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Adhesion modelling by finite elements of three-dimensional fretting 
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A B S T R A C T   

This work builds a comprehensive adhesion model by finite elements (FEA) for a deformable hemisphere subject 
to fretting. The hemisphere is constrained between two rigid and frictionless plates as it is loaded in the normal 
direction and followed by prescribe oscillatory tangential motions. The material for the deformable hemisphere 
is gold (Au). The normal direction adhesion contact is based on the classic JKR model; however, the tangential 
resistance is based on the definition of the shear strength and the surface free energy. That is manifested into 
interfacial bilinear springs where detachment or reattachment of the two contacting surfaces occur when the 
springs “break” or “snap-back” at the interface. It is shown that the breakage of the springs may be gradual or 
avalanching. The tangential resistance effect is robust, that is, it is not influenced by the choice of meshing or the 
spring settings. When the two surfaces are about to detach, the most part of the contact region deforms plasti-
cally. At small fretting amplitudes (with no springs breakage), the fretting loop behaves similarly to that of full 
stick conditions. Hence, the von-Mises stress distributions, plastic strain distributions, and fretting loops, are 
similar to those of full stick condition. However, the current adhesion model is structurally less stiff because of 
the bilinear spring. Conversely, at a large oscillation amplitude, the fretting loop exhibits large energy losses, and 
yet it does not resemble those of gross slip conditions.   

1. Introduction 

Friction is a complex phenomenon that is influenced by various ef-
fects such as contamination, elastic and plastic deformations, roughness, 
and adhesion, among others [1]. Emphasis here is placed on adhesion 
and fretting and the study is particular to the combination of these two 
effects together. The first work that relates adhesion to friction can 
possibly be traced back to Desaguliers in 18th century [2]. An adhesion 
model is developed by Bowden and Tabor, who propose the “plastic 
junction” concept, which means that adhesion can exhibit tangential 
resistance by forming a plastic junction at interface [3]. The study in the 
current work focuses on the modeling of such a tangential resistance by 
employing interfacial bilinear springs to represent the adhesion effect 
between metallic contacts, while all that is under fretting conditions. 
Adhesion is the only physical bond between the surfaces, where an 
arbitrary “coefficient of friction” is never imposed in the model. 

The study of metal-to-metal adhesion can be traced back to 1963 to 
the work by Keller [4]. When two metallic surfaces are brought to be 
close enough, the atomic level attractive force can increase significantly, 
which encapsulates the adhesion effect. Metallic adhesion can influence 
the process of friction [5], wear [6], and fatigue [7] when the contact is 

considered microscopically. 
Johnson, Kendall, and Robert add the adhesion effect to the Hertzian 

contact solution in the normal direction in their venerable JKR model 
[8]. It is based on the balance between the stored elastic energy and the 
loss of surface energy. The limitation of that model is that adhesion is 
assumed active only inside the area of contact. An alternative adhesion 
model, the DMT model, was later developed by Derjaguin, Muller, and 
Toporov [9]. The DMT model includes the adhesion effect both inside 
and outside of the area of contact. However, the JKR and DMT models 
are at odds with each other. Tabor [10], and later Maugis [11] solve this 
contradiction by showing that JKR model applies for large and 
compliant contacting bodies while DMT model applies for stiff con-
tacting bodies. They develop, respectively, the Tabor or Maugis pa-
rameters to determine whether a contact is more suitable for the JKR or 
the DMT model. Later, a numerical model based on these two classic 
adhesion models is incorporated in a finite element analysis (FEA) 
software to study the loading and unloading behavior of the adhesion in 
normal contact [12]. Du et al. include plasticity in the loading-unloading 
adhesion model [13]. However, in all of the above studies, adhesion is 
considered only in the normal direction. In other words, the models do 
not consider a tangential direction strength. 

Adhesion has been observed experimentally to be related to friction 
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[14]. According to Bowden and Tabor [3], the friction force is proposed 
to be directly proportional to the contact area and the shear strength of 
the material. In order to understand the mechanism of contact behavior 
in the microscopic level, the atomic force microscopic (AFM) was 
developed in 1986 by Binning et al. [15]. Since then, the AFM has 
regularly been used to test the relationship between the friction force 
and the contact area microscopically [16–18]. The contact areas based 
on the JKR, DMT, or the Maugis models are found to be proportional to 
the friction force obtained in the AFM experiment. However, theoretical 
and numerical works of combing sliding friction and adhesion are 
scarce. 

