 0.05 rad/s

ANALYSIS

A schematic of a squeeze film damper is shown in Fig. 1. The
springs and dampers indicated in the figure yield a total axial stiff-
ness and damping for the support of ks: and ds;, respectively.
These also give angular stiffness and damping about any tilt axis
according to the following relationship (Green and Etsion, 1985),

* 1 - -
k.\’}" =5k.‘: .," !
d, =Ed::'f;1
[1]

Here, the springs and dampers are assumed to be located at
r' =1, and to have uniform circumferential properties. Values for
the geometry and other parameters are given in Table 1. A very
thin film of air (relative to the physical geometry) separates the
two rigid faces. Pressure is generated in this gap as a squeeze
effect when the film thickness oscillates with respect to time.
Annulus A is allowed to translate in the z direction and to tilt about
a diameter. This tilt axis is essentially arbitrary since the gas film
properties and support properties are the same for tilt about any
axis.

The equation governing the pressure in the gas region is the
isothermal and compressible form of the Reynolds equation. The
nondimensional form of this equation is shown below in a polar
coordinate reference frame (see the nomenclature for the nondi-
mensional parameters).

9 sa_PJ li( ,,sa_p]_ Aph)
ar(rpk Br +r86 P BB I af [21

The parameter, o, is the squeeze number, and it is defined in
the nomenclature. On the boundaries at r=R, and r=1, the pressure
is ambient.

For the case of axial motion only (i.e., no tilt), the analysis pre-
sented here is valid regardless of whether Annulus B is fixed or
rotating. Therefore, the results for axial motion are applicable to a
flat-faced mechanical seal with no pressure difference across the
seal.

To derive the linear form of Reynolds equation, consider the
state when the motion is small and very close to the equilibrium
height, such that h=1+8h. Likewise, the corresponding pressure
generated, dp, is also assumed to be small in comparison to the
ambient pressure, so that the total pressure is p =1 + &p. With these
assumptions, the Reynolds equation can be linearized by small
perturbation theory, yielding,

9 @] 19°%p _ [@ ai”)
ar[’ o ) e T T 3

Now, with the resulting equation in linear form, it is possible
to find an exact solution for the step response as well as the fre-
quency response.

STEP RESPONSE

For the geometry in Fig. 1, positive translation of Annulus A in
the z direction results in an increase in the film thickness, Sh. The
step response is defined as the change in force or moment from
their equilibrium values produced in response to a step jump in
magnitude divided by the amplitude of the step jump. For the gen-
eral case when the axial and angular modes are coupled, there will
be four step responses: the force and moment responses to an axial
displacement and the corresponding force and moment responses
to a tilt displacement. However, for this application, the axial
force response resulting from the tilt motion is negligible, and the
moment response resulting from the axial motion is identically
zero. Consequently, only the two direct responses are calculated.

The step jump occurs instantaneously at t=0 and is assumed to
be an isothermal process, which is an assumption already postu-
lated by the Reynolds equation. Mathematically, the step jump in
axial displacement is 8h = Az u(t), where u(t) is a unit step func-
tion and Az is the amplitude of the step jump. The step jump in tilt
displacement is 8h = Ay rcos(8)u(t). Once the initial step jump in
displacement or tilt has occurred, the height does not change for t
> 0, and Eq. [3] reduces to
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Fig. 2—(a) Analytical solution for force response to a step jump in axial
displacement.
(b) Analytical solution for moment response to a step jump in
tile about x axis.

al=

{%(,?J : %Ig _m% (4]
subject to the following boundary conditions:

p (R, 1)=0

op (I, =0

Etsion (1980) further simplifies Eq. [4] for radius ratios, R,
that are close to unity using the narrow seal approximation. While
this simplification may be justified for mechanical seals, this
option may not be available for squeeze film dampers. Therefore,
this simplification is not used here, and the following analysis is
valid for any radius ratio.

Equation [4] is well known in the field of heat conduction.
Following a method given by Powers (1987), the general solution
for this type of equation for t > 0 is in the form below.

&p(r.1) = R[r)cos(G)"e-Er (5]

In Eq. [5] and following, n=0 corresponds to axial motion, and
n=1 corresponds to tilt motion. The decay parameter, A, is the i"
root of the characteristic equation below.

JAR)Y, (M) -T (MY, (AR)=0 [6]

I, is the Bessel function of the first kind of order n, and Y is
the Bessel function of the second kind of order n.

