
Philip Varney1

Graduate Research Assistant

e-mail: pvarney3@gatech.edu

Itzhak Green
Professor

e-mail: itzhak.green@me.gatech.edu

Woodruff School of Mechanical Engineering,

Georgia Institute of Technology,

Atlanta, GA, 30332

Crack Detection in a Rotor
Dynamic System by Vibration
Monitoring—Part II: Extended
Analysis and Experimental
Results
An increase in the power-to-weight ratio demand on rotordynamic systems causes
increased susceptibility to transverse fatigue cracking of the shaft. The ability to detect
cracks at an early stage of progression is imperative for minimizing off-line repair time
and cost. The vibration monitoring system initially proposed in Part I is employed herein,
using the 2X harmonic response component of the rotor tilt as a signature indicating a
transverse shaft crack. In addition, the analytic work presented in Part I is expanded to
include a new notch crack model to better approximate experimental results. To effec-
tively capture the 2X response, the crack model must include the local nature of the
crack, the depth of the crack, and the stiffness asymmetry inducing the gravity-forced 2X
harmonic response. The transfer matrix technique is well suited to incorporate these
crack attributes due to its modular nature. Two transfer matrix models are proposed to
predict the 2X harmonic response. The first model applies local crack flexibility coeffi-
cients determined using the strain energy release rate, while the second incorporates the
crack as a rectangular notch to emulate a manufactured crack used in the experiments.
Analytic results are compared to experimental measurement of the rotor tilt gleaned from
an overhung rotor test rig originally designed to monitor seal face dynamics. The test rig
is discussed, and experimental angular response orbits and 2X harmonic amplitudes of
the rotor tilt are provided for shafts containing manufactured cracks of depths between
0% and 40%. Feasibility of simultaneous multiple-fault detection of transverse shaft
cracks and seal face contact is discussed. [DOI: 10.1115/1.4007275]

1 Introduction

The demand placed on modern rotating machinery results in
high operating stresses, which increases susceptibility to trans-
verse cross-section fatigue cracking of the shaft. The capability to
detect these cracks at an early stage of progression is imperative
not only for safety but also for economy. Early shaft crack detec-
tion allows the operator to plan accordingly for repair, without the
need to prematurely take the system off-line for an extended
period of time.

The first step in development of an online crack detection
system is the identification of unique system response charac-
teristics induced by a shaft crack. Numerous crack models have
been developed that attribute the appearance of a 2X shaft
speed harmonic to the presence of a transverse shaft crack
[1–10]. The 2X harmonic, appearing at a frequency equal to
twice the shaft speed and reaching resonance at a shaft speed
equal to half of a natural frequency, arises due to stiffness
asymmetry in the system in the presence of a fixed or stationary
forcing such as gravity [1,2]. For this reason, shafts with dis-
similar area moments of inertia also display a prominent 2X
harmonic [1–3,6,8,9].

The extent to which a globally asymmetric shaft model can be
used to approximate a system with a highly localized shaft crack
is limited. It is well known [5–7] that the position of the crack

along the shaft greatly influences the magnitude of the 2X har-
monic response. Any reasonable model of a cracked shaft must
account for this localization.

Cracks can be categorized into gaping (open) cracks
[1,3,6,10,11] and breathing cracks [3–10]. Gaping cracks remain
open regardless of the angle of rotation of the shaft. This assump-
tion is generally valid in systems with small static displacements
and vibrational amplitudes [6,9]. As such, it is reasonable to
assume that the dominant characteristic of a gaping crack is the
localized reduction in stiffness.

In Part I, Casey and Green [1] employ two models to approxi-
mate the characteristics of a gaping crack. The first model uses
the depth of the crack to create a system displaying global shaft
asymmetry; the global nature of the asymmetry allows for an ana-
lytical steady-state solution of the system equations of motion.
Four degrees of freedom are used: two displacements and two
tilts. A gravity-forced response analysis indicates that the 2X
harmonic resonant magnitude increases as crack depth (or level
of asymmetry) increases, while the frequency at which the 2X
harmonic resonance occurs decreases.

The next model approximates the localization of the crack via
crack flexibility coefficients, as per the strain energy release rate
(SERR) [1,3,4,9–13]. The additional flexibilities caused by the
crack are incorporated into a transfer matrix allowing for the
localization of the crack along the shaft. The extended transfer
matrix, as provided by Lee and Green [14] and originally
proposed by Pestel and Leckie [15], allows for expansion of the
transfer matrix to include forcing. As crack depth increases,
the gravity-forced response of the system predicts a decrease in
the 2X resonant frequency with an increase in magnitude, though
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the decrease in frequency is less pronounced when compared to
the globally asymmetric shaft model.

