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ABSTRACT 
 

A vast amount of previous work on hemispherical contact is almost solely dedicated to quasi-static 
normal loading (axisymmetric 2D models). Some scarce work exists on tangential loading but it is 
limited to full stick conditions. The sliding of interfering bodies is considerably distinct. Hence, the 
objective of this work is to investigate two hemispheres sliding across each other, subject to an 
interference that is large enough to deform their surfaces permanently, during and after contact. 
Similar (steel-on-steel) and dissimilar (aluminum-on-copper) materials are investigated using a 3D 
finite element analysis (FEA). The behavior and outcomes are vastly different from previously 
reported work. Results include the formation and propagation of the von Mises stresses, the 
deformations, the contact areas, and the energy loss even with friction being absent.  The results 
are normalized so that they may be applied to any scale (from macro to micro contacts); the main 
intention, however, is to apply the results to interfering asperities in rough surfaces that are sliding. 
The effectiveness of that normalization is discussed. Empirical equations for the net energy loss, the 
permanent residual deformations (damage), and the effective coefficient of friction (in frictionless 
sliding) are given as functions of the interference. Lastly, some FEA results are favorably compared 
to those obtained from a semi-analytical method, but these are only limited to a few special cases 
that the latter is able to solve.  
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1. INTRODUCTION 
 
This work presents results from a three 
dimensional (3D) finite element analysis (FEA) of 
an elastic-plastic asperity contact model for two 
hemispherical bodies sliding across each other 
with various preset vertical interferences. Sliding 
contact is an important phenomenon in both the 
macro and micro scales.  In the macro scale, it is 
important to consider friction, wear, and residual 
deformation that occur when interfering surfaces 
slide across each other, e.g., rolling element 
bearings, gears, cams, etc.  In the micro scale, it 
is well known that nominally smooth surfaces 
have undulations in their surface profile, and the 
true area of contact is just a small fraction of the 
nominal area of contact.  These high points, or 
asperities, are known to deform plastically during 
sliding.  Three dimensional sliding of a pair of 
asperities provides the kernel of the solution for 
any stochastically distributed rough surface.  
Thus, it is important to know how the deformed 
geometry, residual stresses, and surface 
condition affect the sliding process between a 
pair of asperities.  The model presented here has 
been normalized in order to apply the results to 
both macro and micro scale geometries.   
 
Liu et al. [1] review early work done over the 
years dealing with elastic and elastic-plastic 
contact; these are based on the contact of a 
single asperity expanded in a statistical model for 
multiple asperity contact, and they share the 
common methodology of Thomas [2], and 
Greenwood [3].  Some of these works are 
restricted to the elastic regime, such as the 
landmark work by Greenwood and Williamson 
[4].  Other works [5-9] extend the Greenwood 
and Williamson model in the elastic regime to a 
variety of geometries and different basic 
assumptions.  Other works concentrate on purely 
plastic deformation, and are based on the 
models of Abbott and Firestone [10], and 
Tsukizoe and Hisakado [8]. 
 
Normal spherical contacts have been massively 
investigated, e.g.,  Evseev et al. [11], Chang [12], 
and Zhao [13].  FEA has been used by Vu-Quoc 
et al. [14] to analyze normal contact between two 
spheres, which by symmetry is equivalent to that 
of one sphere in contact with a rigid flat.  Adams 
and Nosonovsky [15] provide a review of contact 
modeling with an emphasis on the contact 
forces. Jackson et al. [16], and Wang and Keer 

[17] explored hemispherical elastic-plastic 
contact in a normal loading condition. However, 
the characteristics of normal contact as opposed 
to sliding contact are very different and, thus, the 
latter is the impetus of this work. 
 
Some work has been done in the area of sliding 
spherical contact, but in most cases either 
simplifying assumptions have ignored important 
phenomena or less than satisfactory results have 
been produced.  There have been many works, 
mainly based on Green [18, 19], that analyzed 
friction and adhesion of triangular shaped contact 
geometries. In reality though, the contact 
junctions are more realistically modeled as 
spherical in shape.  Faulkner and Arnell [20] 
present the first work that models sphere-on-
sphere sliding contact using an FEA approach.  
No general results are presented in that work, 
and the method resulted in extremely long 
execution times (over 960 hours). A semi-
analytical approach is given by Jackson et al. 
[21] heuristically applying the normal contact 
model in [16]. 
 
More recent studies report the results of fretting 
cycles [22 – 25]. The elastic-plastic and fully 
plastic spherical contacts in strictly normal 
loading have been studied in great detail, using 
the finite element analysis (FEA) method [24-28]. 
The elastic-plastic cylindrical contact in plane 
stress is recently examined by Sharma and 
Jackson [29]. However, for cases when 
tangential force is introduced under normal load, 
few attempts have been made to analyze the 
contact. Brizmer et al. [30] use the finite element 
method to investigate the spherical contact under 
the full stick condition subject to a tangential 
load. Chang and Zhang [31] model their contact 
without the full stick conditions, but they apply a 
static frictional coefficient. The work by 
Vijaywargiya and Green [32] presents the results 
of a finite element analysis used to simulate two-
dimensional (2D) sliding between two interfering 
elastic-plastic cylinders. The work by Boucly et 
al. [33] presents another semi-analytical method 
(SAM) for the three-dimensional elastic-plastic 
sliding contact between two hemispherical 
asperities using either load-driven or a 
displacement-driven algorithms (that model will 
be used for comparison within). Gupta et al. [34] 
develop a model that consists of a meager 285 
elements. Ghosh et al. [35] simulates the fretting 
wear of Hertzian line contact in partial slip. 
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Another recent work [36] analyzes the contact 
between a hemisphere and a rigid flat block in 
full stick condition, while a very recently work [37] 
studies fretting sliding but of a cylinder in contact 
with a flat block.  
 
Seemingly none of the previous works 
investigates the sliding phenomenon between 
two interfering hemispheres as reported herein. 
This work adopts the kinematics defined in 
reference [32] but applies them to 3D modelling, 
as necessitated by hemispherical sliding. With 
current computing capabilities, the accuracy of 
the results can be improved considerably, and 
that is one of the aims of this work. First, 
modeling is performed with sufficiently fine and 
adaptive meshes that capture the behavior in the 
contact region with great accuracy. Then, results 
are reported in a non-dimensional form to allow 
their broader utility.   
 
