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Abstract

This work models statistically elasto-plastic contact between two rough surfaces using the results of a previous finite element analysis

of an elasto-plastic sphere in contact with a rigid flat. The individual asperity contact model used accounts for a varying geometrical

hardness effect that has recently been documented in previous works (where geometrical hardness is defined as the uniform pressure

found during fully plastic contact). The contact between real surfaces with known material and surface properties, such as the elastic

modulus, yield strength, and roughness are modeled. The asperity is modeled as an elastic-perfectly plastic material. The model produces

predictions for contact area, contact force, and surface separation. The results of this model are compared to other existing models of

asperity contact. Agreement exists in some cases and in other cases it corrects flaws, especially at large deformations. The model

developed by Chang, Etsion and Bogy is also shown to have serious flaws when compared to the others. This work also identifies

significant limitations of the statistical models (including that of Greenwood and Williamson).

r 2005 Elsevier Ltd. All rights reserved.

Keywords: Rough surface; Contact mechanics; Elasto-plastic
1. Introduction

Since in reality all engineering surfaces are rough to
some degree, the modeling of the contact between these
rough surfaces is very important. Modeling the contact
between rough surfaces leads to an improved under-
standing of the friction, wear, and thermal and electrical
conductance between surfaces. When loading presses two
rough surfaces together, only the peaks or asperities on the
surface will be in contact. Thus, the asperities or peaks of
the surfaces often carry very high loads. These high loads
will often cause yielding in the surface material and thus
purely elastic contact models of rough surfaces are not
always adequate.

One of the earliest models of elastic asperity contact is
that of Greenwood and Williamson (GW) [1]. This GW
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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model uses the solution of the contact of an elastic
hemisphere and a rigid flat plane, otherwise known as the
Hertzian solution, to stochastically model an entire
contacting surface of asperities with a postulated Guassian
height distribution. The GW model also assumes that the
asperities do not interfere with adjacent asperities and that
the bulk material below the asperities does not deform.
Supplementing the GWmodel, many elasto-plastic asperity
models have been devised. Appendix A provides a
summary of these models. Although these previous models
have proven useful, they contain clear pitfalls which may
be detrimental to their validity as described in Appendix A.
The following work attempts to provide a more accurate
model and also a clearer understanding of its and its
predecessors’ limitations.
As the load or interference increases, the stresses within

the hemisphere also increase. These stresses eventually
cause the material within the hemisphere to yield. The
interference at this initial point of yielding is known as the
critical interference, oc. The recent work by Jackson and

www.elsevier.com/locate/triboint
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Nomenclature

A area of contact
Ā individual asperity area of contact
An nominal contact area
B material dependant exponent
C critical yield stress coefficient
D contact area factor
d separation of mean asperity height
E elastic modulus
H geometrical hardness
HG geometrical hardness limit
h separation of mean surface height
K hardness factor
N total number of asperities
P contact force
P̄ individual asperity contact force
R radius of hemispherical asperity
Sy yield strength
a radius of the area of contact
ey yield strength to elastic modulus ratio, Sy/E

ys distance between the mean asperity height and
the mean surface height

z height of asperity measured from the mean of
asperity heights

Z area density of asperities
s standard deviation of surface heights
ss standard deviation of asperity heights
f distribution function of asperity heights
c plasticity index
o interference between hemisphere and surface
n Poisson’s ratio

Subscripts

E elastic regime
P fully plastic regime
c critical value at onset of plastic deformation

Superscript

* normalized by s
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Green [2] derives this critical interference analytically using
the von Mises yield criterion (VM). The resulting equation
is

oc ¼
pCSy

2E0

� �2

R, (1)

where

C ¼ 1:295 expð0:736nÞ. (2)

The Poisson’s ratio, n, to be used in Eq. (2) is that of the
material which yields first. For n ¼ 0.32, as is used in this
work, Eq. (2) results in C ¼ 1.639. By solving for the
critical interference independently of the hardness Eq. (1)
improves upon previously derived Eq. (A.16).