Theoretical and numerical works that do consider friction as an effect 
of adhesion are those by Johnson [2] and Popov et al. [19]. The theo-
retical model built by Johnson [2] is based on fracture mechanics, which 
is complicated to be implemented in numerical simulations. Only some 
preliminary elastic results are generated in that work. The model built 
by Popov et al. [19] is based on the method of dimensionality reduction. 
It studies the contact between a rigid sphere and an elastic flat surface. 
Linear elastic springs are used to generate tangential resistance effect 
caused by adhesion. They use the surface energy and shear modulus to 
define the elastic spring stiffness and maximum elongation of the 
springs. But the tangential resistance can only be generated for rota-
tional motion since the model is axisymmetric. Moreover, if the model is 
extended to three dimensions, an issue arises where the results change 
with the size of the mesh at the interface. 

The model in this work is developed to investigate the adhesion ef-
fects between a deformable hemisphere and a rigid flat surface under 
fretting conditions. The material for the deformable body is gold (that is 
commonly used in electrical contacts). The adhesion effect is considered 
to generate force and traction in the normal and tangential directions. 
The normal direction adhesion is based on the classic JKR model, while 
the tangential resistant traction is generated by applying tuned bilinear 
elastic springs (defined later) at the interface. An effective “friction” 
emerges via a hysteretic loop as generated by the adhesion effect com-
bined with an oscillatory tangential loading. The model is robust and 
insensitive to the mesh settings in the FEA. The results include the dis-
tribution of von-Mises stress, plastic strains, and the tangential traction. 
Only pure adhesion effects are applicable at the interface where no other 
contrived conditions (e.g., “sticking,” or a “coefficient of friction”) are 
ever artificially imposed. Also, the emphasis here is on building the 
model and methodology. While results are indeed presented for a spe-
cific material and an application (electric contact), because of the 
extreme simulation run times, an exhaustive parametric study is not 
undertaken (that may be left for a future study). Also, wear is currently 
excluded (but aspects of such modeling can be found in Ref. [20]). 

2. Model 

As shown in Fig. 1, the fretting arrangement in this work is for a non- 
conforming contact between a hemisphere and a rigid flat block. The 
coordinate system X-Y-Z is shown in Fig. 1, where the origin is located at 
the center contact point at the bottom of the hemisphere. The mechanical 
model is symmetric with respect to the X–Y plane. Hence, to reduce the 
computational effort, the model is simplified to a quarter sphere pressed 
against a rigid flat block. Adhesion has effects in both the normal and 
tangential directions. The Tabor parameter [10] is calculated based on 
the parameters given in Table 1, μT = [(Rγ2)/(E′2z0

3)]1/3 = 26. The Tabor 
parameter is much larger than 1, which indicates the contact condition is 
more readily suitable for JKR model rather than the DMT model. Thus, in 
the normal direction, adhesion is based on the JKR model [8]. In the 
tangential direction, the resistance traction is based on the maximum 
shear stress theory and the surface free energy. The interface between the 
hemisphere and the rigid bottom block is set to be frictionless. However, 
due to the presence of the adhesion effect in tangential direction, 
tangential traction is generated during the transverse fretting motions. 

The loading condition is force-controlled in the Y direction, and 
displacement-controlled in the X direction. In order to keep a uniform 
vertical displacement at the top surface of the hemisphere constant, a 
rigid flat plate is added there. The interface between the top rigid flat 
plate and the hemisphere is likewise frictionless. An external force, F, is 
applied at the top surface of the rigid plate. While keeping this external 
force fixed, a reciprocal horizontal displacement, δ, is applied to the top 
surface of the hemisphere to simulate the fretting motion. It is important 
to note that δ is not the displacement at the contacting interface. The 
hemisphere has stiffness/flexibility, so the displacement at the contact is 
smaller. The detailed discussion can be found in Ref. [20]. 