Hertzian theory suggests that two elastic bodies 
in contact can be modeled as an equivalent 
ellipsoid pressed against a rigid flat.  Such an 
equivalent model has no physical grounds or 
mathematical proof once plasticity takes place, 
certainly not when the two sliding bodies have 
distinct material properties.  In this work, 
individual elastic-plastic hemispheres sliding over 
each other are treated, and not as a part of a 
statistically generated surface.  Sliding is 
simulated by means of FEA, wherein the two 
interfering bodies are both fully modeled without 
resorting to the common model of an equivalent 
body against a flat.  This is particularly important 
when sliding takes place between dissimilar 
materials. This work is then compared to a novel 
semi-analytical technique developed by Boucly et 
al. [33].   
 
In the elastic domain, up to the onset of plasticity, 
the Hertzian solution is used to obtain critical 
values of load, contact half-width, and strain 
energy as defined in Green [38].  As shown in 
[16, 27], hardness is not a unique material 
property because it varies with the deformation 
as well as with other material properties (i.e., 
yield strength, Poisson’s ratio, and the elastic 
modulus). Instead, the method and definitions 
outlined in [38] are adopted. While the said 
analysis pertains to normal loading, the critical 
values are useful for results normalization herein 
just as well. The foregoing is a brief summary. 
Using the distortion energy yield criterion at the 
site of maximum von Mises stress, and letting 

 
maxe yS  , where Sy is the yield strength, 

results in the critical values of force, Pc, contact 
area, Ac, and interference, ωc. These are given 
by [38]: 
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The von Mises stress, e , normalized by the 

maximum pressure, po, is a function of the depth 

normalized by the contact radius,  , where 

Poisson’s ratio,  , is a parameter [38]: 
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For two bodies 1 and 2 that may have distinct 
radii and material properties, the equivalent 
radius, R, and the equivalent modulus of 
elasticity, E’, are calculated by: 
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The value ζc is the nondimensional depth where 
Eq. (2) is maximum, while C is the reciprocal of 
Eq. (2). Both are functions of the Poisson ratio 
alone (see [38]): 
 

( ) 0.38167 0.33136 ,c     (5) 

 
2( ) 1.30075 0.87825 0.54373 .C       (6) 

 

However, because at yielding  
maxe yS  , it is 

the product of CSy that is to be used in Eq. (1). 
For dissimilar materials (as is the case herein), 
depending on which material yields first, this 
product is determined by [38]: 

 
                                     

(7) 
 

Likewise, the maximum elastic energy that can 
possibly be stored (up to the point of yielding 
onset) is [38]: 
 

1 2min( , ).y y yCS CS CS
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Table 1. Material properties for hemisphere i (from MatWeb) 
 

Property Steel Aluminum Copper 
Elastic Modulus, Ei  200 GPa 68.0 GPa 130 GPa 
Yield Strength, Syi 911.5 MPa 310 MPa 331 MPa 
Poisson’s Ratio, υi 0.32 0.326 0.33 

 
Table 2. Critical values of parameters at the onset of plasticity for sliding between two 

hemispherical contacts 
 

Parameter Steel-on-steel Al-on-Cu* 
CSy 1.493 GPa 509.9 MPa 
ωc 0.2214 mm 0.1261 mm 
Pc 346.1 kN 67.32 kN 
Ac 347.8  mm

2
 198 mm

2
 

Uc 30.65 J 3.395 J 
*Aluminum yields first 

 
Table 3. The interferences,  , for all cases presented in this analysis 

 
 Interference,  [mm] 

* / c    
2 4 6 9 12 15 

Steel-on-Steel 0.4428 0.8856 1.328 1.993 2.657 3.321 

Aluminum-on-Copper 0.2522 0.5044 0.7566 1.135 1.513 1.892 
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All quantities herein are subsequently normalized 
by the critical parameters calculated from Eqs. 
(1-8). Thus, the ensuing results apply for any 
geometry scale as long as continuum mechanics 
is assumed to prevail; therefore, the radii for the 
hemispheres in the FE model are subjectively 

chosen to be mRR 121  .  

 
This analysis considers both steel-on-steel and 
aluminum-on-copper contact.    For the steel-on-
steel case the critical values are calculated for 
identical material properties as follows: 

GPa 200  E  E 21  ,  21    , and

GPa 0.9115yS . This material has its yield 

strength in the middle of the range of the five 
steel materials investigated by Jackson et al. [16, 
27]. While the results obtained in this work are 
not representative of all steel materials, because 
of the normalization proposed herein, this case 
may be extended to any two identical materials. 
The aluminum-on-copper hemispheres are 
modeled by sliding of a hemisphere made of a 
copper-based metal matrix composite (MMC) 
alloy known commercially as Glidcop-Al25 over 

an Al 6061-T651 hemisphere. These particular 
materials are chosen here because of their 
specific use in an electromagnetic accelerator. 
Table 1 presents the material properties used in 
this analysis, and Table 2 presents the critical 
values calculated from the above equations (1-
8).  Notably by comparison copper is stiffer and 
stronger than aluminum (which impacts the 
behavior, as will be apparent in the forthcoming 
results). Table 3 presents the interferences for all 
the cases studied for both steel-on-steel and 
aluminum-on-copper. All materials are regarded 
as nearly elastic-perfectly plastic, where in order 
to help convergence, a bi-linear material model 
with a 2% strain hardening based on the elastic 
modulus is used.  This small amount of strain 
hardening has been verified not to significantly 
affect the forthcoming results yet to drastically 
improve upon convergence time.   

 
2. MODELING METHOD 
 
Fig. 1 shows a schematic representation of the 
sliding process along with the coordinate system 
(x,y).  The definitions are identical to those 
presented to model interfering cylinders in sliding 
(Vijaywargiya and Green [32]).  In this analysis a 

displacement, x , is applied to the top surface of 
the top hemisphere, where the bottom surface of 
the bottom hemisphere is held stationary.  This 
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x  represents the total horizontal distance that 
a hemisphere must slide in order to complete a 
single-pass of sliding contact. The total sliding 
distance is calculated from geometry, and it is a 
function of the vertical interference, ω, where 

x  increases with the preset interference ω.  
That total distance is divided into n equal load 
steps, /x x n   . Hence, at load step i the 
horizontal location of the center of the moving 
hemisphere relative to the center of the 
stationary hemisphere is: 
 

; 0,
2

x
x i x i n m


      

 
Because of material tugging, m load steps are 
added to ensure exit from sliding contact.  
Normalizing x by R, the loading phase is defined 
by the region x/R<0, where the top hemisphere is 
pressed horizontally against the bottom one 
before passing the vertical axis of alignment 
(x/R=0). The unloading phase is defined in the 
region x/R>0, where the top hemisphere has 
passed the vertical axis of alignment, and where 
the hemispheres are expected to repel each 
other, and ultimately disengage. 
 