The initial condition for the pressure comes from the physical
process of the step jump itself. Since the Reynolds equation, Eq.
[2], already assumes the gas to be isothermal, it is natural to
assume that the step jump is also an isothermal process. Therefore,
the equation of state for an ideal gas reduces to

p-(h-4) _ constant @r=0
mass [7]

where A is the exposed annular area and (heA) is the total volume
of air between the annuli. The area, A, is constant, and the mass is
also assumed to remain constant through the instantaneous step
process, so the following initial conditions are imposed on the
pressure inside the annular region, excluding the boundaries.

op =-Az @ t=0" axial motion

8p = -rAycos(0) @ t=0" tilt motion [8]

The complete solution for Eq. [4] that satisfies the boundary
conditions is an infinite series of Bessel functions,

A
A

&p(r,t)= ZEM J(Ar)- gl) (lr):lwb[ Yee©

The E; coefficients are determined by the initial conditions
and are given in the appendix.

Integrating the pressure over the annulus area gives the corre-
sponding force and moment.

2x

= I‘i‘@?(r,r] rdrdf

iz

M, ()= | jb‘p(nf) r* cos(6) dr d6
0 R l 10]

The full expressions for 8F, and M are given here.

1 ( | -4
¥(4,)- R|: (1R]-WY{AR]][~«

¥i(4)- R'[J (AR }—% (AR ]}}Jaﬂi’

OF (1) =-2n6s Y, %{ :

«'{l}
Y(4) (1

The step responses are then calculated using the following
relationships.

aM, (r}-—mfz "{f (A)-3725

=0 z’r}i%[ 5(a)- 248y ) R[le—%’” (ul”

%{&)
,Q-”(f}=—-.6-';£f! xil‘i_'[J (A) ;::E;]}:;[Aw] R[J (AR)- %r[i )]!.-s

[12]
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Fig. 3—Analytic and numerical solution for axial and tilt step respons-
es (R;=0.8).
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Fig. 4—(a) Frequency response for axial motion (R;=0.8).
(b) Frequency response for tilit motion (R =0.8).

For the parameters given in Table 1, the exact solutions for the
step responses are shown in Figs. 2(a) and 2(b). The series in Eq.
[12] was truncated to 15 terms because the remaining terms were
two orders of magnitude or more smaller than the first term in the
series. Along with the analytic solutions, the numerical solutions
of the full nonlinear Reynolds equation are given in Fig. 3 for
R;=0.8. A detailed discussion of the method of calculating the step
response numerically is given in Miller and Green (1997).
Obviously, the analytic and numerical solutions are in very good

agreement. This result is expected because the step jumps are very
small and the perturbation assumptions are valid.

From the very nature of its definition in Eq. [12], it is clear that
the step response represents the stiffness of the gas film. Motion
of annulus A away from equilibrium leads to a pressure differen-
tial that acts as a restoring force. For this case, as seen in Figs. 2
and 3, the restoring force or moment decreases monotonically in
time like the relaxation modulus of a viscoelastic material.

FREQUENCY RESPONSE

Just as the step response shows the gas film relaxation charac-
teristics, the frequency response shows the dynamic properties of
the gas film as a function of frequency. Specifically, the real part
of the frequency response, G’(jo), corresponds to the storage
modulus, and the imaginary part, G”(jo), corresponds to the loss
modulus, such that G(jo)=G’(jo) + j G”(jo). The storage modulus
correlates directly to the gas film stiffness, while the loss modulus
is the damping multiplied by the frequency. The gas film frequen-
cy response is calculated here by four different methods. Results
from these four methods are presented in Figs. 4(a) and 4(b).
These curves show the typical nature of the gas film storage and
loss moduli. The values at low frequencies represent a “rubbery”
modulus. The curves go through a transition region and then level
off to the values at high frequencies, which correspond to a
“glassy” modulus.

Method 1
Analytic Solution for Frequency Response

The analytic solution for the gas film frequency response for
annular compressible squeeze films is given by Blech (1985). The
solution is restated here in Egs. [13] and [14]. Recall again that
n=0 corresponds to axial motion, and n=1 corresponds to tilt
motion. See Abramowitz and Stegun (1972) for definitions of the
Kelvin functions, ber,, bei , ker,, and kei . The coefficients, A ,
B_, C,.and D, are given in the appendix.