Contrary to gaping cracks, breathing cracks open and close
periodically as a function of the shaft’s angle of rotation, causing
the stiffness to vary as a function of rotation angle. The impact
and rubbing induced by the opening and closing motion of the
breathing crack gives rise to increased damping caused by fric-
tional dissipation [4]. The aforementioned characteristics of a
breathing crack are responsible for the appearance of additional
harmonics occurring at integer multiples of the shaft speed [4–8].
A myriad of models employing time-dependent stiffness coeffi-
cients are available to describe breathing cracks: various nonlinear
equations of motion [8], an adapted SERR approach [4], and
stepped stiffness functions [12,16,17].

The ability of a model to emulate the actual nature of the crack
is imperative for quantitatively predicting the response. Careful
consideration must be given to deduce which crack model best
suits the system. In this work, an experimental procedure for crack
detection using an existing vibration monitoring system is dis-
cussed. The vibration monitoring system was originally con-
structed to monitor flexibly mounted rotor (FMR) mechanical
face seal dynamics [14,18–20]. The ability of the test rig to detect
higher harmonics due to seal face contact is discussed in
Ref. [20], and an active control system is proposed by Dayan,
Zou, and Green [21] to eliminate the contact. Modifications to the
test rig allowing shaft crack detection, as first proposed in Part I,
are provided herein with the goal of discussing the feasibility of
simultaneous multiple-fault detection.

The experimental and analytic results of two gaping crack mod-
els are compared. The first model incorporates local crack flexibil-
ity coefficients derived from the SERR, while the second
approximates the manufactured crack as a small rectangular
notch. Plots of the 2X harmonic tilt response versus shaft speed
are provided for several crack depths, as well as experimentally
measured angular response orbits.

2 Forced Response: Local Crack Flexibility Model

An appropriate crack model must account for the additional
compliance caused by the crack. One widely used method
employs the SERR along with linear elastic fracture mechanics
theory to estimate the additional compliance caused by the
crack [3,13]. The method was first proposed by Irwin [22] and
subsequently extended to rotordynamic systems of six degrees of
freedom by Dimarogonas and Paipetis [13]. The additional dis-
placement ui, along the direction of force Pi, caused by a trans-
verse crack of depth a is

ui ¼
@

@Pi

ða

0

JðyÞdy (1)

where JðyÞ is the SERR [4] and y denotes the direction parallel
to the crack depth, as shown in Fig. 1. The xy frame shown in the
figure is a shaft-fixed reference frame that rotates with the shaft
and always maintains its orientation relative to the crack edge.
The uncracked section of the circular shaft of radius R is repre-
sented by hatching, and the half-width of the crack is b.

The SERR JðyÞ depends on several factors: the elastic modulus
and the Poisson ratio of the shaft material, the stress intensity fac-
tors (SIF) corresponding to the geometry of the cracked section,
and the applied loads. The SIFs are provided by Papadopoulos
and Dimarogonas [3] for a circular cross section containing a
transverse crack. The additional compliance cij caused by the
crack is a flexibility in the ith direction caused by application of a
force in the jth direction, and is found by integrating the definition
of displacement, Eq. (1), along the length of the crack edge:

cij ¼
@ui

@Pj
¼ @2

@Pi@Pj

ðb

�b
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0

JðyÞdydx (2)

The dimension of the crack compliance matrix is reduced from
six to four, as axial and torsional deflection are neglected. The
crack compliances of interest relate the shear force V and bending
moment M to the linear and angular displacements u and h (in
directions x and y) according to
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(3)

where c45 ¼ c54. The compliance matrix shown above can easily
be rearranged into a transfer matrix, as demonstrated by Casey
and Green in Part I [1]. The crack transfer matrix updates the state
vector fSg from the left side of the crack to the right side accord-
ing to

fSgRight ¼ ½Fcrack�fSgLeft
(4)

where ½Fcrack� is the crack transfer matrix provided in Part I [1],
and summarized in Appendix A. The state vector fSg is

fSg ¼ fux hy My � Vx � uy hx Mx VygT
(5)

where the direction of the state vector quantity is indicated by the
subscript. A more comprehensive treatise on the state vector terms
can be found in Ref. [14].

An overhung rotordynamic system of shaft speed n and length
L is shown in Fig. 2, with a crack located a distance L1 from the
clamped support. The remaining distance to the rotor is designated
L2, and the width of the crack is assumed to be negligible. The
shaft-fixed xyz frame shown in the figure is equivalent to that
shown in Fig. 1.