2.1 Assumptions 
 
The following assumptions are used to simplify 
the problem: 

1) Here in sliding is assumed to be a 
frictionless process, and hence no 
coefficient of friction is input in the FE 
model. This is done in order to isolate the 
effect of plasticity during sliding. 

2) It is assumed that the mesh validated up to 
the onset of plasticity is also robust for 
analysis of the elastic-plastic regime, since 
no closed form solution is available beyond 
that point for this purpose. [Worthy of note, 
the mesh is continually adjusted for 
various vertical interferences as necessary 
(see below).] 

3) This work concentrates on the area close 
to the contact surfaces, and the far field 
bulk deformation effects are assumed not 
to have a significant effect on the region 
close to the contact surfaces (Saint 
Venant’s principle). 

4) Sliding is simulated as a quasi-                        
static process, i.e., time-dependent 
phenomena are not analyzed. Hence, 
dynamic effects are ignored and the 
material properties used do not depend on 
the strain rate. Likewise, adhesion and 
stick-slip phenomena are not accounted 
for. 

5) Temperature effects that might occur 
during sliding are not considered, and the 
material properties used are assumed to 
be at room temperature and constant. 
 

 

 
 

Fig. 1. The schematic of the sliding process of two interfering hemispheres 
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This analysis is done using ABAQUS, a 
commercial FEA software package using linear 
brick (8-node) elements.  A representative model 
is presented in Fig. 2.  In order to take advantage 
of the symmetry of the problem, each sphere is 
cut in half along the vertical plane.  Because the 
spheres are constrained to slide peak-over-peak, 
roller boundary conditions are imposed normal to 
this vertically cut plane for both spheres, 
nullifying normal displacements.  Also, an 
assumption is made, and later confirmed, that 
under the interferences considered here there is 
insignificant stress or deformation in areas far 
from the contact region (half-space assumption).  
This assumption is reasonable if one considers 
the fact that the contact radius is much smaller 
than the radius of the sphere, and as such, the 
stress distribution near the contact region cannot 
be strongly influenced by the conditions in the 
bulk of the material.  This is also in agreement 
with the fact that deformations decay as 1/r, 
where r  is the distance from the contact [37], 
conforming with the Saint Venant’s principle.  To 
take advantage of this each sphere is also cut in 
half in the horizontal plane.  A roller boundary 
condition is imposed along the top surface of the 
top hemisphere, and the bottom surface of the 
bottom hemisphere is completely constrained.  
The end result is the hemisphere model shown in 
Fig. 2(a).   

 
In order to capture the deformations and stresses 
in the region near the contact, the mesh 
refinement scheme shown in Fig. 2(b) is used.  
This high level of refinement yielded meshes with 
many elements.   Each hemisphere consists of 
from about 20,000 to 50,000 elements, 
depending on the applied interference.  As the 
interference increases a finer mesh is generated 
in a larger volume near the contact because 
higher stresses develop deeper into the 
hemispheres.  Depending on the interference, 
and with that many nodes and elements, 
simulation time in this study takes from two days 
to over a week using a workstation computer with 
8 GB of physical memory and a 2.6 GHz dual-
core processor. 

 
As discussed earlier, the total sliding distance is 
broken into n equal steps.  This is done in order 
monitor the phenomena of interest as sliding 
progresses as well as to help convergence.  
Generally, the cases in this analysis are run with 
40 equal load steps (n=40) with 4 steps added at 
the end to ensure disengagement (m=4).  
However, for the higher interference steel-on-
steel cases, as many as 120 load steps are also 

used.  This is a trial-and-error process, as the 
code may run at times to just before or after the 
hemispheres are vertically aligned, and then a 
load step would fail to converge.  The code can 
then be restarted at the last successful increment 
and continued with a smaller load step size. 
 

2.2 Mesh Convergence 
 
The mesh is verified first [39 ,40] for a vertically 
aligned normal elastic contact (non-sliding) with 
the properties for steel from Table 1, and results 
are compared against the analytical solution 
obtained by Green [38].  The FE model is then 
run past the elastic limit and the results are 
compared to those in Jackson and Green [27].  
For this verification, a downward displacement, 
ω, is applied to the top hemisphere and the load, 
P, is monitored.  Table 4 presents the normalized 
load, P

*
=P/Pc, for the JG model [27] and the 

current FEA, and the percent errors at a given 
downward normalized displacement, ω

*
 =ω/ωc 

(critical values are calculated by Eq. (1)).  As 
shown in Table 4, the theoretical and FEA values 
agree very well, with maximum percent errors of 
3.2% in the elastic (Hertzian) regime, and 1.6% 
for the elastic-plastic regime, respectively.   
 
Table 4.  Verification of the meshing scheme 

employed 
 

ω* P* Model P* FEA % Error 
0.2 0.089 0.087 -2.7 
0.6 0.465 0.450 -3.2 
1 1.000 0.989 -1.1 
1.4 1.657 1.635 -1.3 
1.8 2.415 2.377 -1.6 
2.2 3.223 3.180 -1.3 
2.6 4.075 4.012 -1.6 
3 4.978 4.923 -1.1 

  
Quadrilateral-faced and triangular-faced element 
meshes are compared.  It is found that the 
quadrilateral-faced elements yield better results 
with a coarser mesh and are, therefore, used in 
order to reduce run time.  Additionally, the results 
are later compared to a semi-analytical method 
(SAM), also serving to verify the mesh.  The FEA 
and SAM results compare very well under the 
conditions they are supposed to, as the detailed 
comparison shall reveal. 
 
Finally, the results for frictionless steel-on-steel 
sliding contact with an interference equal to the 
critical interference are compared to the normal 
loading results presented above.  The percent 
difference is 2.3% between the model results for 
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normal loading at the critical interference [27] 
and the sliding results herein when the 
hemispheres are vertically aligned.  These two 
situations must theoretically be equivalent.  This, 

coupled with the fact that the results for the 
sliding case are perfectly symmetric in the elastic 
regime, also suggest the results can be given in 
confidence. 

