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An Analytical Solution for the
Initiation and Early Progression
of Fretting Wear in Spherical
Contacts
This article derives analytical solutions to calculate the wear volume at the initiation of fret-
ting motion and its early progression over the first few oscillation cycles. The Archard-
based model considers a deformable hemisphere that is contact with a deformable flat
block. The material pairs investigated are special alloys, the Inconel 617/Incoloy 800H,
and Inconel 617/Inconel 617. The analytical study begins with a unidirectional frictional
sliding contact, where the local interfacial sliding distance and the nominal sliding distance
at the initiation of gross slip are derived. The obtained analytical expressions for unidirec-
tional sliding are then used to derive the corresponding wear volume for the initiation and
early progression of gross slip and the wear volume for a general fretting cycle under
elastic conditions. These analytical derivations are all verified by the finite element analysis
(FEA). The FEA method and the analytical solutions render virtually identical results for
both similar and dissimilar material pairs. The effects of plasticity on the wear volume
under elastic–plastic conditions are also investigated. It is found that the fretting wear
volumes obtained from the FEA simulations, which include plasticity, are close to those
obtained from the analytical expressions for purely elastic regimes. All the results are pre-
sented in normalized forms, which can be easily generalized and applied to three-dimen-
sional fretting wear of other material pairs. [DOI: 10.1115/1.4051585]
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1 Introduction
This study is directly related to components used in high-

temperature gas cooled reactors (HTGRs) (800 °C) and very high-
temperature gas cooled nuclear reactors (850 °C and above)
(VHTRs). In particular, valve stems and seats, control rod drive
mechanisms, fuel handling mechanisms, and helium circulators
suffer from fretting wear that can significantly reduce the opera-
tional lifetime of these components. Alloy 800H and Inconel 617
are promising structural materials that possess excellent high-
temperature strength, while resisting corrosion and oxidation.
They are specifically envisaged for use in such reactors, and
hence, they are the target materials in the current investigation.
Frictional sliding institutes the underlying mechanism for fretting

wear. Johnson, in his book [1], provides fundamental solutions for
surface deformation of half elastic spaces subject to a Hertzian
contact pressure and a proportional traction (via a constant coeffi-
cient of friction) considering two configurations, cylindrical and
spherical contacts. The solution for the spherical contact will be
used herein to build the three-dimensional (3D) fretting wear model.
One of the very first investigations regarding fretting is that by

Tomlinson et al. [2], where the terminology “fretting corrosion”
was coined. Subsequently, Vingsbo and Söderberg [3] established
a fretting map, which sorts fretting into stick, mixed stick-slip,
and gross slip regimes. Under a certain normal load, the contact
status transitions from stick to partial slip and gross slip with the
increase of the tangential displacement. A mixed fretting regime
is identified from the fretting loop evolution by Zhou and Vincent
[4,5], showing a shape that varies during thousands of fretting
cyclic loadings.

Fretting wear is the main cause of component failure in the gross
slip regime. It is investigated by Waterhouse [6], McColl et al. [7],
Fouvry et al. [8], and Blanchard et al. [9]. Two recognized models
are used in the study of fretting wear, the Archard wear model, and
the accumulated dissipated energy model. The Archard wear model
is more conducive for numerical implementation, and its use is quite
prevalent in such studies. For example, McColl et al. [7] and Ding
et al. [10] study the fretting wear in cylindrical contacts, while Rat-
simba et al. [11] study the fretting wear in spherical contacts. These
works use the commercial finite element analysis (FEA) software,
ABAQUS, to apply the Archard wear model at the interface and
update the contact profile during the fretting motion. Conversely,
the accumulated dissipated energy model is more prevalent in
experimental works. Fridrici et al. [12] and Fouvry et al. [8] inter-
pret the wear volume during their fretting experiments through
the accumulated dissipated energy model. Paulin et al. [13] also
apply the accumulated dissipated energy model to the finite
element model to study the evolution of surface wear. However,
none of the aforementioned works produce analytical expressions
for the wear volume with respect to material properties and
loading conditions. In addition, all their loading conditions are
purely elastic, neglecting elastic–plastic conditions.
The elastic–plastic and fully plastic spherical contacts in strictly