The critical force, P̄c, is then calculated from the critical
interference, oc, by substituting Eq. (1) into Eq. (A.11).
Overbars are used to denote the case of a single asperity
model rather than a multiple asperity or surface model.
The resulting critical contact force at initial yielding is

P̄c ¼
4

3

R

E0

� �2
C

2
pSy

� �3

. (3)

Similarly, the critical contact area is calculated from Eq.
(A.10) and given by

Āc ¼ p3
CSyR

2E0

� �2

. (4)

Note that Eqs. (1)–(4) are all independent of the
hardness, which has been recently shown to not be constant
for a given geometry by Jackson and Green [2], and
Mesarovic and Fleck [3].

2. Elasto-plastic hemispherical contact models

The current work focuses on using the recent single
sphere or asperity results of Jackson and Green [2], in a
statistical model of a rough surface. In that work the effect
of friction between the sphere and surface is neglected, but
in reality could have an effect on the predicted area of
contact. These single sphere results predict the contact
force and area between an elastic perfectly plastic hemi-
sphere and a flat, as shown in Fig. 1. In their work a finite
element analysis is performed that produced results
appreciably different than the similar Kogut and Etsion
(KE) model [4]. The current model accounts for geometry
and material effects which are not accounted for in the KE
model. Most notable of these effects is that the predicted
geometrical hardness, defined as the uniform pressure
found during fully yielded contact, is not constant and
changes with the evolving contact geometry and material
properties. At 0po=ocp1:9 the current single asperity
model effectively coincides with the Hertzian solution (Eq.
(A.10) and (A.11)). At interferences larger than this the
following equations describing elasto-plastic single asperity
contact are used:
For oX1:9oc

ĀJG ¼ pRo
o

1:9oc

� �B

, (5)
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Fig. 1. Spherical contact model before contact (a), during mostly elastic deformation (b), and during mostly plastic deformation (c).
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where

B ¼ 0:14 expð23eyÞ, (7)

ey ¼
Sy

E 0
, (8)

HG

Sy
¼ 2:84 1� exp �0:82
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(9)

Eq. (9) describes the varying geometric hardness of a
hemispherical asperity in flattening defined in [2], which
is different then the commonly defined indentation
hardness [5].

Statistically, Eq. (5) differs from FEM data by an
average of 1.3% and a maximum of 4.3%. While Eq. (6)
differs by an average error of 0.94% and a maximum of
3.5%. Quicksall et al. [6] also confirmed these results for a
wider range of materials by varying E, Sy and n.

3. Statistical model

This work uses a Gaussian distribution for the asperity
height distribution that is given as

f ¼
ð2pÞ�1=2

ss
exp �0:5

z

ss

� �2
" #

, (10)

where ss is the standard deviation of the asperity heights.
McCool [7] has related these values to the overall rough-
ness of the surface as follows:

s2 ¼ s2s þ
3:717� 10�4

Z2R2
, (11)

where s is the standard deviation of the surface heights, Z is
the areal asperity density, and R is the asperity radius.
GW [1] also define a plasticity index from these
surface properties and the critical interference, which is
given as

c ¼
ffiffiffiffiffiffi
ss
oc

r
. (12)

The plasticity index relates the critical interference and
the roughness of the surface to the plastic deformation of
the surface. A higher plasticity index indicates a surface
whose asperities are more likely to yield. Asperities are thus
more likely to deform plastically on rougher surfaces with
lower critical interference values. GW [1] suggest that for
real surfaces the plasticity index can range from c ¼ 0.1 to
100. In this work, this range will be analyzed by holding the
surface properties constant and varying the material yield
strength, which differs from previous approaches that
usually vary the surface profile properties.
4. Limitations of the statistical model

The outlined statistical model is only valid when the
individual asperity contact models are also valid. Most
asperity contact models assume that the deformations are
relatively small and limited to the asperity tip. When a/

R ¼ 0.41 the deformations are quite massive, however the
current results are not intended to be used past that point,
because Jackson and Green [2] did not consider larger
amounts of deformation. Thus, during calculation of the
current results the integrations of Eqs. (A.8) and (A.9), a/R

should remain smaller.
From Eq. (5), the radius of contact can be written as

a ¼
ffiffiffiffiffiffiffiffiffiffiffi
DoR
p

, (13)

where
For 0po=ocp1:9

D ¼ 1.