  
 

Fig. 2. (a) Model geometry indicating the boundary conditions and sliding direction (b) a 
zoomed view of the contact region showing the mesh refinement  
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3. RESULTS  
 
3.1 Stresses 
 
As part of this analysis, the stress profile 
throughout the progression of frictionless sliding 
is monitored.  Figs. 3 and 4 present the von 
Mises stress in the two hemispheres at the point 
of vertical alignment (x/R = 0) for preset vertical 
interferences of 2ωc and 15ωc for steel-on-steel 
and aluminum-on-copper sliding, respectively.  
The results are smooth and symmetric about the 
contact plane for the steel-on-steel case, as 
expected. In order to show the stress pattern with 
adequate detail, each image is a close-up of the 
area near the contact.  It can be seen, based on 
the curvature, that the stressed volume 
penetrates deeper into the hemisphere for the 
15ωc case while maximum values appear at the 
contact surface (see Figs. 3(b) and 4(b)).  For the 
2ωc case, the hemispheres have deformed 
plastically, i.e., the stresses have surpassed their 
respective yield strengths, yet the yielded regions 
still lie below the surface (see Figs. 3(a) and 
4(a)).  The results are consistent with those 
reported in [16, 27]. In the case of aluminum-on-
copper sliding with an interference of 15ωc both 
hemispheres show a large volume with more 
significant plastic regions compared to the steel-
on-steel sliding case. And because copper is 

much stiffer and stronger than aluminum (see 
Table 1) it can sustain higher von Mises 
stresses. Note that for the 2ωc cases the 
maximum von Mises stress is below the surface, 
while for the 15ωc case that stress reaches the 
surface, which is consistent with the findings in 
[27].  It can be seen in Figs. 3 and 4 that the 
stress values are slightly above the yield 
strength.  This is due to the strain hardening 
implemented in this analysis.  As stated 
previously, a bi-linear strain hardening of 2% of 
the elastic modulus is added to the material 
definition in order to improve convergence. 
 
As sliding progresses the stresses reach peak 
values near the point of vertical alignment, as 
shown in Figs. 3 and 4. Then the stress 
magnitude decreases as the hemispheres move 
away from each other.  Figs. 5 and 6 present the 
residual von Mises stresses in the hemispheres 
once they have come out of contact for steel-on-
steel and aluminum-on-copper sliding, 
respectively.  For the 2ωc cases shown in Figs. 
5(a) and 6(a), the residual stresses reduced well 
below the yield strength, indicating elastic 
shakedown, i.e., the stresses have relaxed and 
the hemispheres would be able to carry more 
load before yielding again.   On the other hand, 
for the 15ωc steel-on-steel case, shown in Fig. 
5(b), the maximum residual stresses are very

 

 
(a) 
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(b) 

 
Fig. 3. Von Mises stresses at the point of vertical alignment for steel-on-steel contact for (a) 

2ωc and (b) 15ωc 
 

  
(a) 

 

Al

Cu 
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(b) 

 

Fig. 4.  Von Mises stresses at the point of vertical alignment for aluminum-on-copper contact 
for (a) 2ωc and (b) 15ωc 

 

close to the yield strength.  As shown in the 
figure, the maximum residual von Mises stress is 
shown to be 911.1 MPa and displays a 0.04% 
difference to the defined yield strength of 911.5 
MPa, which is an insignificant difference.  It is 
interesting to note that for the higher interference 
case, 15ωc, the highest residual stress regions 
are at the surface, while in the lower interference 
case, 2ωc, the regions of highest residual 
stresses are still below the surface.  In the 
beginning of the sliding process, the 
hemispheres first yield plastically below the 
surface, but as sliding progresses the plastic 
region expands and eventually reaches the 
surface.  One might expect the highest residual 
stresses to be in the region where the 
hemisphere first yielded plastically, but as shown 
by comparing Figs. 3 and 5, this is not the case.  
These residual stresses could be important if one 
considers shakedown, in which upon successive 
reloading, the material is subjected to the 
combined loading of the contact stresses as well 
as the residual stresses.  These residual 
stresses are protective because they make 
yielding less likely to occur on subsequent 
passes [27] should they occur. 
 
It is interesting to compare the residual plastic 
strains in the hemispheres for the material 
combinations in this analysis.  Figs. 7 and 8 
present the residual plastic strains for steel-on-

steel and aluminum-on-copper sliding contact, 
respectively.  As shown in Fig. 7, the residual 
plastic strains are identical in each hemisphere.  
This is expected as they are identical materials.  
The lower interference cases, of which Fig. 7(a) 
is representative, are nearly symmetric about the 
center line of the hemispheres and below the 
surface.  As the interference increases, plastic 
strains reach the surface and the maximum value 
shifts toward the trailing edge of the contact as 
material is displaced (tugged) in that direction.   
 
Fig. 8 displays the residual plastic strains for 
aluminum-on-copper sliding contact.  As shown 
in the figure, there is significantly more plastic 
residual strain in the aluminum hemisphere, as it 
is the weaker material (see Table 1).  Similar to 
the steel-on-steel cases, as interference 
increases, the residual plastic strains become 
less symmetric and shift toward the contact 
interface.   
 
Fig. 9 presents an oblique view of the von Mises 
stresses with the upper hemisphere removed at 
various points in the progression of sliding for a 
representative and intermediate case of steel-on-
steel sliding (6ωc).  The lighter regions in the tops 
of the figures are the top of the hemisphere 
where contact occurs and the darker regions 
along the bottoms of the figures are the vertically 
cut face as shown in Figs. 3 through 6.  This is 

Al

Cu 
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presented to better visualize how the stress 
develops along the contacting surfaces of the 
hemispheres.  Before the hemispheres are 
vertically aligned, Fig. 9(a), a pocket of lower 
stress surrounded by a high stress ring begins to 
develop in the contacting region.  As sliding 
progresses further, Figs. 9(b) and 9(c), this 
pocket of lower stress diminishes and a yielded 
core propagates along the surface where the 

hemispheres are in contact.  Past vertical 
alignment, Figs. 9(c) and 9(d), a pocket of very 
low stress develops near the high stress core 
that trails the contact.  This low stress pocket 
continually expands as the hemispheres come 
out of contact.  Fig. 9(d) presents the residual 
stress in the hemisphere with a much expanded 
low stress pocket. 