G!(jo)= 42‘63" [A[peraa +bei, oG - R (ber, NGR, + be,, JoR)]
=B, [ber, NG ~ bei,, /G — R (ber, TR, ~bei,,, JoR )|
+C,[Ker,,, V& + kei, & — R;*(ker, , TR + kei, VTR, )]
-D_[ka’”, Jo —kei,, o - R'f'"{kern,, JOR —kei,,JOR }] 1+ 1R
3n+1 [ 1 3]

Glljo)=
+B, ber, .G + bei, G — R (ber, /TR, + bei, o R )]
+C,|ker,,, o —kei, /o - R (ker,,, JOR, ki, JOR )|
+D,[Ker, . NG + kei,, VG ~ R (kex, , VOR, + kei,, O R)] }

5o A [per VG - bei, G R (ber, R, be, SR

[14]

The analytic solution shown in Fig. 4 compares well with the
other three methods, except for a small, consistent offset in the
storage modulus. An explanation for this offset is discussed later.
One discrepancy between this method and the other three meth-
ods, however, does appear in the loss modulus. The slope in the
analytic solution for the loss modulus is more gradual at very high
frequencies compared to the other three methods. Because the dif-
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ference occurs at such high frequency and the magnitude of the
loss modulus at these frequencies is relatively low, this discrepan-
cy is negligible.

Method 2
Numerical Solution for Frequency Response

The gas film frequency response can also be found by a direct
numerical method. In this approach, Annulus A is given sinusoidal
oscillations of the form

Oh = Ah sin(1) . [15]
for the axial motion and
Sh = rAy cos(0) sin(f) [16]

for the tilt motion. The translational and tilt amplitudes, respec-
tively, are chosen to be Ah=0.05 and Ay=0.01, which are within
the range of small perturbation. Equations [15] and [16] are then
substituted into Eq. [2], and the solution is computed numerically
using the finite difference method and a Runge-Kutta time inte-
gration technique. At each time step, the displacement of Annulus
A is stored, and the total force and moment on Annulus A is also
computed and stored. The time solution is computed for at least
four cycles to ensure that any transient dynamic motion has dissi-
pated. Next, the spectra of the displacement, force, and moment,
8H(jo), 8F,(jo) and M, (jo) respectively, are calculated digitally
by a fast Fourier transform (FFT). Then, the gas film frequency
responses are found at each frequency using the relations below.

o543
M, (jo)
mT(J )— (J‘O’) [17]

As seen in Fig. 4, the results from this method are in excellent
agreement with the results from the other methods. This method,
however, is computationally intensive and time consuming.

Method 3

Fourier Transform of the Analytic Step Response
According to the step jump method (Elrod et al., 1967), the gas

film properties can also be characterized in the time domain by the

step response. The frequency response can be computed directly

from the step response using the following cosine and sine trans-
formations (Miller and Green, 1998).

G'(jo)= Tlé[r)cos(r} dt
G”(jo)= jk(f sin(z) dt
(18]

Substituting the analytic solution for the step response, Eq.
[12], into Eq. [18] yields,

r(4) ()"

G,,(ja)=x$l%{.r,(ﬁ.,. ‘:,((1}}'().) R[J’ (AR)- %r,{a,n,}ﬂ 9

o [19]

GﬁuaJ=2u§%{x.(m-fﬂ@m}—n[ ()~ 28y )]} o

Although they are in closed form, the equations in Eq. [19] are
not equivalent to the analytic solutions for the frequency response
given in Egs. [13] and [14], even if the series were allowed to
approach infinity. The difference results from the physical impos-
sibility imposed by the assumption in the step response at t=0,
which requires the pressure everywhere inside the annular region
to instantaneously jump to a quantity proportional to the step jump
amplitude, except at the boundaries. This assumption thus results
in a pressure discontinuity at the boundary, which is physically
impossible. This assumption at low times near t=0 manifests
through the Fourier transform as an offset in the frequency
response approximation at large frequency.

This offset is evident in the plot of the gas film storage modu-
lus for axial motion in Fig. 4(a). The asymptotic value for the axial
motion stiffness given by the analytic solution is approximately
1.12. For the approximation by Fourier transformation of the ana-
lytic step response, the asymptotic stiffness value is approximate-
ly 1.00, representing an 11 percent offset. This offset is not evident
in the axial motion loss modulus, however, because the high fre-
quency damping approaches zero. Notice also that the offset is
negligible for the tilt motion storage modulus. In this case, the
symmetry condition about the x axis negates any discrepancy in
the pressure field at the boundary that occurs in the time immedi-
ately following the step jump. Overall, the other properties of the
frequency response, such as the shape of the curves and the tran-
sition region between the rubbery and glassy moduli, are predict-
ed well.