normal loading have been studied in great details using the FEA
method [14–16]. Analytical solutions to the threshold conditions
of plasticity onset in spherical and cylindrical contacts are given
by Green [17]. The elastic–plastic fretting contact is also studied
using the finite element method in both the cylindrical [18,19]
and spherical contacts [20]. None of these analyses incorporates
wear.
In the current study, a 3D fretting wear model is developed for a

deformable hemisphere in contact with a deformable flat block. The
Archard wear model is applied at the interface. Closed-form analyt-
ical solutions are derived to calculate the wear volume for frictional
sliding in a purely elastic 3D contact at the initiation of gross slip
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and then for one general cycle. A corresponding finite element code
is employed to model the fretting wear using the commercial code
ANSYS. The results obtained from the analytical solutions are then
compared with those obtained from FEA, where their very good
agreements mutually verify both the analytical solutions and the
FEA results. In addition, the fretting contact in the elastic–plastic
regime is also studied by the finite element method, and the effect
of plasticity on the wear volume is investigated and compared to
the solutions for the purely elastic regime.
While a two-dimensional (2D) cylindrical contact fretting wear

study has been done in Ref. [21], this study offers the theoretical
and numerical studies of fretting wear for 3D hemispherical con-
tacts. All the results are presented in normalized forms. Hence,
while this study concentrates on Alloys 800H and 617, the dimen-
sionless results can easily be generalized and applied to 3D fretting
wear of different material pairs. The derived solutions for the wear
volume in the current work do not consider changes in the contact
geometry during the fretting motion. Consequently, the analytical
results may be applicable only for the initial few cycles of fretting.
Likewise, because of the heavily burdened computational efforts,
the FEA results are done for up to three cycles of fretting motion.

2 Fretting Wear Model
The fretting wear model is developed for an oscillating deform-

able hemisphere of radius R and a stationary deformable flat block,
as shown in Fig. 1(a). Because of the symmetry, the hemisphere
and the block are cut in half along the XZ vertical plane. A rigid
plate is placed on the top surface of the hemisphere to preserve
a uniform downward displacement along that plane. The interface
between the upper rigid plate and the hemisphere is set to be fric-
tionless, as indicated in Fig. 1(b). The external normal load, P, is
applied to the top surface of that rigid plate (which is allowed to
have a vertical motion only), while the reciprocal displacement,
δ, is applied at the top surface of the hemisphere along the
X-direction. The interference, ω, and the tangential force, Q, are
outputs.
For the FEA model, roller boundary conditions of no displace-

ment normal to the plane are applied to the vertically cut plane of
the quarter sphere (enforcing the symmetry with respect to the XZ
plane) and to all of the five faces of the block, except to the block
top face (the XY plane), which is free to deform in all directions.
The materials of the hemisphere and the bottom flat block are first

set to be an identical material pair, Inconel 617/Inconel 617. Then,
the materials are set to be dissimilar, Inconel 617/Incoloy 800H.
The designation of Inconel 617/Incoloy 800H means that the mate-
rial of the hemisphere is Inconel 617 and that of the block is Incoloy
800H. As indicated, these special alloys are promising materials for
the structural and in-core components of HTGRs/VHTRs. The
material properties are listed in Table 1 (the parameter C(ν) and
the product C(ν) · Sy are explained in this study).
The Archard wear model [23] is used at the contact between the

hemisphere and the flat block:

V =
KPS

H
(1)

where V, K, P, S, and H represent the wear volume, the dimension-
less wear coefficient, the normal force, the sliding distance, and the
hardness of the softer material, respectively. The hardness is
assumed to be H= 2.8Sy.2 The wear coefficient is set to 10−5

without loss of generality.3 The details of how the Archard wear

model is implemented in a 2D cylindrical contact are given in
Ref. [21]. Here, however, for a 3D model, the Archard wear
model is applied locally (i.e., at each nodal point) at the contact
region.