 

 
(a) 

 

 
(b) 

 
Fig. 5. Residual von Mises stresses at the completion of sliding for steel-on-steel contact for 

(a) 2ωc and (b) 15ωc  
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(a) 

 

  
(b) 

 
Fig. 6. Residual von Mises stresses at the completion of sliding for aluminum-on-copper 

contact for (a) 2ωc and (b) 15ωc 
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(a) 
 

 
 

(b) 
 
 

Fig. 7. Residual plastic strains at the completion of sliding for steel-on-steel contact for (a) 2ωc 

and (b) 15ωc  
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(a) 

 

  
(b) 

 
Fig. 8. Residual plastic strains at the completion of sliding for aluminum-on-copper contact for 

(a) 2ωc and (b) 15ωc 
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(a) 

 

   
 (b) 

 
Fig. 9. An oblique view of the von Mises stress in one hemisphere for steel-on-steel contact at 

an interference of 6ωc at (a) one-fourth and (b) half of the sliding distance 
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(c) 

 

 
 (d) 

 

Fig. 9. continued:  An oblique view of the von Mises stress in one hemisphere for steel-on-
steel contact at an interference of 6ωc at (c) three fourths and (d) the completion of the sliding 

distance 
 

3.2 Forces 
 

The reaction forces on the bottom hemisphere as 
sliding progresses are also monitored in this 

study.  The action-reaction principle indicates 
that the reaction forces on the top hemisphere 
should be identical to those on the bottom 
hemisphere but in the opposite direction in order 
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to maintain equilibrium.  As such, the reaction 
forces at the base nodes of the bottom 
hemisphere are summed for each load step and 
plotted against the normalized horizontal sliding 
distance, x/R.  Figs. 10 and 11 present the 
normalized horizontal reaction forces, Fx/Pc, for 
the various preset vertical interferences for steel-
on-steel contact, and aluminum-on-copper 
contact, respectively.  The normalized vertical 
reaction forces, Fy/Pc, for steel-on-steel contact, 
and aluminum-on-copper contact are presented 
in Figs. 12 and 13, respectively.  These reaction 
forces are normalized by the critical load, Pc, as 
defined previously in Eq. (1).    
 

As sliding begins the horizontal forces start from 
zero and increase in magnitude to a maximum 
value then begin to decrease before the 
hemispheres are vertically aligned (x/R = 0).  As 
shown in Figs. 10 and 11, the lower interference 
cases show a nearly anti-symmetric pattern 
about the x/R axis, indicating that there was very 
little plastic deformation and, although not shown 
in the figures, that cases run at the critical 
interference display a perfectly anti-symmetric 
pattern.  As the interference increases, more 
plastic deformation occurs.  This can be seen by 
the larger magnitude of the negative forces as 
the hemispheres slide toward vertical alignment 
compared to the smaller positive force values as 
the hemispheres come out of contact.  As can be 
seen, the horizontal force is not zero at the point 

of vertical alignment.  This can be attributed to 
material being displaced (tugged) in the direction 
of sliding impeding the sliding progress even 
after the hemispheres are vertically aligned.   
 
The normalized vertical reaction force, Fy/Pc, as 
shown in Figs. 12 and 13, behaves in a nearly 
symmetric pattern about the x/R axis (vertical 
alignment).  As interference increases the 
maximum forces occur earlier in the sliding 
progression.  This can be attributed to the fact 
that plasticity is initiated earlier as interference 
increases.  As the material model is nearly 
elastic-perfectly plastic there is little increase in 
load carrying capacity in the yielded portion of 
the hemisphere due to the plastic region just 
expanding, or flowing under increased load.  It 
can be seen, when comparing Figs. 12 and 13, 
that the curves are nearly identical on a case-by-
case basis.  This implies that the vertical reaction 
force, Fy, is normalized well by the critical load, 
Pc for both steel-on-steel and aluminum-on-
copper contact.   
 
It should also be noted, by comparing Figs. 12 
and 13, how well Pc normalized the reaction 
force.  For instance, if one compares the 
maximum normalized vertical reaction force of 
both material combinations for the same 
normalized vertical interference, they are nearly 
identical.   

 

 
Fig. 10. Normalized horizontal reaction forces for 2ωc through 15ωc for steel-on-steel contact  
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Fig. 11. Normalized horizontal reaction forces for 2ωc through 15ωc for aluminum-on-copper 
contact 

 

 
 

Fig. 12. Normalized vertical reaction forces for 2ωc through 15ωc for steel-on-steel contact 
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Fig. 13. Normalized vertical reaction forces for 2ωc through 15ωc for aluminum-on-copper 

contact 
 
As no friction coefficient is imposed in this 
analysis, a “load ratio” is defined as Fx/Fy, being 
the ratio of the horizontal reaction force over the 
vertical reaction force, in order to better 
understand the resistance to sliding due to the 
mechanical interference.  While each of the data 
points on these curves can be thought of as 
qualitatively similar to the instantaneous local 
coefficient of friction, it is emphasized that this is 
not a coefficient of friction in the traditional 
sense, since other effects (e.g., adhesion, 
surface contamination) are not accounted for.  
Moreover, in the region where the hemispheres 
repel each other, the positive “load ratio” should 
not be interpreted as a negative coefficient of 
friction.  This ratio is generated and plotted 
versus the normalized sliding distance as shown 
in Figs. 14 and 15 for steel-on-steel and 
aluminum-on-copper, respectively.   
 
It can be seen that the maximum magnitude of 
the load ratio increases steadily as the preset 
vertical interference increases.  In addition, the 
plot clearly shows that for all vertical 
interferences, the maximum magnitude of the 
load ratio during loading is always greater than 
the maximum magnitude during unloading.  It is 
also clear from the plot that the ratio of the 
horizontal to the vertical reaction force is not zero 
at the point where the hemispheres are vertically 

aligned.  This is due to material being displaced 
(tugged) in the direction of sliding, further 
opposing the motion.  Also of note is the trend of 
a sharply increasing load ratio as the 
hemispheres are coming out of contact that 
occurs for increasing preset vertical interference 
cases.  This is due to increases in plastic 
deformation as interference increases.  This 
increase in plastic deformation results in more 
flattening of the hemispheres in the region of 
contact, which subsequently reduces the vertical 
reaction force required to maintain a straight line 
contact. 
 

3.3 Energy Loss 
 
Since no vertical displacement is allowed along 
the top and bottom boundaries of the 
hemispheres, the net energy loss in sliding can 
be defined as 

 
2

1

x

net x

x

U F dx   (9) 

 
where x1 and x2 respectively represent the 
starting and ending sliding positions of the top 
hemisphere.  This equation is used to quantify 
the work done when sliding the top hemisphere
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Fig. 14. The “load ratio” as sliding progresses for 2ωc through 15ωc for steel-on-steel contact 

 
Fig. 15. The “load ratio” as sliding progresses for 2ωc through 15ωc for aluminum-on-copper 

contact 
 
over the bottom hemisphere.  Thus, energy loss 
in sliding, Unet, for individual preset vertical 
interference cases, is essentially the absolute net 
area under the horizontal reaction curves given 
in Figs. 10 and 11.  The net energy loss in sliding 
for each individual preset vertical interference 
case is normalized by Uc given by Eq. (8) and the 

corresponding values in Table 2, and these are 
plotted against the normalized preset 

interference, 
* / c   . These values are 

shown in Fig. 16 for steel-on-steel and 
aluminum-on-copper sliding.  
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For both steel-on-steel and aluminum-on-copper 
sliding the energy loss increases drastically as 
the preset interference increases.  In a 
completely elastic case the work invested in 
sliding the hemispheres into alignment will be 
equal to the energy restored as the hemispheres 
slide out of alignment.  The work required to slide 
the hemispheres to vertical alignment can be 
thought of as a loading effect similar to a spring 
being compressed.  Past the point of vertical 
alignment, the hemispheres repel each other, 
similar to a spring being restored.   
 