For oX1:9oc

D ¼
o

1:9oc

� �B

(14)
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Table 2

Material and surface properties implemented in analysis

E ¼ 200Gpa

n ¼ 0.32

R ¼ 2.0 mm
s ¼ 9.0 nm
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and B is found from Eq. (7). Thus, the equation for a/R

can be written as

a

R
¼

ffiffiffiffiffiffiffiffiffiffiffi
DoR
p

R
¼

ffiffiffiffiffiffiffiffi
Do
p ffiffiffiffi

R
p . (15)

The normalized interference (o*
¼ o /s) is then sub-

stituted into Eq. (15) yielding

a

R
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Do�s
p ffiffiffiffi

R
p . (16)

From this point forward, units of length will be
normalized by s and designated by a star superscript. This
analysis uses a minimal value D ¼ 1, reducing Eq. (13) to
the Hertzian result given in Eq. (A.10). Also, o*

¼ 1 is
arbitrarily used because at this value a large number of the
asperities on the rough surface are clearly in contact. These
values are conservative in that for elasto-plastic contact D

is larger than one, and o* can sometimes be larger than one
for heavily loaded contacts. Clearly, this is not a concern
for lightly loaded contacts.

A sampling of the experimental values reported by Nuri
and Halling [8] and implemented in numerical simulations
by Chang et al. [9] and Zhao et al. [10], are presented in
Table 1, along with the resulting values of s/R and a/R,
using D ¼ 1 and o*

¼ 1. The resulting values of a/R

indicate that very large deformations are being modeled.
Even for sample one, the contact radius is approximately
10% of the asperity radius (a/R ¼ 0.097). Assuming Nuri
and Hallings’ data is realistic, these results put into
question the validity of the statistical model used by Chang
et al. [9], Zhao et al.[10], and even originally by GW [1]. In
reality, the values of a/R will be larger than those
calculated in Table 1 because both D and o* can assume
values (sometimes significantly) larger than one. The values
in Table 1 also suggest that many real rough surfaces may
undergo extreme deformations during asperity contact and
that the bulk material below the asperities would likewise
deform significantly (a condition that is not considered in
any of the existing single asperity contact models).

It is clearly evident, that great care should be taken when
using the statistical model first used by GW [1], and all
subsequent models. Otherwise, the models may be calcu-
lating the contact area and contact force for deformations
outside of their intended range. These calculations could
thus produce meaningless or misleading results. The R and
s values used in the current analysis produce acceptable
values for a/R.
Table 1

Experimental surface parameters [8]

Sample s (mm) R (mm) s/R ða=RÞ a

1 0.16 16.81 0.00941 0.097

2 1.35 7.14 0.190 0.44

3 3.94 6.12 0.643 0.80

aBased on Eq. (16) and assuming D ¼ 1, and o� ¼ 1.
5. Results and discussion

This analysis uses the surface and material properties
corresponding to a very smooth surface (see Table 2). Such
smooth surfaces are often seen in MEMS and between
other polished surfaces. The plasticity index is varied over
the range shown in Table 3 by varying the yield strength to
the values also shown. This is different than most works in
that the plasticity index is often varied by changing the
standard deviation of the asperity heights, ss. Eqs. (A.8)
and (A.9) are then solved using each of the asperity contact
models outlined above for P̄ and Ā. The integrals are
numerically evaluated using 10-point Gauss–Legendre
quadrature. This procedure is evaluated by comparing
the numerical results to the analytical approximation of
Green [11] in Fig. 2.
The numerically evaluated CEB model is compared to