It is well known that forcing due to gravity gives rise to the 2X
harmonic response. The transfer matrix was adapted to include

Fig. 1 Cross section of shaft containing transverse crack

Fig. 2 Overhung rotor system with transverse shaft crack
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forcing by Lee and Green [14] and described in detail by Casey
and Green in Part I [1] for a cracked system. In order to incorpo-
rate forcing due to gravity, the transfer matrix must be expanded
from 8� 8 to 9� 9, and an additional entry of unity is concaten-
ated onto the end of the state vector:

fSg ¼ fux hy My � Vx � uy hx Mx Vy1gT
(6)

The field matrices and point matrices for a rotating reference
frame transfer matrix analysis, incorporating forcing due to grav-
ity, are provided and discussed in Part I [1]. The field matrices to
the left and right of the crack are designated ½F1� and ½F2�, respec-
tively, while the point matrix corresponding to the lumped inertia
of the rotor and damping effects is designated ½P�. Note that the
inertia of the shaft is neglected in comparison to that of the rotor.
For convenience, ½P� and ½F� are summarized in Appendix A. The
total transfer matrix ½U� is found via successive multiplication of
element transfer matrices:

½U� ¼ ½P�½F2�½Fcrack�½F1� (7)

where ½U� is size 9� 9. The overall transfer matrix in Eq. (7)
updates the state vector from the left support to the right support.
As such, application of clamped-free boundary conditions results
in expressions used to obtain the forced response of the system:
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where SU designates the state vector at the support and FE desig-
nates the state vector at the free end. The procedure for obtaining
the forced response is discussed in detail in Part I [1]. Transforma-
tion into an inertial reference frame results in the magnitude of the
total tilt c of the rotor, which when neglecting constant offset is
found to be

c ¼ 1

2
½ðhxr

þ ihxi
þ ihyr

� hyi
Þei2nt� (10)

where the subscripts r and i denote real and imaginary response
components, and t represents time. The appearance of a 2X har-
monic response component of the tilt is immediately evident; the
magnitude of this component is 1

2
jhxr
þ ihxi

þ ihyr
� hyi

j.
The procedure outlined above provides the ability to include

both the localization of the crack and the crack depth. The crack
model presented above is accurate for cracks obeying several cri-
teria. First, the crack must terminate in a sharp tip along the length
b of the crack edge [23]. Also, the crack must remain open and
have a negligible width [4,24]. Finally, the crack flexibility coeffi-
cients calculated in Eq. (2) are valid only for cracks up to 80%
depth [3].

3 Forced Response: Notched Crack Model

As stated above, the SERR approach is valid only for narrow
cracks terminating in a sharp tip. However, for experimental pur-
poses, it is easier to manufacture a finite-width notch than to sub-
ject the shaft to lengthy fatigue testing to generate a crack. In
addition, the width and depth of a crack manufactured as a notch

are easier to measure and quantify than the width and depth of a
crack generated through prolonged fatigue testing.

An overhung rotordynamic system displaying an exaggerated
notch crack is shown in Fig. 3. As before, the xyz frame shown in
the figure is a shaft fixed reference frame that rotates with the
shaft. The width of the notch is Lc, the length of the beam to the
left of the notch is L1, and the length of the beam to the right of
the notch is L2. The cross section of the shaft follows the designa-
tion provided in Fig. 1.

A notch crack transfer matrix model is derived by following the
procedure dictated by Lee and Green [14] for generating a general
field matrix. A shaft-fixed centroidal set of axes �x�y is defined par-
allel to the xy frame shown in Fig. 1, though attached to the cent-
roid of the cracked cross-section. The asymmetric field matrix for
a system of centroidal area moments of inertia I�x and I�y is

½Fnotch� ¼
½FX�4�4 ½0�4�4 0

½0�4�4 ½FY �4�4 0

0 0 1

2
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(11)
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and
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The width of the notch beam element is Lc and the elastic modulus
is E. The centroidal area moments of inertia I�x and I�y for the
cracked circular cross section shown in Fig. 1 are provided in
Appendix B.

As per the discussion on the local flexibility crack model, the
overall transfer matrix ½U� is found through successive multiplica-
tion of elemental transfer matrices:

½U� ¼ ½P�½F2�½Fnotch�½F1� (14)

The magnitude of the forced response of the rotor tilt is obtained
in a manner identical to that shown in Eqs. (8)–(10).

Fig. 3 Cross section of shaft containing transverse notch
crack
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4 Analytic Results: A Comparison Between the Local

Crack Flexibility Model and the Notch Model

The degree to which the crack model emulates the real cracked
system at hand is crucial towards predicting quantitative charac-
teristics of the response. Perhaps most importantly, a suitable
judgment must be made as to what degree the particular cracked
system under consideration displays breathing behavior. It is
emphasized that the aforementioned models are only valid for a
gaping crack.