As the preset interference increases, more of the 
material becomes plastically deformed as sliding 
progresses.  The portions of the hemispheres 
that are still elastic once they are past vertical 
alignment still do work as they are separating.  
However, this elastic rebound work will be 
smaller than the work invested to slide to vertical 
alignment and beyond due to the plastic 
deformation.  These effects can also be seen in 
horizontal reaction force curves shown in Figs. 
10 and 11.  As the interference increases, the 
work invested (negative portion of the curve) 
increases faster than the elastic rebound work 

(positive portion of the curve) resulting in 
progressively more net energy loss. 
 
As shown in Fig. 16, the results for the 
normalized net energy loss are very close for 
both aluminum-on-copper sliding and steel-on-
steel sliding at a given vertical interference, 
indicating that Uc normalizes the two cases well.  
Therefore, a single exponential curve is fitted to 
the numerical data of both cases.  It represents 
the trend followed by the energy loss for different 
ranges of the applied interference, ω

*
. Very 

closely it captures the increasing energy loss 
with increasingly elastic-plastic loading.  Hence, 
 

*

* 2.7 *

0 1

0.6( 1) 1 15

net

c

net

c

U

U

U

U



 

 

   

 (10) 
 
with continuity at ω

*
 = 1. 

  

 
 

Fig. 16. Normalized net energy loss versus preset normalized interference 
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3.4 Effective Coefficient of Friction  
 

An effective coefficient of friction, eff , is 

introduced as an alternative way to characterize 
the net energy loss in sliding.  A fundamental 
model is introduced in Fig. 17 to help explain this 
concept.  The figure depicts a block, with a 
normal force, Fy, acting downwards and being 
pushed across a flat surface by a force, Fx.  It is 
well known that under the conditions depicted in 
the figure, the force required to slide the block 
across the surface is given by: 
 

x yF F    (11) 

 

where μ is the coefficient of friction (no distinction 
is made whether it is a “static” or “kinetic” 
coefficient of friction).  Combining this expression 
with the definition of work done in sliding results 
in:  
 

2 2

1 1

x x

x y

x x

W F dx F dx      (12) 

 
Upon rearrangement of this equation one can 
define a new expression for the effective 

coefficient of friction, eff , given by: 

 

2

1

eff x

y

x

W

F dx

 



   (13) 

This eff  is an effective coefficient of friction for 

the entire sliding process. 

 
It has been shown in this analysis that                       
there is resistance to even sliding                         
without an imposed coefficient of friction. This                 
is caused by hemispherical sliding in the 
presence of a mechanical interference. As such,                        
an effective coefficient of friction can be                  
defined: 
 

2

1

net
eff x

y

x

U

F dx

 



   (14) 

 
where Unet is defined in Eq. (9).  Fig. 18 presents 
the effective coefficient of friction for the various 
preset vertical interferences.  As shown in the 
figure, both steel-on-steel and aluminum-on-

copper start with 0eff   for 
* 1  , and then 

eff  for the two material combinations begins to 

diverge with increasing interference.  The 
effective coefficient of friction tends to flatten out 
slightly as the interference increases due to an 
increasing amount of flattening of the 
hemispheres, which reduces the resistance to 
sliding.   
   

 
 

Fig. 17.  A fundamental schematic of a sliding process 
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Fig. 18. The effective coefficient of friction versus vertical interference 

  
The effective coefficient of friction in frictionless 
sliding can be thought of as the contribution of 
mechanical deformation to the resistance to 
sliding, or friction coefficient.  Since these values 
are much smaller than friction coefficients 
measured in practice (by an order of magnitude), 
it must be concluded that friction as a 
phenomenon has a strong interfacial component 
that is not accounted for in this analysis.   

 

3.5 Contact Area 
 
The real contact area throughout sliding is also 
investigated in this analysis.  The real area of 
contact is important in many instances.  For 
example, electrical and thermal contact 
resistance is a function of the real area of 
contact, which changes depending on the 
loading condition.  Figs. 19 and 20 present a plot 
of the normalized contact area, A

*
=A/Ac (where 

Ac is given in Eq. (1)), versus normalized sliding 
distance, x/R.  For small vertical interferences 
the contact area shows a nearly symmetric 
pattern.  As interference increases, the location 
of maximum contact area occurs progressively 
earlier in the progression of sliding, similar to the 
vertical reaction force as presented in Figs. 12 
and 13.  Also, the aluminum-on-copper contact 
situation shows a larger normalized contact area 
than the steel-on-steel contact situation for a 
given preset vertical interference.   It is noted that 

the contact area snaps down to a smaller value 
at the point of vertical alignment.  That is caused 
at the transition from material compression and 
tugging to repulsion and elastic spring-back.   
 
The jaggedness of the contact area curves can 
be attributed to the resolution of the model.  The 
contact area can only be calculated based on 
nodal coordinates.  The model is composed of 
discrete elements, so even if the contact area 
extends past the element boundary just slightly, 
ABAQUS will only recognize the whole element 
as being in contact.  Even with this resolution 
issue Figs. 19 and 20 do present the general 
trend seen in the contact area for different 
vertical interferences as sliding progresses for 
both cases studied. 
 