2.1. External force 

A reciprocal horizontal displacement, δ, is applied by discrete 
loading steps at the top of the deformable hemisphere, with a behavior 
shown in Fig. 2. It takes 40 steps to finish one cycle of the fretting mo-
tion. The amplitude of the motion is either 15 or 20 nm. The top surface 
of the hemisphere starts from the state as shown in Fig. 1, and is 
designated as position “A” in Fig. 2. Next, the hemisphere is forced to 
displace to the furthest position in the positive direction of the X-axis, 
and is recorded as position “B”. Then the hemisphere turns back to the 
original position, and that is recorded as position “C”. As it moves 
further backwards, the hemisphere reaches the furthest point in the 
negative position of X-axis, which is recorded as position “D”. Finally, 
the hemisphere turns back to the original position, which previously was 
designated as point “A.” That is the start of the next fretting cycle. So, A1 
indicates the beginning of the first cycle, while A2 indicates the begin-
ning of the second cycle, etc. A more detailed description on the fretting 

Nomenclature 

contact radius 
E elastic modulus 
E′ equivalent elastic modulus 
k spring stiffness 
l elongation of the spring 
lc elongation limitation of the spring 
N total number of springs at the interface 
Padhesion pressure distribution due to adhesion effect 
PHertzian pressure distribution due to Hertzian contact 
fc the tangential force one spring holds at its elongation 

limitation 
F external normal force (in the positive Y direction) 

Fc pulled-off force in JKR model 
Fx tangential force 
r distance to the center of the contact 
R radius of sphere 
Sy yield strength 
Ssy shear strength 
Ɛp equivalent plastic strain 
δ nominal tangential displacement 
μ coefficient of friction 
ν Poisson ratio 
σe equivalent von-Mises stress 
γ surface free energy 
ΔA contact area of one mesh element 
Δγ adhesion energy  
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model can be found in the work by Yang and Green [21]. 
According to the JKR model (see Ref. [8]), the external force, F, is 

related to the other parameters by: 

F =
4E′ a3

3R
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
8πa3ΔγE′

√
(1) 

The parameters a and R represent the contact and the hemisphere 
radii, respectively. The adhesion energy, Δγ, equals to two times of the 
surface free energy, Δγ = 2γ. The equivalent elastic modulus, E’, is 
expressed by: 

1
E′ =

1 − ν2
1

E1
+

1 − ν2
2

E2
(2)  

where E1 and E2 represent the elastic moduli of the two contacting 
bodies, and ν1 and ν2 represent their Poisson ratios. When the surface 
free energy is of no practical significance, setting Δγ = 0 in Eq. (1) re-
veals the classical Hertzian solution for a forced normal contact between 
a hemisphere and a flat. The explicit expression of the contact radius, a, 
is derived from Eq. (1) to be: 

a= [
3R
4E′ (F + 3ΔγπR +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

6ΔγπRF + (3ΔγπR)2
√

)]
1
3 (3) 

The pressure distribution at the interface is also given by Johnson 
et al. [2]: 

p(r)= pHertzian + padhesion =
2aE′

πR
(1 −

r2

a2)

1
2

−

̅̅̅̅̅̅̅̅̅̅̅̅
2ΔγE′

πa

√

(1 −
r2

a2)

− 1
2

(4a)  

where specifically, 

padhesion = −

̅̅̅̅̅̅̅̅̅̅̅̅
2ΔγE′

πa

√

(1 −
r2

a2)

− 1
2

(4b) 

The pressure, p(r), consists of a positive Hertzian pressure and a 
negative adhesion pressure. The positive Hertzian pressure is caused by 
the elastic deformation of the interface, while the negative adhesion 
pressure is caused by the adhesion effect in the normal direction. 

To include the JKR model in the current finite element model, pad-

hesion is added in the normal direction nodal-wise. As shown in Fig.3a, a 
local adhesion force is applied to each node at the bottom surface of the 
sphere. At a certain input of the external force, F, the contact radius, a, is 
calculated by Equation (3). For each mesh element, having a central 
node, i, and coordinates (xi, yi), the local radius is ri=(xi

2+ yi
2)1/2. By 

applying that local radius of the node, ri, the contact radius, a, the ma-
terial properties, and the geometrical parameters, the negative local 
adhesion pressure, Padhesion, is calculated by Eq. (4b). Thus, the local 
adhesion force in the normal direction is calculated by the product of 
local adhesion pressure and the area of the mesh element, ΔA. For each 
element, there are 9 nodes of the surface in contact; However, the nodal 
force is only applied to the top left three nodes for the current mesh 
element as indicated in Fig. 3c. Thus, the local nodal force is Fi =

Padhesion*ΔA/3. The other nodes on the element periphery participate in 
the neighboring elements, and therefore all nodes are eventually 
accounted for. 