Method 4
Fourier Transform of the Numerical Step Response

As stated earlier, k(t) can also be computed by numerical solu-
tion of Eq. [2] (Miller and Green, 1997). In such a case, an
approximation for the frequency response can be found by numer-
ical evaluation of the integrals in Eq. [18]. Results from this
method are in very good agreement with the results from the pre-
vious methods (see Figs. 4(a) and 4(b)).

Numerical Solution Considerations

The efficiency of numerical algorithms is of growing concern
lately. Naturally, the fastest running code possible is preferred, so
long as solution accuracy is not sacrificed. The numerical solu-
tions for the step responses were calculated with a finite difference
algorithm using 13 nodes to span the radius and 60 nodes around
the circumference, totaling 780 nodes. With this number of nodes,
it took approximately one minute and six seconds to calculate
each step response on an IBM RISC 6000, Model R50 computer.
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TABLE 2—PRONY SERIES COEFFICIENTS FOR THE CONSTITUTIVE MODELS (K(e2)=0)

5 r .
Method | Analytic Frequency | Numerical Step

Numerical Analytic Step
Response Frequency Response Response Response
___|m Q | % | Q@ | o Q [ & [ Q | 9
Axial | 1 09444 | 25507 | 0.89096 | 24824 | 0.8511 | 25345 | 0.9130 | 246.82
2 0.1601 | 5842.87 | 0.1437 | 264093 | 0.1422 | 4986.10 | 0.1216 | 2599.20
Tilt | 1 03850 | 257.30 | 03628 | 250.86 | 0.3827 | 255.38 | 03711 | 248.23
2 00676 | 578286 | 0.0601 | 2576.59 | 0.0658 | 4948.08| 0.0520 | 253225

Generating the frequency response numerically required much
more computing effort, for the above procedure must be repeated
for each frequency point. Therefore, the computing time is direct-
ly proportional to the number of data points needed to adequately
portray the character of the curve. Data points for twenty different
frequencies are shown in Figs. 4(a) and 4(b). Generating this data
required 18 hours and 45 minutes of computing time on the same
computer, which is roughly three orders of magnitude longer than
needed for the step response. Obviously, it is important to take
advantage of the most efficient technique to decrease the amount
of computing time. The step jump method gives this advantage by
offering a considerable computational savings with little sacrifice
in accuracy.

APPLICATION OF THE GAS FILM CORRESPONDENCE
PRINCIPLE

After the step response or frequency response is found, the
next step is to store this information in analytic form by approxi-
mating the curves (either in the time or frequency domains) with
an analytic function. This process creates a constitutive model for
the gas film. The constitutive model represents a kernel of solu-
tion of the Reynolds equation. Once this kernel is found, the equa-
tions of motion can be solved analytically and closed form solu-
tions can be rendered, when possible, i.e., when the inverse
Laplace transform can be found analytically. The gas film consti-
tutive model is incorporated into the equations of motion using the
gas film correspondence principle (Miller and Green, 1998).

Both Szumski (1993) and Miller and Green (1998) have had
success using a Prony series (a series of decaying exponential
functions) for the constitutive model. This result should be expect-
ed because the analytic solution for the step response from the lin-
earized form of the Reynolds equation is a series of decaying
exponential functions in Eq. [12]. Since the gas film correspon-
dence principle formulates the solution for the equations of
motion in the Laplace domain, the Prony series form for the con-
stitutive model is useful because it has both time and Laplace
domain representations. The Prony series approximation of the
step response is given below.

ot

kD)= k() + Y 0
[20]

where o are the decay parameters and Q, are constant coeffi-
cients. The Laplace transform of Eq. [20] is given below.

§
s+a

SK(s5) = k(o) + i 0,
o " [21]

where K(s) is the Laplace transform of k(t). Replacing s with jo
gives the frequency response.

G(jo)= joK(jo)=k(=)+ iQ.. — io
n=1 JU +0o
" [22]

The value for k(e<) is the asymptotic value of the step response,
which is identically zero for this application. Table 2 gives the val-
ues for the four gas film constitutive models, which were derived
from the analytic and numerical solutions for both the frequency
response and step response. Although the analytic solution for the
step response is already in an acceptable form, a curve fit was still
performed to greatly reduce the number of terms from 15 down to
two. These values for Q,, and o, were determined using a multi-
variable function minimizing process with a Nelder-Mead simplex
algorithm using MATLAB software from The MathWorks, Inc.
These constitutive models become an exact fit of the curves if the
number of terms in the approximation, N, is allowed to approach
infinity. However, a very large number of terms is impractical for
computing purposes. The number of terms can be chosen either by
a trial and error method or by applying a criterion to measure the
quality of fit. In this work, a one term Prony series gives suffi-
ciently accurate fits. This number was chosen by a trial and error
procedure.