3.6 Deformations 
 
The resulting deformations in the hemispheres 
as sliding progresses are studied in this analysis 
as well.  Fig. 21 presents the maximum 
normalized vertical deformation, umax/ωc, in the 
hemispheres versus normalized sliding distance, 
x/R, for steel-on-steel contact.  As shown in the 
figure, the deformation increases to a maximum 
value past the point of vertical alignment and 
then decreases until the hemispheres come out 
of contact.   
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Fig. 19. Normalized contact areas for 2ωc through 15ωc for steel-on-steel contact 
 

 
 

Fig. 20. Normalized contact areas for 2ωc through 15ωc for aluminum-on-copper contact 
 
 

0

2

4

6

8

10

12

14

16

18

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

x/R

A
*

2ωc

4ωc

6ωc

9ωc

12ωc

15ωc

0

2

4

6

8

10

12

14

16

18

20

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

x/R

A
*

2ωc

4ωc

6ωc

9ωc

12ωc

15ωc



 
 
 
 

Green; PSIJ, 19(1): 1-34, 2018; Article no.PSIJ.42783 
 
 

 
25 

 

 
 

Fig. 21.  The maximum normalized vertical deformation as a function of sliding position for 
steel-on-steel contact 

 
In the aluminum-on-copper contact cases, the 
materials are different and thus they deform 
differently.  Figs. 22 and 23 present the 
normalized deformation in aluminum and copper, 
respectively, as sliding progresses for the 
interferences studied.  As shown in the figures, 

the aluminum deforms much more than the 
copper due to its much lower elastic modulus 
and somewhat lower yield strength (see Table 1).  
Qualitatively, though they show trends that are 
similar to each other as well as to the steel-on-
steel case.   

 

 
 

Fig. 22. Normalized deformation in aluminum as sliding progresses 
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Fig. 23.  Normalized deformation in copper as sliding progresses 
 

 
 

Fig. 24.  Normalized residual deformations versus normalized preset interference for steel-on-
steel and aluminum-on-copper contact 

 
Once the hemispheres have come out of contact 
they are left with residual deformation.   This can 

be seen as a flattening out of the deformation 
curves in Figs. 21 through 23.  The simulation is 
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run past the point when the hemispheres come 
out of contact in order to capture this 
phenomenon.  This deformation is due to 
plasticity effects and is unrecoverable.  Fig. 24 
presents a plot of the residual deformations in 
the y-direction, ures, normalized by the critical 
interference, ωc versus preset vertical 
interference, ω*.   The residual deformations 
dramatically increase as the interference 
increases.  A polynomial curve fit that closely 
approximates the data for steel-on-steel sliding 
contact is given by: 
 

* * 2 *0.2( 1) 0.01( 1) 1 15res

c

u
  


     

(15) 
 
The aluminum and copper results are 
qualitatively similar to the steel results.  However, 
the copper hemispheres show significantly less 
residual deformation.  This is reasonable if one 
considers the fact that the copper has a higher 
yield strength than the aluminum such that the 
aluminum hemisphere will absorb most of the 
deformation.  A polynomial curve fit for aluminum 
in aluminum-on-copper sliding contact is given 
by: 
 

* * 2

*

0.248( 1) 0.014( 1)

1 15

res

c

u
 





   

 

 

 (16) 
 
and a curve fit for copper in aluminum-on-copper 
sliding contact is given by: 
 

* * 2

*

0.095( 1) 0.006( 1)

1 15

res

c

u
 





   

 
 (17) 

 
 
4. COMPARISON TO SEMI-ANALYTICAL 

RESULTS 
 
Elastic-plastic sliding contact has no analytical 
solution. This makes model verification difficult.  
There is, however, another numerical technique 
called the semi-analytical method (SAM, [33]) 
that can solve the said sliding problem, but SAM 
has limited capabilities regarding material 
composition while offering only an approximate 
solution.  The purpose of this section is two-fold: 

(1) to compare (i.e., also verify) the results of the 
current FEA results with an existing solution, (2) 
highlight the success and limitations of SAM. A 
brief description of the SAM is as follows.  The 
contact pressure on the surface can be thought 
of as the summation of concentrated normal 
loads over the contact area.  Each of these 
concentrated loads has a corresponding 
influence on the displacements throughout the 
body.  This influence is quantified using influence 
coefficients, which are actually the discretized 
form of Green’s functions.  The SAM takes 
advantage of this by using the superposition 
principle to sum the displacements due to the 
contact pressure, at each location in the region of 
interest.  Once this information is gathered the 
stresses, strains, and deformations can be 
calculated based on the material properties from 
the compatibility and equilibrium relations.  An 
iterative process is used to incorporate the 
residual deformations present from a previous 
load step [33]. 
 
Figs. 25 and 26 present a comparison of the 
normalized horizontal and vertical reaction forces 
for the different vertical interferences for steel-on-
steel contact, respectively.  The FEA and SAM 
results are nearly identical for the smaller 
interference cases.  As shown in Fig. 25, with 
increasing preset interference, the SAM results 
diverge from the FEA results once the 
hemispheres have passed the point of vertical 
alignment.  As the hemispheres come out of 
contact, the SAM predicts a higher reaction 
force, indicating less energy loss due to 
plasticity.  The vertical reaction force curves, as 
shown in Fig. 26, are also nearly identical for all 
the interference cases presented.  
 
One problem with the SAM as used here is that it 
is not capable of modeling two dissimilar 
materials that are both elastic-plastic.  For 
identical materials this is not an issue (steel-on-
steel for instance), but for the case of aluminum-
on-copper sliding, a decision is made to model 
the copper hemisphere as elastic.  The 
justification is that the residual deformations seen 
in the copper hemisphere are much lower than 
the residual deformations in the aluminum 
hemisphere.  Figs. 27 and 28 present the 
normalized horizontal and vertical reaction forces 
for aluminum-on-copper contact, respectively.   
 
It can be seen that SAM results for both the 
horizontal and vertical reaction forces for the 
aluminum-on-copper cases, shown in Figs. 27 
and 28, deviate more from the FEA results than 
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the steel-on-steel sliding cases, shown in Figs. 
25 and 26.  The SAM produces normalized 
vertical reaction forces that are higher than the 
FEA results in the aluminum-on-copper sliding.  
This is due to the condition that the copper 
hemisphere is modeled as completely elastic, 
resulting in a higher overall load carrying 

capacity.  This can also be seen in the 
normalized horizontal reaction force curves for 
aluminum-on-copper contact where the SAM 
yields forces larger in magnitude over more of 
the sliding distance for the loading phase than 
the FEA.   
 

 

 
Fig. 25. A comparison of the SAM and FEA results for the normalized horizontal reaction force 

for steel-on-steel contact 
 

 
 

Fig. 26. A comparison of the SAM and FEA results for the normalized vertical reaction force for 
steel-on-steel contact 
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Fig. 27. A comparison of the SAM and FEA results for the normalized horizontal reaction force 

for aluminum-on-copper contact 
 

 
Fig. 28. A comparison of the SAM and FEA results for the normalized vertical reaction force for 

aluminum-on-copper contact 
 
Overall, the SAM method shows promise for 
solving these types of problems.  The greatest 
advantage of the SAM used here is the run time.  
The SAM code runs only a few hours compared 
to days for the FEA method used. Still the SAM 
method cannot handle dissimilar materials, and 
its results show increasing deviations with 
increasing interferences (i.e., increasing 

plasticity) compared to those obtained by the 
FEA.  
 