2.1 Theoretical Equations for Normal Contact. In the
regime of static elastic normal contact, the Hertzian theory gives
the solution to the 3D spherical contact [1]. The relations among
the normal load, P, the contact radius, a, the maximum contact pres-
sure, p0, the interference, ω, and the pressure distribution, p(r) are
given by

a =
3PR
4E′

( )1
3

(2)

p0 =
3P
2πa2

(3)

ω =
πp0
2E′

( )2
R (4)

p(r) = p0 1 −
r2

a2

( )1
2

(5)

where E′ is the equivalent elastic modulus:

1
E′ =

1 − ν21
E1

+
1 − ν22
E2

(6)

In normal elastic contacts, Green [17] defined the ratio between
the maximum pressure and the maximum von Mises stress to be
C= p0/σe-max, which is solely dependent on Poisson’s ratio. A
curve-fit expression is rendered for 3D contacts, C(ν)= 1.30075+
0.87825ν+ 0.54373ν2. At yielding by definition σe-max= Sy, such
that the product CSy gives the corresponding maximum pressure,
p0, at yielding onset. For dissimilar materials (as is one case
herein), Green [17] teaches that the effective product is determined
by CSy=min(C(ν1) Sy1, C(ν2) Sy2). Likewise, the critical contact
radius, ac, the critical load, Pc, and the critical interference, ωc,
are also derived as follows [17]:

ac =
πCSyR

2E′ (7)

Pc =
(πCSy)3R2

6E′2 (8)

ωc =
πCSy
2E′

( )2

R (9)

Note that the product CSy appears as a single-term entity in these
critical values.
By substituting the material properties in Table 1 into Eqs.

(7)–(9), the said critical parameters are calculated and are listed in
Table 2. The critical contact area is calculated based on ac, Ac=
πac

2. These critical values are subsequently used to normalize
(i.e., generalize) the results of this work.

2.2 Theoretical Equations for Tangential Contact. To
assess the effect of traction, a constant friction of coefficient
(COF)4, μ, is applied to the interface. For a tangential force, Q<
μ P, the interface experiences partial-slip conditions. As shown2Equation (1) is used as Archard intended, regarding hardness as a material prop-

erty. According to the work by Jackson and Green [15], it has been shown that hardness
actually depends not only on the yield strength but also on the deformation. For con-
sistency with the Archard original model, however, hardness is used here as if it were a
constant material property.

3Results will be nondimensionalized, but a numerical value is needed for the FEA
numerical execution.

4A constant friction coefficient is not a limitation of the finite element model used
herein. A varying COF can straightforwardly be applied in the computer code.
However, for analysis, it is convenient to control some parameters, one of which is
the COF.
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schematically in Fig. 2, within the contacting region (−a< x< a),
the conditions are stick for [−c, c] and slip between [−a, −c] U
[c, a]. The parameter, c, is called the stick half-width.
According to Johnson [1], the tangential traction within the slip

region, q′(r), and the complementary tangential traction within the
stick region, q′′(r), for an half elastic space are given by:

q′(r) = μp0 1 −
r2

a2

( )1
2

r ≤ a (10)

q′′(r) = −
c

a
μp0 1 −

r2

c2

( )1
2

r ≤ c (11)

As shown in Fig. 2, the tangential traction in the slip region
is q(r) = q′(r), and the tangential traction in the stick region is
q(r)= q′(r)+ q′′(r). With the increase of the tangential displace-
ment, δ, and with it the tangential force, Q, the stick region
decreases. When Q= μP, the stick region vanishes, c= 0, which
means that gross slip initiates. Assuming X to represent the direction
of sliding motion, the tangential displacement at the surface of
contact in that direction is �ux(x, y), which is also given by
Johnson [1]:

ux =
πμp0
32Ga

[4(2 − ν)a2 + (4 − ν)x2 + (4 − 3ν)y2]sgn(q(x, y)) (12)

where G is the shear modulus of the material, and it can be obtained
for each material by:

G =
E

2(1 + ν)
(13)

Referring to the coordinates shown in Fig. 1, when the hemi-
sphere is forced in the positive X-direction, the tangential force it
experiences should be −q′(r), as given by Eq. (10). The correspond-
ing tangential force that the block experiences is therefore+q′(r).
The substitution of Eq. (10) into Eq. (12) yields the corresponding
tangential displacements at the surface of the contact, �ux1(x), on
the hemisphere, and �ux2(x), on the block, respectively:

ux1 = −
πμp0
32G1a

[4(2 − ν1)a
2 + (4 − ν1)x

2 + (4 − 3ν1)y
2] r ≤ a

(14)

ux2 =
πμp0
32G2a

[4(2 − ν2)a
2 + (4 − ν2)x

2 + (4 − 3ν2)y
2] r ≤ a

(15)

where �ux1(0, 0) represents the sliding distance of the last stick point
relative to the hemisphere bulk body, while �ux2(0, 0) represents the
sliding distance of the last stick point relative to the bottom block
bulk body. It is now possible to obtain the local relative sliding dis-
tance between the hemisphere and the flat block at the initiation of
gross slip by

s0(x, y) = [�ux1(0, 0) − �ux1(x, y)] + [�ux2(x, y) − �ux2(0, 0)] (16)