the analytical solution of the CEB model provided by
Green [11] in Fig. 2. For each solution, the contact area
ratio (A/An) is plotted as a function of the dimensionless
load (P/(EAn)). First, this plot verifies that the numerically
evaluated integrals produce nearly identical results as
Green’s solution for large plasticity indices (c ¼ 4.0).
Second, there is a significant amount of error between
Green’s solution and the numerical results at small
plasticity indices (c ¼ 0.5). Thus, when the Hertz elastic
solution is dominant, numerical techniques should be used
to solve the CEB model (by definition this solution is
identical to the GW model as shown in Fig. 2). Although
when Eqs. (A.14) and (A.15) are dominant, Green’s
solution provides accurate values. This makes sense
because Green solves exactly the elasto-plastic portion of
the CEB model (Eqs. (A.14) and (A.15) ) and only
approximates the elastic portion (Eqs. (A.10) and (A.11)).
Fig. 3 shows the resulting contact area ratios (A/An)

versus the dimensionless load (P/(EAn)) for different
plasticity indices. The upper range of dimensionless load
(P/(EAn)) shown in the plots represents heavily cases and
is not typically encountered in common applications.
As expected, the contact area increases with the load (see
Z ¼ 100.0� 1011m�2

Table 3

Plasticity indices and corresponding yield strengths

ca 0.5 1.0 2.0 10.0 40.0 70.0 100.0

Sy (GPa) 11.6 5.79 2.89 0.579 0.145 0.0827 0.0579

aFrom Eq. (12), o�c ¼ ss=ðc
2sÞ, and is used to relate c and Sy.
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Fig. 2. Comparison of numerically and analytically produced results for the CEB model.

Fig. 3. Contact area versus load for various values of the plasticity index.
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Fig. 1). The plot also indicates that an increase in the
plasticity index results in larger contact areas at the same
loads. When c ¼ 0.5, all the models converge to the GW
model and are dominated by the Hertz elastic solution. As
the plasticity index increases, so do the differences between
the models. At c ¼ 10 the CEB differs from all other
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models, while the KE and the current model still differ
relatively little in comparison to each other. For higher
plasticity indices the CEB model always has a larger
Fig. 4. Comparison of pr

Fig. 5. Comparison of pr
contact area than the other models. Once c ¼ 40 is
reached, slight differences appear between the KE and
the current model. At c ¼ 40 it appears that the lines
edicted contact areas.

edicted contact loads.
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predicted by the KE and the current model fall on top of
each other. However, individual data points calculated
from surface separation values (represented by the
symbols) do not fall on top each other, indicating
differences between the models. Finally, at c ¼ 100 it is
clear that at the same load the contact area predicted by the
current model is larger than the KE model. This is because
the KE model’s contact area is limited by the truncation
model at large interferences (see Appendix A).

Next, the contact area ratio for each model is plotted as
a function of the plasticity index, while h* is held constant
at a value of 1.0 (see Fig. 4). At low c, all the models follow
the GW model, before any significant plastic deformation
occurs. The CEB model clearly increases too quickly with
c. The CEB predicts this because it assumes the volume
conservation model (Eq. (A.14)), which overestimates
contact area, immediately after o becomes greater than
oc. Once again, the KE and CEB models are clearly limited
by assuming the truncation model at large plasticity
indices. However, the current and KE model follow closely
initially, but then the current model continues past both the
CEB and KE models. As reported in Jackson and Green
[2], the truncation model is invalid, and that is clearly
evident in Fig. 4.

The dimensionless load is also plotted as a function of
the plasticity index in Fig. 5. All the models again begin at
the GW model when c ¼ 0.5. However, the CEB
immediately increases past the GW model. This is
physically not possible since the GW model is elastic and
is thus the limiting case. The CEB model predicts this
because it assumes the volume conservation model (Eq.
(A.15)) at o4oc, and then also assumes that the contact
area becomes fully plastic, thus overestimating contact area
and load. Both the KE and the current model slowly
decrease from the GW model as the plasticity index is
increased. At c ¼ 10 the KE and current model differ by
only 1.7%, but at c ¼ 100 this difference increases to 23%.

Overall though, and especially at plasticity indices less
than ten, the two models agree fairly well due to an
averaging effect of the integrals in Eqs. (A.8) and (A.9).
Thus, even though the individual asperity contact results of
the KE and current model differ quite appreciably at some
interferences, the integration averages out these differences.