The effect of tangential resistance can be achieved by applying 
bilinear springs in the X-direction. As shown in Fig. 3b, the bilinear 
spring behaves as a linear spring within the elongation limitation (-lc, lc), 
but exerts zero force outside of that range. Principally, the spring 
“breaks” or “snaps-back” at the limits of |lc|. Therefore, in the model, for 
each mesh element at the bottom surface of the hemisphere, an inter-
facial tangential spring is attached. Only elements that are at the con-
tacting interface shall contain bilinear springs; one spring end is linked 
to a node on the hemisphere, while the other end is linked to an inertial 
point, i.e., at bottom rigid plate. One spring represents one tangential 
resisting element. The deactivation of the tangential resistant element is 
achieved by the “breakage” of the spring (where its internal force 
“snaps” to zero). The definition of the surface free energy is the energy 
that is required to create one surface per unit area [22]. Thus, the elastic 
energy stored in the spring when the spring breaks is equal to the 
product of the adhesion energy, Δγ = 2γ (where two new surfaces are 
created), and the area of the contact element, 

1
2

kl2
c =ΔAΔγ (5) 

The parameter, k, represents the tuned spring stiffness, and the 

Fig. 1. Fretting model built in ANSYS 17.1.  

Fig. 2. Loading steps on the top surface of hemisphere for cycle of fret-
ting motion. 
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parameter, lc, indicates the corresponding limitation of the elongation at 
breakage, see Fig. 3b. The spring “breaks” when the elongation exceeds 
lc, at which instant a surface is created by the energy released from the 
spring. Additionally, the tangential stress of that local element when 
each spring breaks equals to the shear strength of the material, Ssy. The 
tangential force is then: 

klc = SsyΔA (6)  

where based on the Tresca failure criterion, Ssy = Sy/2, and Sy is the yield 
strength of the material (in the current case, it is that of gold). 

By combining equations (5) and (6), the stiffness and limitation of 
the elongation of each spring can be expressed by: 

lc =
2Δγ
Ssy

(7)  

k =
Ssy

2ΔA
2Δγ

(8) 

The material of the sphere is gold [13], properties of which are listed 
in Table 1. The pull-off force, F = -Fc, is the external force needed to part 
the adhesive contact (i.e., in the negative y-direction), and is given by 
Refs. [8]: 

Fc =
3
2

ΔγπR (9) 

The value of Fc is also provided in Table 1. A small strain hardening 
of 1% of the elastic modulus is used in the finite element simulation to 
expedite convergence, which is discussed in the following. 

3. Mesh convergence 

Fig. 4 shows the model built using the commercial software ANSYS 
17.1. A quadratic 3D solid mesh element is used. The model consists of 
125,608 mesh elements. The “no separation/penetration” condition is 
applied to the interface between the deformable hemisphere and the 
frictionless rigid top plate. That condition means the two contacting 
surfaces can freely move relative to each other along their interface, but 
they cannot penetrate each other or be parted. Likewise, frictionless 
contact conditions are applied to the interface between the deformable 
hemisphere and the rigid bottom plate. There, however, adhesion takes 
effect. A Xeon computer with 32 GB of memory using four threads of 
parallel computing is used to simulate the fretting cases with a 
maximum duration case of 97 h. 

Convergence of the model is mostly influenced by the number of 
contact elements at the interface between the deformable hemisphere 
and the rigid bottom plate. The mesh at the interface has been increased 
successively until the difference between the contact areas at two mesh 
refinements is smaller than 2%. As shown in Fig. 5, the evolution of the 
contact area increases with the number of contact elements, subject to 
an external force that equals to the magnitude of pull-off force. Beyond 
100 contact elements the changes in the contact area are slight, so it is 
determined that 400 contact elements (which is used throughout) are 
adequate. 

By applying the strategy of 400 contact elements, Fig. 6 shows the 
theoretical contact radius from Eq. (3) and the numerical contact radius 
from FEA as a function of external forces ranging from –Fc to Fc. The 
difference between the contact radii from the two different methods is 

Fig. 3. Adhesion effects applied at the bottom surface of the sphere.  

Table 1 
The model geometry, pull off force, and material properties of gold for the model 
[13].  

Parameter R [mm] E [GPa] γ [J/m2] Sy [MPa] ν Ssy [MPa] Fc [mN] 

Au 1 80 0.5 670 0.42 335 0.471  
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less than 3%. The good agreement further indicates that the results at the 
current meshing level have converged and are satisfactorily accurate. 