The substitution of �ux1 and �ux2 of Eqs. (14) and (15) into Eq. (16)
results in

s0(x, y) =
πμp0
32G1a

[(4 − ν1)x
2 + (4 − 3ν1)y

2]

+
πμp0
32G2a

[(4 − ν2)x
2 + (4 − 3ν2)y

2] (17)

Fig. 1 Schematic of a quarter sphere in contact with a flat block for a force-controlled model: (a) 3D view and (b) front view

Table 1 Thematerial properties and critical values for two cases
[22]

Temperature Material

Elastic
modulus
(GPa) E

Yield
strength
(MPa) Sy

Poisson’s
ratio ν C(ν)

C · Sy
(MPa)

20 °C Inconel
617

211.0 322 0.3 1.615 520

20 °C Incoloy
800H

196.5 150 0.339 1.662 249

Table 2 The critical values (onset of plasticity) for different material schemes

Temperature Hemisphere material Block material
Critical interference

ωc (µm)
Critical load Pc

(kN)
Critical contact
radius ac (mm)

Critical contact
area Ac (mm2)

20 °C Inconel 617 Inconel 617 24.8 13.472 3.52 38.9
20 °C Inconel 617 Incoloy 800H 5.96 1.556 1.73 9.36
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For identical material pairs, using the relations, E=E1=E2 and
ν = ν1= ν2, Eq. (17) simplifies to

s0(x, y) =
πμp0
16Ga

[(4 − ν)x2 + (4 − 3ν)y2] (18)

It is again emphasized that these initial gross slip equations, in
Eqs. (17) and (18), are derived for purely elastic conditions.

The mesh convergence for the current finite element model is not
discussed herein. First, the mesh convergence detail for the pure
normal contact is given in Ref. [20], and for brevity, that conver-
gence analysis applies here just as well, and thus, it is not repeated.
Second, the results from the analytical solution and those from the
finite element method are compared in the next sections. Because of
their very good agreement (which is forthcoming), it obliges yet
another confirmation of the FEA model convergence.

Fig. 2 The distribution of tangential surface traction of the sphe-
rical contact under a tangential force, Q<μP

Fig. 3 The schematic of the sliding distance for the front view of
the model

Fig. 4 The dimensionless nominal sliding distance at the initiation of gross slip under
different normal loads with (a) μ=0.1, 0.3, and 0.5 (bottom to top curves, respectively)
for the FEA results and Eq. (22) results for Inconel 617/Inconel 617 and (b) μ=0.1 for
the FEA results and Eq. (21) results for Inconel 617/Incoloy 800H

041501-4 / Vol. 144, APRIL 2022 Transactions of the ASME



3 The Analytical Solution and Results Comparison
With the Finite Element Analysis Model
3.1 The Nominal Sliding Distance at Initiation of Gross

Slip. We distinguish between a few terms used in this study regard-
ing positioning. These include the nominal sliding distance, δ, the
interfacial sliding distance, s, the deformation on the hemisphere,
δ1, and the deformation on the flat block, δ2. The schematic of
contact is shown in Fig. 3. When a nominal sliding distance δ is
applied to the top surface of the hemisphere uniformly, the center-
line of the hemisphere deforms from O1A to O1

′A′, while the center
of the contact on the block displaces from O2 to O2

′. As shown in
the schematic of Fig. 3, the nominal sliding distance, δ, equals to
the sum of the deformation on the hemisphere, δ1, the local interfa-
cial sliding distance at the center of contact s(r= 0), and the defor-
mation on the flat block, δ2.
At the initiation of gross slip, the tangential force is Q= μP,

and the local interfacial sliding distance at the center of contact is
s(r= 0)= 0. The corresponding deformation of the two bodies can
be estimated by assuming two elastic half-spaces under a Hertzian
pressure and a tangential traction of μP imbedded in Eqs. (14) and
(15), such that

δi1 = ux1(0, 0) =
πμp0
32G1a

[4(2 − ν1)a
2] (19)