5. THE EFFECTIVENESS OF THE 

NORMALIZATION SCHEME  
 
It has been shown that the normalization 
scheme, as introduced in Section 2 and defined 
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by [38], is effective when comparing steel-on-
steel and aluminum-on-copper contacts.  This 
section expands on this finding and compares 
the normalized reaction forces for other metal-
on-metal sliding contact situations.  In this 
section the SAM is used to model copper-on-
copper, aluminum-on-aluminum, and three 
different steel material models for steel-on-steel 
sliding contact.  The FEA as presented earlier is 
used for the aluminum-on-copper sliding contact 
in order to make an equitable comparison, as the 
SAM cannot model sliding contact of dissimilar-
material when both materials are elasto-plastic. 
Table 5 presents the material properties and 
critical values used here.   

 
In this analysis, a parametric study on the effects 
of varying the yield strength, Sy, is carried out.  
Since steel has a fairly constant Young’s 
Modulus and a variable yield strength, the yield 
strength is varied for the parametric study.  It is 
found that if the ratio of CSy / E’ is unchanged, 
then the normalized force curves are nearly 
identical for identical-material contact (i.e., steel-
on-steel or aluminum-on-aluminum).  In fact, for 
the lower interference cases, it is found that for 
aluminum-on-copper and steel-on-steel with an 

identical ratio of CSy / E’ the normalized force 
curves are nearly identical.   
 
Fig. 29 presents the normalized horizontal 
reaction force versus normalized sliding distance 
for the materials in Table 5 for interferences of 
6ωc and 15ωc.  As shown in the figure, the 
normalized force curves are nearly identical for 
identical-material sliding cases with the same 
ratio of CSy / E’.  Similar results can be seen for 
the steel-on-steel and aluminum-on-copper 
sliding cases with the same CSy / E’ ratio at a 
6ωc.  However, it is found that the higher 
interference case of the steel-on-steel and 
aluminum-on-copper sliding with the same CSy / 
E’ ratio do not match.   
 
Fig. 30 presents the normalized vertical reaction 
force versus normalized sliding distance.  Very 
similar results to the normalized horizontal 
reaction force curves can be seen (sliding 
combinations with the same ratio of CSy / E’ are 
nearly identical).  Another interesting point is that 
regardless of the CSy / E’ ratio, the maximum 
normalized vertical reaction force value is 
identical indicating that the critical load 
normalizes the maximum vertical reaction force 
well.   

 

 
Fig. 29. Normalized horizontal reaction force versus normalized sliding distance 
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Fig. 30. Normalized horizontal reaction force versus normalized sliding distance 
 

Table 5. The material properties and critical values in this comparison 
 

 Al-Al Stl-Stl (1) Cu-Cu Stl-Stl (2) Al-Cu Stl-Stl (3) 
Pc [kN] 115 346 39.5 60.4 67.3 149 
E' [GPa] 38.55 111.4 72.9 111.4 50.44 111.4 
C 1.645 1.637 1.65 1.637 1.645 1.637 
Sy [MPa] 310 911.1 310 505 310 687.9 
ωc [mm] 0.216 0.221 0.0691 0.0691 0.126 0.126 
CSy/E' 0.013 0.013 0.007 0.007 0.01 0.01 

 

6. CONCLUSIONS 
 
The results of the FEA of frictionless sliding in 
the elastic-plastic domain between two 
hemispheres are discussed.  Results are 
presented for sliding between two steel 
hemispheres and between an Al and a Cu 
hemisphere.  The resultant parameters such as 
deformations, forces, stresses, and energy 
losses that occur are presented and explained.  
All the results are presented nondimensionally in 
order to apply to hemispherical contact at any 
scale.    The development and propagation of 
stress in the hemispheres as sliding progresses 
is discussed.  It is found that as the interference 
increases, the stresses in the hemispheres 
expand and reach the surface at values slightly 
above the yield strength.  The reaction forces 
required to maintain straight line contact are 
investigated and a “load ratio” is defined, similar 

to a friction coefficient due to mechanical 
interference only.    A single set of equations is 
derived to characterize the energy loss due to 
plastic deformation in both cases, because it is 
found that the magnitudes of the net energy at 
the end of sliding are similar for all cases 
analyzed.  An effective coefficient of friction is 
introduced in order to help quantify energy loss 
due to plasticity.  Equations to characterize 
residual deformations in steel-on-steel contact 
and aluminum-on-copper contact are derived.  It 
is shown that aluminum exhibits more 
deformation than copper throughout the 
progression of sliding.  Contact areas during 
sliding are presented, and it is also found that the 
normalized dimensions of the contact region are 
larger in aluminum-on-copper contact. 
 
The FEA results are compared against a semi-
analytical method (SAM). The FEA and SAM 
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results are nearly identical for the smaller 
interference cases. With increasing preset 
interference, the SAM results diverge from the 
FEA results once the hemispheres have passed 
the point of vertical alignment.  As the 
hemispheres come out of contact, the SAM 
predicts a higher horizontal reaction force, 
indicating less energy loss due to plasticity.  The 
vertical reaction force curves are nearly identical 
for both FEA and SAM for all the interference 
cases presented.   
 
The SAM results for both the horizontal and 
vertical reaction forces for the aluminum-on-
copper cases deviate more from the FEA results 
than the steel-on-steel sliding cases. This is 
because the SAM code in its current state cannot 
model both hemispheres as elastic-plastic, and 
hence the Cu is assumed elastic throughout. The 
SAM produces normalized vertical reaction 
forces that are higher than the FEA results in the 
aluminum-on-copper sliding.  This is due to the 
condition that the copper hemisphere is modeled 
as completely elastic, resulting in a higher overall 
load carrying capacity. 
 
A parametric study on the effectiveness of the 
normalization scheme is carried out.  It is found 
that if the ratio of CSy / E’ is unchanged, then the 
normalized reaction force curves are nearly 
identical for identical-material contact.  This 
result can also be seen in the lower interference 
cases of dissimilar-material contact situations 
with the same ratio of CSy / E’, though the results 
diverge as the interference increases.  It is also 
found that regardless of the CSy / E’ ratio, the 
maximum normalized vertical reaction force 
value is identical, indicating that the critical load 
normalizes the maximum vertical reaction force 
well, regardless of the material combination. 
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