As stated previously, it is shown in Part I [1] that as crack depth
increases the magnitude of the 2X harmonic response at resonance
increases, while the frequency at which resonance occurs
decreases. The degree to which these phenomena are observed in
a cracked system will be investigated using the aforementioned
models for cracks of varying depth.

4.1 Local Crack Flexibility Model. The first step in the
analysis is to determine the crack flexibility coefficients given by
Eq. (3). Dimensionless flexibilities for cracks up to 75% of the
diameter are shown in Fig. 4. As expected, the flexibility induced
by the crack increases as the crack depth increases.

The parameters for the analysis are provided later in the
description of the test rig and the manufactured shaft. The length
of the shaft is decreased by approximately 3% such that the 0%
crack depth response for both models matches that observed
experimentally. The elastic modulus and Poisson ratio are taken
to be 207ð10Þ9 Pa and 0.33, respectively.

As per Eqs. (8) and (9), the magnitude of the 2X harmonic
response of the rotor tilt is plotted in Fig. 5 versus shaft speed
and crack depth. A two-dimensional view of Fig. 5 is provided in
Fig. 6 for qualitative discussion; darker shades correspond to a
larger response magnitude. The frequency at which the 2X har-
monic tilt response reaches resonance is plotted along with the 2X
tilt resonance magnitude in Fig. 7. As the crack becomes deeper,
the shaft speed at which the 2X response reaches resonance dimin-
ishes, while the magnitude of the maximum tilt increases (see
Figs. 5–7).

The shaft speed at which the 2X harmonic tilt response reaches
resonance is one half of a system natural frequency. As the fre-
quency of shaft rotation deviates from this value, the 2X harmonic
tilt response magnitude becomes markedly diminished.

It is clear from the second column of Table 1 that from 0%
crack depth to 40% crack depth, the frequency of the 2X harmonic
tilt resonance diminishes by approximately 11%. However, from
0% crack depth to 60% crack depth, the frequency of the 2X har-
monic tilt resonance diminishes by approximately 31%. It is clear
that as the crack grows beyond 40% of the shaft diameter, the fre-
quency of the 2X harmonic resonance decreases substantially,
accompanied by a substantial increase in magnitude, as seen in
Fig. 7.

4.2 Notch Crack Model. The response due to a notch crack
is intrinsically tied to the area moments of inertia about different
axes. As the ratio of the area moments of inertia increases, the
magnitude of the 2X harmonic response is predicted to increase.

Fig. 4 Dimensionless crack flexibility

Fig. 5 Local crack flexibility model: magnitude of 2X tilt
response

Fig. 6 Local crack flexibility model: magnitude of 2X tilt
response versus shaft speed and crack depth

Fig. 7 Local crack flexibility model: magnitude and frequency
of 2X tilt resonance

Table 1 2X resonant shaft speeds

Shaft speed (Hz):c

% Crack depth Local crack Notch crack Exp.

0 73.56 73.56 73.56
10 73.28 73.45 73.50
20 72.12 73.18 72.92
30 69.80 72.70 71.67
40 65.83 71.81 70.09
50 59.29 70.07 —
60 48.42 66.37 —
70 31.68 57.91 —
75 22.96 50.30 —
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To assist in interpretation of the results, nondimensional area
moments of inertia for a cracked circular cross section are shown
in Fig. 8, generated using the relations provided in Appendix B. It
is clear from the figure that as notch crack depth increases, the
ratio of the centroidal area moments of inertia likewise increases:
It is, therefore, expected that the response magnitude increases as
notch depth increases.

The magnitude of the 2X harmonic response of the rotor tilt is
plotted in Fig. 9 versus shaft speed and notch crack depth. A two-
dimensional view of Fig. 9 is provided in Fig. 10 where, once
again, darker shades correspond to a higher response magnitude.
The frequency at which the 2X harmonic tilt reaches resonance is
plotted along with the magnitude of the resonant response in
Fig. 11. As the notch crack becomes deeper, the shaft speed
at which the 2X harmonic response reaches resonance
diminishes, while the magnitude of the resonant peak increases
(see Figs. 9–11]. Compared to the local crack flexibility model,
however, the rate at which the 2X resonance frequency drops as
depth increases is much less pronounced.

The 2X resonance frequencies for notch cracks between 0%
and 75% depth are provided in Table 1. It is clear from the table
that from 0 to 40% depth (maximum depth used in experiments,

for safety reasons), the 2X resonance frequency decreases by only
2.4%. However, from 0 to 60% depth the 2X resonance frequency
decreases by approximately 9.8%.