δi2 = ux2(0, 0) =
πμp0
32G2a

[4(2 − ν2)a
2] (20)

By adding δi1 and δi2 and substituting Eq. (6), the nominal sliding
distance at the initiation of gross slip is derived as follows:

δi =
3μP
8a

(2 − ν1)(1 + ν1)
E1

+
(2 − ν2)(1 + ν2)

E2

[ ]
(21)

For identical material pairs, Eq. (21) can be further simplified to
give:

δi =
3(2 − ν)(1 + ν)μP

4Ea
(22)

Figure 4(a) shows the dimensional nominal sliding distance at
the initiation of gross slip under different normal loads with
COFs of μ= 0.1, 0.3, and 0.5 for Inconel 617/Inconel 617, and
Fig. 4(b) shows the corresponding results for μ= 0.1 for Inconel
617/Incoloy 800H. The normal load ranges from 0.01Pc to 1Pc.
The results from the FEA and Eqs. (21) and (22) agree well with
less than 5% difference in the entire range. The very good agree-
ment between FEA results and theoretical predictions for both
similar and dissimilar contact pairs mutually substantiates the equa-
tions derived in Eqs. (21) and (22), and the FEA model alike.

3.2 The Wear Volume at Initiation of Gross Sliding.
Caused by the tangential displacement, δ, as the tangential force
Q increases from 0 to μP, the partial-stick, partial-slip condition
applies to the contact. The local wear volume per unit area,
v(x, y), according to the Archard wear model, is calculated locally
at the interface by

v(x, y) =
K

H
p(x, y)sx(x, y) (23)

That is governed by the dimensionless wear coefficient, K,
the contact pressure, p(x, y), the local interfacial sliding distance,
sx(x, y), and the hardness of the wearing body, H. At the onset of
gross sliding, sx(x, y)= s0(x, y), as given by Eq. (17) (or Eq. (18)
for identical material pairs). Substituting s0(x, y) and Hertzian pres-
sure, p(r), into Eq. (23), the total wear volume at the inception of
gross sliding, V0, can be integrated over the area of contact:

V0 =
∫a
0

∫2π
0

K

H
p (r, θ) s0(r, θ) rdθdr

=
∫a
0

∫2π
0

Kμ πp20

							
1 −

r2

a2

√
32 aH

[
(4 − ν1) r2 cos2 θ + (4 − 3ν1) r2 sin

2 θ

G1
+
(4 − ν2) r2 cos2 θ + (4 − 3ν2) r2 sin

2 θ

G2

]
rdθdr

=
Kπ2μ p20 a

3

60H
2 − ν1
G1

+
2 − ν2
G1

( )
(24)

For the identical material pair, the wear volume at the initiation of
gross slip is expressed as follows:

V0 =
Kπ2μp20a

3(2 − ν)
30HG

(25)

To normalize the results, a critical wear volume, Vc, is now
defined as follows:

Vc =
KcωcPc

H
(26)

Herein, the critical wear coefficient is set by definition to be
Kc = 1. Figure 5(a) shows the wear volume at the initiation of
gross slip, V0, for μ= 0.1, 0.3, and 0.5 for Inconel 617/Inconel
617, and Fig. 5(b) shows the corresponding results for μ= 0.1
for Inconel 617/Incoloy 800H. The normal load for each material
ranges from 0.01 ×Pc to 1 ×Pc. The results for the three cases
from the FEA and Eqs. (24) and (25) are all in excellent agreement
with less than 5% difference, which supports the viability of using
Eqs. (24) and (25) for different material pairs.

3.3 Prediction of Fretting Wear Volume Under Elastic
Conditions. First, a pure normal contact is applied bringing the
hemisphere into an interference contact with the block, deforming
both. Then frictional fretting cycling ensues. One complete fretting
cycle is separated into four unidirectional strokes imposed on the
hemisphere at the inteface with the rigid plate. Starting motion
from an origin (say, point A in Fig. 3), the first stroke is in the pos-
itive X-direction completing a certain predetermined amplitude, △.
It is then followed by a return stroke to the origin in the negative
X-direction. The next stroke continues in the negative X-direction
having the same amplitude. The last stroke happens in the positive
X-direction returning the rigid plate back to its origin. The details
can be found in the 2D work [21]. The oscillation amplitude of
the fretting cycle is symbolized as △. For fretting that experiences
gross slip condition (δi <△), the total wear volume for a general
cycle of fretting during partial-slip condition is then:

Vpartial = 4V0 δi < Δ (27)

The total nominal sliding distance for the gross slip condition
during a general cycle is ΔS= 4(△− δi). Hence, the corresponding
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wear volume for gross slip is expressed as follows:

Vslip =
4(Δ − δi)KP

H
δi < Δ (28)

Adding Vpartial and Vslip yields the wear volume for a general
cycle of the fretting motion:

V = 4V0 +
4(Δ − δi)KP

H
δi < Δ (29)

When δi>△, the partial-slip condition is sustained for the whole
cycle. That results in a small and mostly negligible wear volume.
For the following results for both analytical and numerical solu-
tions, the oscillation amplitude is set to △=ωc for each case.
Figure 6(a) shows the results of the wear volume for one cycle of

fretting motion under elastic condition for μ= 0.1, 0.3, and 0.5
under different normal loads for Inconel 617/Inconel 617, and
Fig. 6(b) shows the corresponding results for μ= 0.1 for Inconel
617/Incoloy 800H. The results from the FEA and those from
theory, as derived earlier, are yet again in very good agreement,
such that they mutually verify each other. Note that while the
FEA results are obtained for half domains (symmetry planes are
used to reduce computation times), the results reflect the total
wear volumes. The difference is a bit larger with larger COFs,
which is caused by the “beam” deformation effect (i.e., that of the
hemisphere). When the COF is large, the friction force is also
large, which causes the deformations of the hemisphere and the
block to act as two beams. As a result, the deformation decreases
the actual local interfacial sliding distance.

3.4 Comparison of Wear for the Material Pairs. Concern-
ing practical matters, the wear volumes on the hemisphere and
the block are now compared in Fig. 7 between the two schemes
of material pairs (see Table 2) Inconel 617/Inconel 617 and
Inconel 617/Incoloy 800H, for a general cycle of fretting motion
under the same loading parameters, which are as follows: elastic
conditions, a coefficient of friction of μ= 0.3, the same normal
loads (P ranging from 100 N to 5000 N), and the same oscillation
amplitude △= 6 μm based on Eq. (29). The wear volume on the
hemisphere for Inconel 617/Inconel 617 is slightly smaller than
that for Inconel 617/Incoloy 800H because the nominal sliding dis-
tance at the initiation of gross slip is slightly larger for Inconel 617/
Inconel 617 case. That can be understood because the larger
nominal sliding distance at the initiation of gross slip, δi, leads to
smaller nominal sliding distance of gross slip, △− δi, which then
results in the smaller wear volume. The wear volume on the
block for Inconel 617/Inconel 617 is apparently smaller than that
for Inconel 617/Incoloy 800H, because the hardness of Incoloy
800H is much smaller than that of Inconel 617. Therefore, the
wear volume for Inconel 617/Inconel 617 case is smaller than that
for Inconel 617/Incoloy 800H under the same fretting loading
parameters. The wear volume maximizes at a certain load (about
5000 N) but drops after that because a higher load leads to a
larger stick region, which lowers the wear volume. To summarize,
from a practical point of view for the material pairs considered here,
it is reasonable to choose Inconel 617/Inconel 617 as the contact
pair to minimize wear damage. Note that the assumption in Fig. 7
is that the contact is entirely elastic. That is true for Inconel 617
(see Table 2, Pc= 13,472 N). However, the contact of Incoloy

Fig. 5 The normalized wear volume at the initiation of gross slip, V0, (a) from FEA and Eq. (25)
at different normal loads with µ=0.1, 0.3, and 0.5 (bottom to top curves, respectively) for
Inconel 617/Inconel 617 and (b) from FEA and Eq. (24) at different normal loads with µ=0.1
for Inconel 617/Incoloy 800H
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Fig. 6 The normalized wear volume for a general cycle of fretting motion at elastic
condition with (a) µ=0.1, 0.3, and 0.5 (top to bottom curves, respectively) under dif-
ferent normal loads from FEA and theoretical predictions (Eq. (29)) for Inconel 617/
Inconel 617 and (b) µ=0.1 under different normal loads from FEA and theoretical
predictions (Eq. (29)) for Inconel 617/Incoloy 800H

Fig. 7 The wear volumes on the hemisphere and the block for a general cycle of fretting motion at the
elastic condition for µ=0.3 under different normal loads from Eq. (29) for Inconel 617/Incoloy 800H and
Inconel 617/Inconel 617
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800H becomes plastic (at Pc= 1556 N) based on the data in Table 2.
The wear volume for Incoloy 800H would therefore be slightly
higher than that shown in Fig. 7, where plasticity is investigated
in Sec. 4.