6. Conclusions

The KE model and the current model are found to be
practically interchangeable at plasticity indices less than ten
but have large differences at greater values. However, on a
single asperity scale, it has been proven that the current
model is a more complete model. This is especially true
when the models are used to predict large deformations.
The CEB model is also shown to be inaccurate since at
some surface separations it predicts a higher load carrying
capacity for surfaces deforming elasto-plastically than for
those deforming only elastically (GW model). The contact
area predicted by the KE and CEB models are also limited
by the truncation model, which the current work shows to
incorrectly limit the contact area and the load.
It is also shown that the statistical models originally used

by GW and subsequently used by Chang et al. [9], and
Zhao et al. [10], among others, may not be valid for certain
sets of surface parameters as indicated by Eq. (16). Great
care should thus be taken when implementing Eqs. (A.8)
and (A.9) for surfaces having large value for s/R. This also
suggests that the contact of rough surfaces will likely result
in a large number of plastically deforming asperities.

Appendix A. Summary of contact models

As mentioned in the main text, GW [1] show that rough
surfaces can be modeled as a collection of individual
asperities of various heights. These asperities are then
categorized by a few statistical parameters describing the
surface. First, the GW model assumes that all asperities
have the same radius of curvature, R. Then, the distance
between the surfaces can be described in two ways: (1) the
distance between the mean of the surface heights, h, and (2)
the distance between the mean of the summit heights or
asperity peaks, d. These values are related by

h ¼ d þ ys. (A.1)

The value of ys is derived by Front [13] and given as

ys ¼
0:045944

ZR
, (A.2)

where Z is the area density of the asperities.
When the surfaces are pressed together, some of the

asperities will interfere a distance o with the opposing
surface (see Fig. 1). Since the surfaces cannot penetrate
each other, o is also the distance each asperity compresses
perpendicular to the surfaces. The interference is defined as

o ¼ z� d, (A.3)

where the height of each asperity is defined by a distance, z,
from the mean asperity height. The heights of the asperities
are also assumed to have a statistical distribution function,
f(z). In the current work the uncompromised Gaussian
distribution is used, and the integrals are evaluated
numerically. Although some past works have used a
simplified exponential version of the Gaussian distribution
(see [1,14,15–18]).
The nominal contact area, An, is the area of the surface

upon which the asperities in contact are scattered. Thus,
the number of asperities on the contacting surface can be
found by multiplying the nominal surface area by the area
density of the asperities:

N ¼ ZAn. (A.4)

Then, the total number of asperities in contact is defined
as

Nc ¼ ZAn

Z 1
d

fðzÞdz. (A.5)
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The individual asperity contact area, Ā, and force, P̄, are
functions of each asperity’s interference, o. Thus, the
contribution of all asperities of a height z to the total
contact area and total contact force can be calculated as

A0ðzÞ ¼ ZAnĀðz� dÞfðzÞ, (A.6)

P0ðzÞ ¼ ZAnP̄ðz� dÞfðzÞ. (A.7)

Then, the total area of contact and total contact force
between the surfaces is found by simply integrating Eqs.
(A.6) and (A.7) over the entire range of asperity contact:

AðdÞ ¼ ZAn

Z 1
d

Āðz� dÞfðzÞdz, (A.8)

PðdÞ ¼ ZAn

Z 1
d

P̄ðz� dÞfðzÞdz. (A.9)

The GW model then assumes that the hemispherical
asperities deform elastically and are defined by the Hertz
elastic solution [19]. Detailed descriptions of the Hertz
elastic solution are found in many common mechanics and
tribology texts. The resulting equations for contact radius
and force from the Hertz solution are

ĀE ¼ pRo, (A.10)

P̄E ¼
4

3
E0

ffiffiffiffi
R
p
ðoÞ3=2, (A.11)

where

1

E0
¼

1� n21
E1
þ

1� n22
E2

, (A.12)

1

R
¼

1

R1
þ

1

R2
(A.13)

and E1, n1, R1, E2, n2, R2, are the elastic properties and radii
of sphere 1 and 2, respectively.