5 Experimental Test Rig

The objective of the experimental work is to investigate the fea-
sibility of using the 2X harmonic tilt response component to
detect a crack in an existing FMR mechanical face seal contact
monitoring system.

Higher harmonics are present in the frequency spectrum of
most real rotor dynamic systems. These harmonics can be
attributed to characteristics such as asymmetric bearings, rubbing
contact within the system, and general nonlinear behavior
[7,20,25]. For this reason, the mere presence of a higher harmonic
does not indicate a particular fault. As such, further signatures
must be employed to distinguish faults.

5.1 Test Rig Overview. Though only a concise description
is given here, a comprehensive description of the test rig used to
detect seal face contact is found in [14,23]. The cross section of
the test rig is shown in Fig. 12. The test rig consists of a precision
spindle into which a shaft is screwed. The three part housing
assembly is labeled “Part I,” “Part II,” and “Part III.” The spindle
is driven by a dc motor with a maximum speed of 1750 rpm. A
1:4 gear ratio of the motor to the spindle provides a maximum
spindle rotation speed of 7000 rpm.

Gaping cracks varying from 0% to 40% of the shaft diameter
are manufactured in the shaft 6.35 mm from the base using electri-
cal discharge machining (EDM). It is important to note that the
EDM process can create corners within the notch that are not
exactly rectangular but instead have a finite corner radius. The
effect of this radius is assumed to be small, however, and the

Fig. 8 Notch area moments of inertia

Fig. 9 Notch crack model: magnitude of 2X tilt response

Fig. 10 Notch crack model: 2X tilt response versus shaft
speed and crack depth

Fig. 11 Notch crack model: magnitude and frequency of 2X
harmonic tilt resonance

Fig. 12 Test rig cross section
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corners assumed to be sharp. The width of the crack is approxi-
mately 1.0 mm. The manufactured rectangular shape of the crack
indicates that the crack is perhaps best modeled using a notch
crack model, such as that discussed above.

The shaft is composed of AISI 4140 steel of diameter 10.16 mm
and length 88.9 mm. The rotor has a mass of 0.5733 kg, polar mass
moment of inertia of 3:847ð10Þ�4

kg �m2 and a transverse mass
moment of inertia of 2:371ð10Þ�4

kg �m2. The center of gravity of
the rotor is axially offset from the end of the shaft by a distance of
10:4 mm. The surface of the rotor is polished to a surface roughness
of 0:1lm (rms) to provide accurate probe data readings.

5.2 Monitoring System. A block diagram schematic of the
monitoring system is shown in Fig. 13. The dynamic response of
the rotor is measured via three eddy-current proximity probes
(one of which is shown in Fig. 12). The probes produce a voltage
proportional to the distance from the end of the probe to the sur-
face of the rotor. The bandwidth of the probes is approximately
10 kHz, and the signal from the probes is first passed through a
1 kHz low-pass filter to prevent high frequency cross-talk and
aliasing. Following the low-pass filter, the signal passes through a
voltage divider that drops the voltage from �21.2 V to �10 V,
which is required for input to the control board. The control board
is a dSPACE DS1102 floating-point controller board with both
analog-to-digital and digital-to-analog conversion, as well as fully
programmable processing capabilities [23].

The probe layout used to measured seal face contact is provided
in Ref. [23]. The orientation of the probes is adjusted to best
observe the gravity induced tilt about the g axis: an optimum lay-
out places probes a maximum distance from the g axis. The probe
layout is shown in Fig. 14 about an inertial g n frame that does not
rotate with the shaft. Gravity acts in the n direction, as shown in
the figure. Probe C is inclined 60 deg above the g axis, and probes
A and B are rotated 90 deg and 180 deg counterclockwise from
this position, respectively.

The probes are capable of measuring tilts cg and cn about
each axis. The rotating reference frame xy used in the analytic
development is shown in the figure to provide reference. A plot of
cg versus cn provides the angular response orbit of the rotor.