4 The Effect of Plasticity
The aforementioned results are obtained solely for pure elastic

conditions. To find the influence of plasticity, an elastic-perfectly
plastic material behavior condition is now numerically applied to
both hemisphere and block. The wear volumes between the pure
elastic regime and elastic–perfectly plastic regime are then con-
trasted under identical loading conditions. For the purely elastic
regime, yielding is of course moot, allowing the elastic modulus
to prevail throughout.
Figure 8 shows the wear volume of one general cycle of fretting

motion at elastic and elastic–plastic conditions for μ= 0.3 under dif-
ferent normal loads for dissimilar material pair Inconel 617/Incoloy
800H. The elastic prediction agrees well with the FEA results under
the said elastic conditions, while the results under elastic–plastic
conditions are larger than the results under the purely elastic condi-
tions. The increase of the wear volume under elastic–plastic condi-
tions is due to the junction grow effect, which increases the contact
area. However, the results between the elastic conditions and
elastic–plastic conditions are still quite close to each other.

5 Conclusion
A fretting wear model for spherical contact is built, and it is

solved analytically. The wear model chosen at the interface of
contact is that by Archard along with constant coefficients of fric-
tion. The analytical solutions for the nominal sliding distance at
the initiation of gross slip, the wear volume at the initiation of
gross slip, and the wear volume during early progression for one
general cycle of fretting motion are derived for the purely elastic
regime. The analytical solutions results are subsequently contrasted
numerically to those obtained by the finite element method. The
very good agreements for all of the results authenticate both the ana-
lytical derivations and the FEA model. In addition, the elastic–
plastic contact conditions are also analyzed, and its effects on the
wear volume during early progression is investigated. The junction
growth effect increases the wear volume in the elastic–plastic con-
ditions compared to that in purely elastic conditions. All results
herein are presented in normalized forms. The dimensionless

results along with the analytical expressions can be easily general-
ized and applied to different material pairs.
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Nomenclature
a = contact radius, m
c = stick contact radius, m
q = tangential traction, q= q′ + q′′, N/m2

s = local interfacial sliding distance, m
v = local wear volume, m3

C = Poisson’s ratio parameter
E = elastic modulus, N/m2

G = shear modulus, N/m2

H = material hardness, N/m2

K = dimensionless wear coefficient
P = normal load, N
Q = tangential force, N
R = radius of hemisphere, m
S = sliding distance in Archard wear model, m
V = wear volume, m3

ū = tangential displacement on the surface of a half elastic
space, m

ac = critical contact radius, m
p0 = maximum contact pressure, N/m2

s0 = local interfacial sliding distance at the initiation of the gross
slip, m

sx = local interfacial sliding distance in X-direction, m
E1 = elastic modulus of the hemisphere, N/m2

E2 = elastic modulus of the block, N/m2

Pc = critical normal load, N
Sy = yield strength, N/m2

V0 = wear volume at the initiation of the gross slip, m3

Vc = critical wear volume, m3

q′ = tangential traction at slip region, μp(r), N/m2

Fig. 8 The wear volume for a general cycle of fretting motion at elastic and plastic condi-
tions for µ=0.3 under different normal loads from FEA and theoretical elastic predictions
(Eq. (29)) for Inconel 617/Incoloy 800H
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q′′ = supplementary tangential traction at stick region, N/m2

E′ = equivalent elastic modulus, N/m2

δ = nominal sliding distance, m
δi = nominal sliding distance at the initiation of gross slip, m
δi1 = the deformation of the stick region on hemisphere at the

initiation of the gross slip, m
δi2 = the deformation of the stick region on block at the initiation

of the gross slip, m
△ = oscillation amplitude of the fretting motion, m
μ = coefficient of friction
ν1 = Poisson’s ratio of the hemisphere
ν2 = Poisson’s ratio of the block
ω = interference, m
ωc = critical interference, m
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