Instead of the Hertzian elastic solution, models which
account for elasto-plastic deformation of an asperity can be
used in Eqs. (A.8) and (A.9). A representation of these
elasto-plastic models is outlined below. Because eventually
any contact model accumulates statistically the contribu-
tion of all asperity contact points, the integration process
tends to diminish the deviations between the various
models (suggesting dominance by the statistics rather than
by the models).

Chang et al. [9] developed a plastic contact model (CEB)
that supplemented the GW [1] elastic contact model. First,
the CEB model approximated elasto-plastic contact by
modeling a plastically deformed portion of a hemisphere
using volume conservation. The CEB model assumptions
are discussed above, namely: (1) that the hemisphere
deformation is localized to near its tip, (2) the hemisphere
behaves elastically below the critical interference, oc, and
fully plastically above that value, and (3) the volume of the
plastically deformed hemisphere is conserved. Using these
assumptions the following approximations for contact area
and force in the elastic–plastic range (o/oc41) are
analytically derived as

ĀCEB ¼ pRoð2� oc=oÞ ¼ pRð2o� ocÞ, (A.14)

P̄CEB ¼ pRoð2� oc=oÞKH ¼ pRð2o� ocÞKH, (A.15)

where K is the hardness factor given by K ¼ 0.454+0.41n.
Also, the critical interference used in the CEB model,
formulated somewhat differently than Eq. (1), is given by

oc ¼
pKH

2E0

� �2

R, (A.16)

where the hardness is assumed to be H ¼ 2.8Sy. From an
engineering perspective the corresponding values given by
Eqs. (1) and (A.16) are very close. However, the CEB
model is limited to this fixed relationship between the
hardness and the yield strength, and the model also
contains a discontinuity at oc.
If the plastic deformation covers the entire area of

contact, it is said that a fully plastic condition is reached.
The fully plastic truncation model states that under fully
plastic conditions the area of contact of an asperity pressed
against a rigid flat can be approximately calculated by
truncating the asperity tips as the rigid flat translates an
interference, o. For a hemisphere, this approximated fully
plastic area is given by

ĀP ¼ 2pRo, (A.17)

which predicts larger contact areas than Eq. (A.10). Using
Eq. (A.17), the contact force of the hemispherical asperity
is simply the contact area multiplied by the average contact
pressure, which in this case is the hardness, since the
contact is assumed to be fully plastic. The fully plastic
contact force is thus

P̄p ¼ 2pRoH. (A.18)

Since plastic deformation of the asperity will increase the
area of contact (see Fig. 1), the truncation model produces
the proper trend to some degree. However, FEM results [2]
show that this model is unjustifiable, since the contact area
can become larger than that predicted by Eq. (A.17).
Although this model is often attributed to Abbott and
Firestone [12], they intended their model to be used to
describe a wear process rather then an indentation process.
Also, Greenwood and Tripp developed a similar model
[20]. Throughout this work the Abbott and Firestone [12]
model is referred to as the Truncation model.
KE [4] also performed an FEM analysis of the same case

of an elastic-perfectly plastic sphere in contact with a rigid
flat. Their work gives a very detailed analysis of the stress
distribution in the contact region, and empirical expres-
sions are provided for the contact area and the contact
force. These are given in a piece-wise form:
For 1po=ocp6

P̄KE ¼ P̄c1:03o=o1:425
c , (A.19)

ĀKE ¼ Āc0:93o=o1:136
c . (A.20)



ARTICLE IN PRESS
R.L. Jackson, I. Green / Tribology International 39 (2006) 906–914914
For 6po=ocp110

P̄KE ¼ P̄c1:40o=o1:263
c , (A.21)

ĀKE ¼ Āc0:94o=o1:146
c . (A.22)

These equations are discontinuous at o/oc ¼ 1 and 6,
and they describe the deformation only up to o/oc ¼ 110,
at which point the fully plastic Truncation model is
assumed [4,21]. The KE model also assumes the value of
H to be fixed at 2.8Sy. KE [21] also use the above single
asperity model in a numerical statistical model similar to
the one presented in this work. All aforementioned models
apply to static conditions.
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