4. Results and discussion 

4.1. Results with only normal adhesion 

The model is first applied with only normal adhesion, using the 
classic JKR model and F = 0 (i.e., only adhesion is in effect at the con-
tact). The FEA-based JKR model is applied as shown in Fig. 3a, as 
described above. Henceforth, if not mentioned specifically otherwise, 
the additional external normal force is implied to be zero. As given by 

Equation (4), the pressure is positive when the point is close to the center 
(the local radius, r, is close to zero). The pressure is negative when the 
point is close to the edge (the local radius, r, is close to the contact 
radius, a). At the contact edge, the local radius, r, equals to the contact 
radius, a, which leads to the theoretical pressure to approach a value of 
negative infinity (as implied by Eq. (4)). Fig. 7 shows the pressure dis-
tributions at the centerline of the contact (x = 0) for both the theoretical 
JKR model, Eq. (7), and the finite element model built herein. The re-
sults are in very good agreement, except at the center point (z = 0) and 
the edge (z = a). When the point is close to the center, there is a ANSYS 
programming modeling issue where a nodal force cannot be assigned to 
a point at the symmetric front plane. This issue leads to the slight dif-
ference at or near z = 0. When the point is close to the edge, the theo-
retical pressure tends to negative infinity. Since the model is discretized 
by finite mesh elements, the actual value input to the model is also finite, 
which leads to the difference at or near z = a. In general, however, the 
pressure distribution shows very good agreement between the theoret-
ical and numerical model, which further verifies the said FEA model. 

The von-Mises stress distribution at the interface is shown in Fig. 8. 
Since the magnitude of the negative pressure at the edge is relatively 
large (theoretically it tends to infinity, see Eq. (4b)), the von-Mises stress 
is also relatively large at the contacting edges. The regions in red 
represent points whose stresses are at or slightly larger than the yield 
stress (because of the small strain hardening), which means that plas-
ticity takes place there. However, for the most part of the interface, the 
deformation is elastic. This concludes the verification of the model. 

4.2. Results with normal adhesion and tangential resistance 

First, the hemisphere is subjected to normal adhesion (as is the case 

Fig. 4. The mesh model and its refinement in ANSYS 17.1.  

Fig. 5. The evolution of contact area with different number of con-
tact elements. 

Fig. 6. The contact radii, a, from Eq. (3) theoretically and FEA at different normalized external forces, F/Fc.  
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in the JKR model). Then tugging in the tangential direction is imposed 
(the classical JKR model is not applicable when that happens). 
Tangential resistance is established by the said interfacial bilinear 
springs as discussed previously in Section 2. In this section, the external 
force is either F = 0 or F=Fc. The detachment of the contact element is 
achieved by the “breakage” of the spring, i.e., its elongation surpassed lc 
(see Eq. (7)). When that happens, the work that is done upon the spring 
(i.e. strain energy stored) equals to the surface free energy multiplied by 
the area of the mesh element. The force that the spring exerts equals to 
the shear strength multiplied by the area of the mesh element. Due to the 
oscillatory behavior of the fretting motion, the elongation of spring will 
start to decrease after the hemisphere reaches the rightmost or leftmost 
position (position B and D in Fig. 2). After breakage, when the spring 
elongation returns to the range (-lc,lc) (Fig. 3b), reattachment of the 
spring takes place. 

The nominal tangential displacement, δ, is defined as the transverse 
displacement applied to the top surface of the hemisphere in the X-di-
rection. Fig. 9 shows a typical trend of the evolution of the tangential 
force with the increase of the nominal tangential displacement, δ. For 
the pure elastic case, with the increase of δ, the spring forces at the 
interface increase linearly without breakage. Once one of the springs 
length reaches the breakage limitation, the spring breaks, which rep-
resents the detachment of the local contacting elements. That reduces 
the number of springs that support the tangential force, causing the force 

that each spring needs to hold to increase. That generates an avalanche 
of springs breakage. 

However, when plasticity is introduced into the model, as the von- 
Mises stress reaches the yield strength of the material, the model 
structure-wise becomes more flexible. The relative displacement at the 
interface is larger, which allows the springs not to reach the breakage 
limitation all at the same time. In this situation, some springs break first, 
while others break later, which makes the springs breakage more 
gradual. Since the springs do not break simultaneously, the largest 
tangential traction that the model generates is somewhat smaller than 
that of the purely elastic case. As shown in Fig. 9, although the breakage 
is gradual, the breakage in the elasto-plastic case is still avalanching only 
when it passes the largest tangential force the springs can support. As-
sume that all springs break at the same instant at the interface. Ac-
cording to Equations (7) and (8), the force that each spring generates at 
breakage limitation, fc, is: 

fc = klc = SsyΔA (10) 

The total number of springs at the interface is: 

N =
πa2

ΔA
(11) 

Fig. 7. The pressure distributions at the centerline (x = 0) vs. z for the theo-
retical JKR and the FEA models for F = 0. 