The first step in using the gas film correspondence principle is
to formulate the equations of motion in the time domain. The
equations of motion are given below for the geometry in Fig. 1,

mi=8F, —k,z—d_?
Iy=M,—k,y-d,y

x

[23]

where 8F, is the net force in the z direction from the gas film, and
8M, is the net moment from the gas film about the x axis. At first,
the net gas film force and moment are modeled as pseudo linear
springs with spring moduli, k, and k.
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Fig. 5—AXxial response of Annulus A to an initial velocity of 2(10)° m/s
(R=0.8).
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Fig. 6—Tilt response of Annulus A to an initial angular velocity about
the x-axis of 5(10) rad/s (R=0.8).

mi=—k,z—k,z-d_:

Iy=- n?""‘;ﬂ"dﬂ? [24]

After transforming the equations into the Laplace domain, the
dynamic properties of the gas film are incorporated into the prob-
lem by employing the gas film correspondence principle, i.e., by
replacing the pseudo stiffnesses, k,, and km, with sK; (s) and
sKmT(s), respectively, giving

ms*Z(s) = 52(0) — (0)] = —sK ,(5)Z(5) — k,, Z(s) - d[sZ(5) - 2(0)]
I[5°T ()= 57(0) = #(0)] = =sK,,, ()T ()~ k,T(s) = d, [sT(5) = 7O)]  [25)

The characteristic equations are easily extracted,

TABLE 3—NONDIMENSIONAL NATURAL OSCILLATION FREQUENCIES OF

ANNULUS A (R;=0.8)
METHOD B AXIAL N _ Tur
Direct Numerical Simulation 11505 10815

Correspondence principle with the
constitutive model from the analytic
frequency response, Eqs. [13] and [14]
(Blech, 1985) | 11635 10939

Correspondence principle with the g
constitutive model from the analytic
step response, Eq. [12) 11283 10939

Correspondence principle with the
constitutive model from the numerical
frequency response 11493 10820

Correspondence principle with the
consitutive model from the numerical
step response 11499 10825

ms® + 5K, (s)+k, +sd, =0

Is + 5K, (s)+k,, +sd, =0 26]

The roots of these equations are the system eigenvalues. An
explicit expression for the motion of Annulus A can be written as
follows.

2(s)= 2O+ H0)] +d,2(0) (5)= 1[7(0)s +7(0)+d,,7(0)]
T oms? +5K,(s)+k, +d,.s T +5K, (s)+k, +d, s

27]

The time histories of displacement are now available by
obtaining the inverse Laplace transform of Z(s) and I'(s) either
analytically or numerically.

As an example, the plots shown in Figs. 5 and 6 show the time
response of Annulus A to an initial axial velocity of 2(1{})'3 m/s and
an initial tilt velocity of 5(10)‘2 rad/s. Note that the axial force in
response to tilt motion is negligible and the moment about the x
axis in response to axial motion is identically zero. Therefore, the
axial and tilt degrees of freedom are completely decoupled in Eq.
[23]. These figures plot the results from the gas film correspon-
dence principle using the four constitutive models and the results
predicted by a direct numerical solution of Eq. [2] coupled with
the equation of motion. Both the axial and the tilt motions appear
to be underdamped sinusoidal vibrations. The natural frequencies
of oscillation from all the methods are summarized in Table 3. The
frequencies predicted by the correspondence principle with the
constitutive models from both the numerical frequency response
and numerical step response are very close to the oscillation fre-
quency from the direct numerical simulation. The oscillation fre-
quencies predicted by the correspondence principle with the other
two methods are also within two percent of the frequency from the
direct numerical method. The quality of the prediction of damping
is not as easy to quantify as the oscillation frequency. However, a
visual comparison of the decay envelope provides some way to



B. MILLER AND I. GREEN 310

measure the quality of the damping prediction. The decay rates
predicted by the correspondence principle with all four constitu-
tive models are close to the decay rate from the direct numerical
simulation.