5.3 Shaft Damping. A frequency-independent structural
damping model is used to incorporate energy dissipation. Viscous
damping constants equivalent to the structurally damped system
are incorporated into the point matrix provided by Casey and
Green [1] (the point matrix is summarized in Appendix A). The
energy dissipated per cycle via viscous damping is

Edisv
¼ pxcjXj2 (15)

while the energy dissipated via structural damping per cycle is

Ediss
¼ pbkjXj2 (16)

where x is the response frequency, c is the equivalent viscous
damping coefficient, k is the stiffness, b is the structural damping
constant, and jXj is the magnitude of the response. A value for an
equivalent viscous damping coefficient ceq is obtained by relating
Eqs. (15) and (16) and solving for c (which is now the equivalent
viscous damping coefficient ceq):

ceq ¼
bk

x
(17)

An accelerometer is placed on the end of the nonrotating shaft and
the system is set into oscillatory motion; the output from the
accelerometer is used to measure the response of the system. A
log-decrement approach is used, in conjunction with Eq. (17), to
provide an estimate for b of 0.00981. Appendix A discusses the
relationship between b and the damping coefficients dij appearing
in the equations of motion.

Several assumptions are made in the development of the damping
model. Though structural damping has been shown to occur inde-
pendent of frequency over a wide frequency range, there is still sig-
nificant difference between the frequency of response at which the
damping experiments are conducted (700 Hz) and the frequency at
which crack detection experiments are conducted (60–150 Hz). Also,
the stiffness was approximated using the globally asymmetric shaft
model as a worst-case scenario. It is assumed that the crack does not
introduce additional damping into the system.

6 Experimental Results

Experimental results for manufactured shaft notch cracks up to
40% depth are provided for comparison against analytic results
(though analytic results are given for crack depths up to 75%, the
experiments were only carried out to 40% crack depth for safety

Fig. 13 Monitoring system block diagram

Fig. 14 Adapted probe configuration
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reasons). It is shown analytically that the 2X harmonic response is
maximum at shaft speeds equal to one-half of a natural frequency.
An increase in the depth of the crack causes the natural frequen-
cies to decrease (as seen by a decreased 2X resonance frequency)
while the amplitude of the resonance increases.

6.1 2X Tilt Response Results. The following procedure is
employed to generate experimental plots of the magnitude of the
2X tilt response component as a function of shaft speed. The shaft
speed is incrementally adjusted, and a time sample of the probe
data is taken by the DS1102 board. The power spectral density
(PSD) of the time data is computed, and the 2X harmonic
response magnitudes of the tilt are obtained via filtering of the
total signal. The process is repeated for cracks varying between
0% and 40% depth. A single shaft specimen is utilized in the
experiments, and the crack depth is incrementally adjusted for
each subsequent set of experiments. A single shaft is used in order
to mitigate potential variations in a set of shaft specimens and to
isolate the effect of crack depth on the system response.

Figures 15 and 16 show the scaled 2X PSD amplitude of the
response provided by one of the probes as a function of shaft
speed for the low and high shaft speed ranges, respectively. The
experimentally observed 2X resonance frequencies are extracted
and provided in the last column of Table 1. As the crack increases
from 0% depth to 40% depth, the frequency of the 2X resonant
peak decreases by approximately 4.7%.

Recall that from 0 to 40% crack depth, the local crack flexibil-
ity model predicted an 11% decrease in the 2X resonant peak
frequency while the notch model predicted a 2.4% decrease. It is
clear that the experimentally measured decrease of 4.7% lies
between the analytically predicted values. A plausible conjecture
for this result is that the manufactured notched crack was neither
purely a local crack nor purely a stiffness asymmetry (the notch
model includes only stiffness asymmetry to approximate the
crack). It is likely that the actual manufactured crack includes
characteristics of both models. The finite-width nature of the crack
creates a corresponding stiffness asymmetry similar to the notch
model, while stress concentrations due to the sharp edges con-
tained within the crack incorporate aspects of the local crack flexi-
bility model (recall that the local crack flexibility model is
developed using stress concentration factors). Additionally, the
discrepancy between the experimental results and the notch crack
results could be caused by neglecting the inertia of the shaft when
compared to the rotor.

6.2 Tilt Orbit Monitoring and Orbit Shape. The probe sig-
nal is filtered to extract only the 2X component of the angular
response orbit caused by the crack. Since the seal has been

removed in these experiments, the measured 2X harmonic
response component is solely due to the crack.

Figure 17 shows the 2X content of the angular response orbit
for a 40 Hz shaft speed (within the low frequency regime) that
does not contain 2X resonance; cg and cn are the prior discussed
tilts about the g and n axes, respectively. The depth of the crack is
indicated in the plot. It is clear that the magnitude of the 2X angu-
lar response orbit increases slightly as crack depth increases. The
shape of the orbit displays some elliptical behavior.

The elliptical behavior of the 2X component of the angular
response orbit becomes much more pronounced for larger cracks
near resonance, as seen in Fig. 18 for a 71 Hz shaft speed. It is
clear from the plot that the 2X component of the angular response
orbit occurs predominantly about the g direction since the rotation
caused by gravity is primarily about this axis. Similar plots for a
wide range of frequencies are provided in Ref. [23].