Fig. 8. Von-Mises distribution for normal direction model.  

Fig. 9. The evolution of the tangential force with respect to the nominal 
tangential displacement during unidirectional sliding. 

H. Yang and I. Green                                                                                                                                                                                                                          



Tribology International 156 (2021) 106802

7

Then, the total maximum tangential traction that the springs can 
generate is: 

Fx,max =Nfc = Ssyπa2 (12) 

The maximum tangential force, Fx,max, at zero normal external force 
based on Eq. (12) is also shown in Fig. 9. It is close to the numerical Fx, 

max in the elastic and elasto-plastic case, which further corroborates the 
model. Additionally, the theoretical Fx,max should be a physical value for 
a certain external normal force. In other words, Fx,max should not be 
influenced by the mesh size, the stiffness, or the breakage limitation of 
the springs. As implied by Eq. (12), this is indeed true for the current 
model, as it is apparent from Fig. 9. 

The tangential resistant traction also affects the distribution of the 
von-Mises stress. Fig. 10 shows the distribution of von-Mises stress at the 
interface just before the breakage of the springs at the interface. The 
regions in red represent elements where the von-Mises stress is larger 
than the yield strength of gold (670 MPa). As seen, the von-Mises stress 
is large over a significant interfacial area indicating plasticity. That is 
now examined via the equivalent plastic strain, shown in Fig. 11. 

Since the tangential resistant traction increases the von-Mises stress 
at and near the contacting edges, larger equivalent plastic strains are 
present there, too. Fig. 11 shows the distribution of the equivalent 
plastic strains at the interface after one cycle of fretting motion. The 
magnitude of the tangential displacement is 20 nm that guarantees to be 
large enough so that the hemisphere passes the position where all the 
springs break. While the classical normal direction JKR model only 
generates plasticity within a tiny part at the contacting edges, the 
combination of the normal and tangential direction adhesion model 
generates plastic strains that nearly encompass the entire interface. This 
behavior occurs also when the external normal load takes any value in 
the range between -Fc and Fc. Thus, normal adhesion and tangential 
resistance produce an interface that is predominantly in the elasto- 
plastic state. 

When the fretting cyclic tangential displacement is applied to the top 
surface of the sphere, there are two types of fretting loops. On the one 
hand, when the maximum nominal displacement is small (less than 15 
nm as shown in Fig. 9), the springs do not break, and the evolution of the 
tangential force does not produce a large energy loss. On the other hand, 
when the maximum nominal displacement is large (20 nm, also see 
Fig. 9) the springs break, and the evolution of the tangential force does 
produce a large energy loss. This is discussed next. 

Fig. 12 shows the evolution of the tangential force at an external 
normal force F=Fc for two cycles of fretting motion with a relatively 

small fretting displacement magnitude of 15 nm. Since no spring ever 
breaks, the shape of the fretting loop is similar to that in full stick con-
ditions, as described in Ref. [21]. The small energy loss is due to the 
dissipation of plastic strain energy. An effective COF based on the 
definition from Green [23] is introduced here: 

μeff =
Unet∫
Fydx

=

∫
Fxdx

∫
Fydx

(13)  

where Unet represents the net energy loss during the fretting cycles, and 
Fy represents the normal external force. Unet is calculated by numerical 
quadrature. The calculated COF is μeff = 0.23 for the case of 15 nm 
oscillation amplitude. 

At a relatively larger fretting oscillation amplitude, say of 20 nm, the 
springs do break, and the evolution of the tangential force generates 
large energy losses. Fig. 13 shows the evolution of the tangential force 
also at an external normal force of F=Fc for two cycle of fretting motions 
with the said larger fretting oscillation amplitude of 20 nm. At the very 
beginning, the hemisphere moves in the positive X direction. The 
tangential force increases with the nominal displacement applied to the 
top surface of the hemisphere. After the springs break at the interface, 
the tangential force decreases sharply to a very small value but not to 
zero due to the elastic resistance caused by the indentation, which is 
restored. As the hemisphere turns back in the negative X direction, the 
lengths of the springs drop and tangential adhesion is reinstated, causing 
the reattachment of the two surfaces. Thus, the tangential forces in-
crease somewhat with the retracted motion. As the hemisphere ap-
proaches the original center point, some of the springs change status 
from stretched to compressed, and thus the tangential forces decrease 
again. For the hysteretic loop shown in Fig. 13, the calculated COF is μeff 
= 0.70 for the case of 20 nm oscillation amplitude. 