All these curves are in good agreement with the motion pre-
dicted by the direct numerical simulation, which suggests that
each constitutive model is a good representation of the gas film
characteristics. The accuracy achieved by the correspondence
principle is not surprising since the curve fits for the constitutive
models are close near the natural frequencies of oscillation. If the
annulus oscillated at a frequency where the constitutive model and
the actual frequency response did not match up well, then the pre-
dicted values would be less accurate. However, in special cases
when it is known in advance that the system will oscillate at fre-
quencies in a certain bandwidth, it is possible to adjust the curve
fitting algorithm to emphasize the frequency band of interest and
minimize the relative error.

CONCLUSION

The gas film is a key element in the overall dynamics of gas
lubricated triboelements. Knowing either the gas film frequency
response or step response is important because they are clear and
compact representations of the dynamic properties of the gas film.
The step jump method is proven to give a good approximation for
the frequency response for annular shaped gas film squeeze
dampers. Results from the step jump method compare well to a
direct analytic solution for the frequency response as well as a
direct numerical solution. The step jump method offers a signifi-
cant time savings compared to calculating the frequency response
directly by a numerical procedure.

Once the step response or the frequency response is computed,
it is possible to develop a constitutive model for the gas film. The
constitutive model is formed by approximating the step response
or the frequency response with an analytic function. In this case,
a Prony series is chosen as the constitutive model. The stiffness
and damping of the gas film are then incorporated into the overall
system model using the gas film correspondence principle. Closed
form solutions are found for the motion of Annulus A, and they
compare well to solutions from a conventional, direct numerical
method.
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APPENDIX

The coefficients, E , of the infinite series solution for the pres-
sure given in Eq. [9] is given below.

{J.(l,-}+ 2 (a)- [ 10k J“‘if]n(a.-k.)ﬂ

E.z-;-éz— Yu(&) Yn( -)
NG L JolA) }
frar 18 [ sam)+ran) N
L {J (/1,}+f,“&;fz{&)-ﬂ.-[h(&&)+;’,}'&—)n(m}]}
* o)) —[a[.ro(a.m+;’,;§jjmm
[29]

The coefficients A, B, C_, and D, of Egs. [13] and [14] are
given here. They are also given in the appendix of Blech (1985),
and the D, coefficient, which is printed incorrectly there, is cor-
rected here.

A =i{h¢i, O (ker? JTR,) + ker, 7 (kei, TR ber, TR, ~ bei, TR ker, VO R,
~kei, O bei, TR kei, JTRber, TR ) + R [bei, TR (Ker o + kei? /o)
+kes, (TR (kei, /T ber, /5 — bei [0 ker, /)~ kei /TR (bei, /g kei, /@ + ker, Jaber, T | }

[30]

| - - - ~ e
B= d—{brr_ o (ker? JOR, + ke VTR, )+ ker, o (ber, TR ker, JOR + kei, JoR bei, JoR)

~kei, o (kee, G Rbei, (O, - ber, G R kei, JOR ) + R ~ber, [Tk (ker? /o + kei’ o)
+hker, TR, ber, [0 ke, ' + kel [abei [T | kei, T R ker, /ohei o - ber, Jokeia) | }

[31]

c,= dl{w_ T (ber TR, + beii TR )+ ber, [T [bei, TR, ker, /TR, ~ kei, TR ber, TR |

~bei /o ber, /TR ker, /o R, + kei, SO R bei, [T, |+ R’ [:m, Ao [ber} @ + beil )
+her, \"Eﬂ’,{bfi. @ ker, O — kei, Jaber, @ | — bei TR, ber, /T ker, o + ki Jabei, T | |

[32]

D, = di{- ker, /0 (ber? TR, + beil SO R, |+ ber, o | bei, JaRkei, TR, + ket TR ber, [ak |
+bei, (7| ker, /TR bei, JOR, - ber, T Rkei TR )+ n,‘[- ker, /@R, ber? & + beil o)
+ber, G R bei,akei, T +Ker, Vaber, [T ) + bei, Ja R (ker, Tbei, T - ber, [akei V| | }

[33]
where

d, = (ber, JOR, ~ ker, JGber, TR | +(bei, Vo ker, VTR, ~ ker, JoR |
+{ber, [Gkei, \OR, ~ kei, [TRber, JTR )" +(bei,[Thei, [TR ~ ke, JThei JTR |
+z{m-, okei, TR, — kei, T ker, VR ) bei [Tber, TR, ~ ber, /cbei o R, )

[34]

See Abramowitz and Stegun (1972) for definitions of the
Kelvin functions, ber,, bei , ker,, and kei,.