Since this work focuses on exploring the feasibility of using an
existing monitoring system to detect an additional system fault, it
is important to consider conflicts arising due to the presence of
both faults simultaneously. The seal face contact detection system
diagnoses contact based on relative variance between the proxim-
ity probe signals [21,26–28]. However, the total tilt orbit shape

Fig. 15 Low speed range of experimental 2X response
Fig. 16 High speed range of experimental 2X response

Fig. 17 Experimental 2X content of tilt orbit: 40 Hz
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for the sealing system when contact is occurring is mostly circular
[28]. For a cracked shaft, the total tilt orbit shape is decidedly
asymmetric, as shown in Figs. 19 and 20. Evident from Figs. 19
and 20 is the observation that as crack depth increases, the
asymmetric nature of the total angular response orbit increases,
with important implications for simultaneous multiple fault
detection.

6.3 Feasibility of Simultaneous Multiple Fault Detection.
Lee and Green [20] show that higher harmonics, including the 2X
harmonic, are influenced by seal face contact. To simultaneously
detect seal face contact and transverse shaft cracks, significantly
different response characteristics must be demonstrated for each
fault. It is observed that the magnitude of the 2X harmonic
induced by a transverse shaft crack decreases substantially when
the shaft speed is far from the 2X resonance frequency.

Seal face contact, however, results in the appearance of integer
harmonics for many shaft speeds [20]. In addition, observation of
the total tilt orbit shape could distinguish the faults, as the total tilt
orbit shape is highly asymmetric for a large transverse shaft crack
while mostly circular for seal face contact. For small cracks (up to
20%) with only a slight amount of asymmetry in the total angular
response orbit, higher harmonics (3X, 4X, etc.) can be employed
to distinguish the faults. The difference in these signatures sug-
gests that it is plausible that the monitoring system developed for
seal face contact can be successfully adapted to simultaneously
detect vastly different types of faults.

7 Conclusions

It is clear that the model selected to approximate the crack is
imperative towards quantitatively predicting response character-
istics. The 2X resonant frequency of the tilt estimated by the
local crack flexibility model decreases at a decidedly higher rate
than that predicted by the notch crack model. However, the ex-
perimental results are observed to decrease at a rate that is
between those predicted by the local crack flexibility model and
the notch crack model. It is likely that the decrease is indicative
of a hybrid crack model displaying characteristics of both mod-
els. The finite width and rectangular geometry of the crack indi-
cate a notch crack model, while the stress concentrations within
the notch introduce additional compliances similar to the local
crack flexibility model.

A test rig designed for mechanical face seal contact is modified
to detect the presence of a transverse shaft fatigue crack. Experi-
mental results of the magnitude of the 2X harmonic tilt response
are provided for cracks between 0% and 40% depth. In addition,
the 2X component of the angular response orbit is extracted and
plotted for two shaft speed regimes: one far from the 2X resonant
frequency and one near the 2X resonance frequency. As the shaft
speed draws closer to the 2X resonance frequency and the crack
depth increases, the elliptical nature of the 2X component of the
angular response orbit becomes more pronounced.

The feasibility of using the existing system to simultaneously
detect transverse shaft cracks and seal face contact is discussed.
While both gaping shaft cracks and seal face contact induce a
2X harmonic response component, significant differences exist

Fig. 18 Experimental 2X content of tilt orbit: 71 Hz

Fig. 19 Experimental total tilt orbits near respective 2X reso-
nance locations for cracks between 0% and 30% depth

Fig. 20 Experimental total tilt orbit near 2X resonance for 40%
crack depth
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between the response profiles. First, seal face contact induces
shaft speed harmonics for many integers of the shaft speed. Sec-
ondly, the total angular response orbit for seal face contact is
mostly circular, whereas the total angular response orbit for a
system displaying a shaft crack is highly asymmetric. Therefore,
it is concluded that the existing vibration monitoring system is
indeed capable of distinguishing shaft cracks and seal face
contact.
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Nomenclature

E ¼ elastic modulus
Ii ¼ area moment of inertia about the ith axis
L ¼ length of field element

M ¼ bending moment
Pi ¼ force in ith direction
V ¼ shear force
X ¼ magnitude of response
½C� ¼ crack compliance matrix
½F� ¼ field matrix
½P� ¼ point matrix
½U� ¼ overall transfer matrix
fSg ¼ transfer matrix state vector

a ¼ crack depth
b ¼ length of half of crack edge

ceq ¼ equivalent viscous damping coefficient
cij ¼ compliance in ith direction by force in jth direction
n ¼ shaft speed
u ¼ linear deflection

ui ¼ displacement in ith direction
b ¼ structural damping coefficient
c ¼ magnitude of rotor tilt
h ¼ angular deflection
� ¼ Poisson ratio
x ¼ frequency of response

r; i ¼ real/imaginary response component
x; y ¼ direction of state vector terms

Appendix A: Transfer Matrices

Lee and Green [14] provide the general 9� 9 field matrix for
beam segment i undergoing two-plane bending:

½F�i ¼

1 L
L2

2EI

L3

6EI
0 0 0 0 0

0 1
L

EI

L2

2EI
0 0 0 0 0

0 0 1 L 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 L
L2

2EI

L3

6EI
0

0 0 0 0 0 1
L

EI

L2

2EI
0

0 0 0 0 0 0 1 L 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

2
66666666666666666666666664

3
77777777777777777777777775

9�9

(A1)

The compliance matrix (see Eq. (3)) is rearranged to provide the
crack flexibility transfer matrix, ½Fcrack� (note the expansion from
8� 8 to 9� 9):

½Fcrack� ¼

1 0 0 �c22 0 0 0 0 0

0 1 c44 0 0 0 c45 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 �c33 0

0 0 c54 0 0 1 c55 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

2
6666666666666666664

3
7777777777777777775

9�9

(A2)

The point matrix, developed in the rotating reference frame xy
shown in Fig. 1, is

½P� ¼
½D�4�4 �½G�4�4 0

½G�4�4 ½D�4�4 0

0 0 1

2
64

3
75

9�9

(A3)

where

½D� ¼

1 0 0 0

0 1 0 0

0 ðIp � ItÞn2 � Itp
2
r 1 0

mðp2
r þ n2Þ 0 0 1

2
6664

3
7775

4�4

(A4)

and

½G� ¼

0 0 0 0

0 0 0 0

0 �ið2It � IpÞnpr 0 0

2imnpr 0 0 0

2
6664

3
7775

4�4

(A5)

The mass of the lumped inertia is m, the transverse and polar mass
moments of inertia are It and Ip, respectively; n is the shaft speed;
and pr is the relative whirl speed (for a gravity-forced response
analysis, pr ¼ n). Damping and forcing can be accounted for
through the following:

½Ptot� ¼ ½P� þ ½P0� (A6)

where

½P0� ¼

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

ind12Y
�ind22Y

0 0 0 0 0 0 0

ind11Y
�ind12Y

0 0 0 0 0 0 mg

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 ind12X
�ind22X

0 0 0

0 0 0 0 ind11X
�ind12X

0 0 �img

0 0 0 0 0 0 0 0 0

2
66666666666666666664

3
77777777777777777775

9�9

(A7)

The shaft speed is n, g is the acceleration due to gravity, and
the damping coefficients dijq are equivalent to the ceqij

values
provided in Eq. (17). The stiffness value k is taken to be the
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average of the stiffness values about the x and y axes, as discussed
in Ref. [1].

Appendix B: Area Moments of Inertia

An integral aspect of the notch crack model is calculation of the
area moments of inertia about the shaft-fixed centroidal axes �x
and �y, which are parallel to the shaft-fixed axes x and y shown in
Fig. 1. Note that the axes x and y are affixed to the shaft at the
geometric center of the circular, uncracked cross section.

The area moments of inertia Ix and Iy about the x and y axes
shown in Fig. 1 are found to be

Ix ¼
ðR� aÞb

4

2

3
b2 þ R2

� �
þ pR4

8
þ R4

4
tan�1 R� a

b

� �
(B1)

Iy ¼
ðR� aÞb

4
R2 � 2b2
� �

þ pR4

8
þ R4

4
tan�1 R� a

b

� �
(B2)

where b, the length of the crack, is b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ra� a2
p

. However, the
area moments of inertia must be found about the centroid of the
cracked cross section rather than the centroid of the intact cross
section. The parallel axis theorem is, therefore, employed (note
that the x and �x axes coincide) to find the centroidal area moments
of inertia I�x and I�y:

I�x ¼ Ix (B3)

I�y ¼ Iy � A�y2 (B4)

where �x is the distance along y between the centroid and the
center of the intact cross section, given by Casey and Green [1]
to be

�x ¼ 2

3A
b3 (B5)

The area A is found to be

A ¼ ðR� aÞbþ R2 sin�1 1� a

R

	 

þ pR2

2
(B6)

The resulting area moments of inertia are made nondimensional
by dividing by the respective area moment of inertia of the intact
cross section. The nondimensional area moments of inertia are
then normalized to a value of one for 0% crack depth.
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