Note that the fretting loop in Fig. 13 is not similar to that in gross slip 
conditions for models without adhesion [24]. The variation is caused by 
the spring’s detachment and reattachment mechanism used in the cur-
rent model. Herein, there is no application of a “coefficient of friction; ” 
adhesive detachment or reattachment happens only when the elonga-
tion is out of or returns to the range (-lc,lc), respectively. In other models 
that apply some arbitrary “constant” COF, the friction force that is 
generated [24], along with the fretting loops, correspond only to those 
arbitrarily postulated COFs. 

Fig. 10. The distribution of the von-Mises stress of the hemisphere at the interface (y = 0) at the breakage of the springs for the normal and tangential directions 
adhesion after one cycle of fretting motion. Motion is in the positive X direction, while Z is the transverse direction, F = 0, δ = 20 nm. 
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4.3. Comparisons between adhesion and non-adhesion models 

To understand further the mechanism of the adhesion model used in 
this work, the distribution of the von-Mises stresses, the equivalent 
plastic strains, and the evolution of the tangential resistant forces are 
compared now using three different models for an oscillation amplitude 
of 15 nm (no spring breakage, i.e., adhesion is steadfastly in effect): 

Model A. This is precisely the model described throughout this work: 
The model includes JKR adhesion in the normal direction, but with 
tangential resistance by means of bilinear springs. 

Model B. The model is with JKR adhesion in the normal direction and 
frictional contact in the tangential direction. The coefficient of friction 
(COF), however, is set sufficiently large (COF = 10) to cause and 
maintain full stick conditions at all times. 

Model C. The model is a pure Hertizan contact model in the normal 
direction and a frictional contact in the tangential direction. Again, the 
COF is set sufficiently large to cause and maintain full stick condition at 
all times. While no adhesion is applied here, the normal external force is 
increased to maintain the same contact area as those in models A and B. 

As indicated the COF in frictional contact is set to be large enough to 
maintain full stick in model B and C, but in model A, no COF is applied at 
all. In model A adhesion resistance to sliding is done by the tangential 
bilinear springs until they avalanching break. The results just right 
before that breakage (i.e., contact condition change from full stick to 
gross slip) are compared herein. The input of the nominal tangential 
displacement on the top surface of the hemisphere are maintained the 
same for all three models. Model C with the same external normal load is 
not considered, because its contact area is tiny, and the results are 
trivial. 

Fig. 14 shows the distribution of the von-Mises stress at the bottom 
interface of the hemisphere for the three models. For Model A, the 
largest von-Mises stress is located at the edges due to the infinite normal 
pressure as implied by the JKR model. For Model B, the largest von- 
Mises is also located at the edges. The stresses in Model B are larger at 
the center compared to A, because of the full stick condition, as effec-
tively model B possesses structurally a higher stiffness than the bilinear 
springs (in Model A). It is thus capable of transmitting an increased 
tangential load under the same tangential displacement input. For 
Model C, the stress distribution is typical of a full stick Hertzian contact. 
The region in red is where the von-Mises stress reaches the yield strength 
to indicate plasticity. The area of plasticity in Model C is considerably 
larger than those in models A and B. 

Although the distributions of the von-Mises stress at the bottom 
surface of the hemisphere are different in the three models, the 

Fig. 11. The distribution of the equivalent plastic strain after one cycle of fretting motion including normal and tangential directions adhesion effects.  

Fig. 12. The evolution of the tangential force at Fc external normal force for 
two cycle of fretting motion with a smaller fretting displacement magnitude of 
15 nm (1st cycle = orange, 2nd cycle = blue). (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the Web version 
of this article.) 

Fig. 13. The evolution of the tangential force at Fc external normal force for 
two cycles of fretting motion with a larger fretting displacement magnitude of 
20 nm (1st cycle = orange, 2nd cycle = blue). (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the Web version 
of this article.) 
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distributions are somewhat similar for the front surface, i.e., the XY 
plane where at z = 0 (see definitions in Fig. 1). Fig. 15 shows the dis-
tributions of the von-Mises stress under the same condition for the front 
view for the three models. The large von-Mises stresses are located at the 
region near the interface, and the von-Mises stresses spread to a larger 
area to the “left) side than that on the “right,” because the direction of 
the (reactive) tangential force is in the negative x direction (i.e., to the 
“left”) when the hemisphere is forced in the positive x direction (or, to 
the “right”). 

Fig. 16 shows the distribution of the equivalent plastic strains at the 
bottom of the sphere for three models. For Model A, the plastic defor-
mation is mainly due to the JKR model producing infinite pressure at the 
contact edges. For Model B, since the tangential load is larger (as seen in 
Fig. 15), the plastic strain is therefore larger than model A. For Model C, 
plasticity (i.e., the von-Mises stress reaching the yield strength) does not 
show up after normal contact, since there is no JKR pressure. During the 
fretting motion, plastic strain appears at the very beginning, at point A1 
(see Fig. 2) for Models A and B, while the plastic strain appears later 
between points A1 and B1 for Model C. The later appearance of plastic 
strain in Model C causes a smaller spread region than the other two. 

Fig. 17 shows the tangential force evolutions during one cycle of 
fretting loading for the three models (recall that all models have a 
smaller oscillation amplitude of 15 nm). All three tangential force evo-
lutions are typical for fretting loop of full stick conditions. However, the 
slopes of the fretting loop are different. For model A, the elastic bilinear 
springs at the interface have the least effective stiffness. The large plastic 
deformation at the contact edges of JKR model also decreases the 
tangential resistance. Thus, it has the smallest slope or inclination. For 
model C, it is in a full stick condition with no JKR pressure, which 
produces the largest effective structural stiffness. Thus, it has the largest 
slope. Model B is a transition model between models A and C, where the 
structural stiffness of model B is in between. 

In conclusion, up to the point where the bilinear spring in the 
adhesion model A do not break, that model exhibits von-Mises stresses 

distribution, plastic strain distributions (see Fig. 16), and fretting loops 
(see Fig. 17) similar to the full stick contact model C. The plastic damage 
is more concentrated in this model A due to the infinite JKR pressure. 
The contact system is less stiff in this model A due to the smaller 
tangential resistance of the interfacial bilinear springs. 

5. Conclusion 

This work builds a comprehensive adhesion model that incorporates 
adhesive tangential resisting traction between a deformable hemisphere 
and a rigid plate. The normal direction load is based on the classical JKR 
model. However, the tangential adhesive resistance is based on the 
definition of shear strength and surface free energy. The model is built 
using the FEA commercial code ANSYS, with bilinear elastic springs and 
nodal forces applied at the interface. The material for the deformable 
hemisphere is gold. Several conclusions are drawn: 

1. The robust adhesion model in the tangential direction is not influ-
enced by the mesh and the spring settings.  

2. The detachment of the adhesive bond of the two contacting surfaces 
is achieved by the breakage of the bilinear springs at the interface. 
The breakage of the springs is avalanching in both elastic and plastic 
conditions, but is somewhat more gradual with the latter. When the 
two surfaces are about to detach, the vast part of the contact region 
deforms plastically.  

3. There are two types of fretting loop depending on the magnitude of 
the oscillatory tangential displacement. At small fretting amplitudes, 
the fretting loop is similar to that of full stick conditions (as if the 
contacting model has an interfacial friction force that is exceedingly 
large). At large fretting amplitudes, the fretting loop generates large 
energy losses, while the fretting loop is dissimilar than those created 
by gross slip conditions.  

4. The adhesion model in this work exhibits similar patterns in von- 
Mises stress distribution, plastic strains distribution, and fretting 

Fig. 14. Bottom view. The distribution of the von-Mises stress at the bottom interface of the hemisphere (y = 0) having the same tangential displacement to the right 
(but just before the breakage of springs in model (A) for all three models. 

Fig. 15. Front view. The distribution of the von-Mises stress at the front surface (XY plane and z = 0) of the hemisphere having the same tangential displacement to 
the right (but just before the breakage of springs in model A) for all three models. 
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loops as the full stick contact models up to the point of breakage. The 
plastic strain is larger in JKR pressure than that in pure Hertzian 
model. The contact system is less stiff in this model due to the 
tangential resisting springs added at the interface. 
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