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Dynamic Analysis of a Cantiiewer-
iounted Gas-Lubricated Thrust 
Bearing 
The dynamic stability of a cantilever-mounted gas-lubricated thrust bearing is 
analyzed using the step-jump approach. The solution is based on linearization of the 
equations of motion assuming small perturbation about an equilibrium position. 
Stiffness and damping of the lubricating film are expressed analytically in terms of 
Laguerre coefficients thus, enabling a parametric investigation of the bearing. The 
general theory is used to examine an actual bearing design. It is found that the 
theoretical results agree with existing experimental data, in that, both show that the 
bearing is unstable at the design point and becomes more stable as speed decreases. 

Introduction 
Higher speeds and operating temperatures in modern 

rotating machinery require bearings that are both stable and 
have good contaminant ingestion under severe operation 
conditions. The all-metallic resilient pad gas-lubricated thrust 
bearing [1] is an example of a bearing concept designed to 
meet these requirements. In order to optimize the per­
formance of such bearings a theoretical investigation was 
carried out [2] and as a result the cantilever-mounted gas-
lubricated thrust bearing was suggested [3] and analyzed [4]. 
An experimental bearing, designed to operate at 34,000 rpm, 
was built and tested successfully up to 17,000 rpm showing 
good agreement with theoretical predicted performance [5]. 
However, the design speed of 34,000 rpm could not be 
reached because of vigorous vibrations in the bearing 
assembly. 

The purpose of this paper is to supplement the steady state 
analysis [4] with a dynamic investigation of the cantilever-
mounted bearing. The step-jump approach [6], which has 
been previously used in analyzing a gimbal mounted gas 
lubricated thrust bearing [7], will be applied to determine the 
effect of various parameters on the stability of the cantilever-
mounted bearing. 

Following the outlining of the general theory as applicable 
to the cantilever-mounted gas-lubricated bearing, the par­
ticular design of reference [5] will be examined trying to 
understand its behavior at high speeds. 
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Bearing Description 

Figure 1 is a schematic representation of the cantilever-
mounted thrust bearing. The bearing consists of individual 
sector-shaped flat pads each of which is mounted on a can­
tilever beam. Beam deflection results in the desired wedge-
shape film between runner and pad. The deflection is so 
designed to allow an optimum pad tilt at selected operating 
conditions such that the load carrying capacity is a maximum. 

Details of an individual cantilever-mounted pad are shown 
in Fig. 2. The pad is attached to the beam along a line (called 
the pitch line) that is parallel to the pad trailing edge. This 
arrangement assures constant minimum film thickness along 
the trailing edge and hence, maximum load carrying capacity 
[2]. The pitch angle y, pitch line location d, and minimum 
film thickness h2 completely define the relative position of 
each pad with respect to the runner as well as the beam end 
deflection 5b. 

At equilibrium the relations between y, 8b, and the load W 
on the pad are found from beam deflection formulas, e.g., 
[8]. Thus, 

P I2 

bb = W — + W*(xCB-d) — 
* 3EI cp 2EI 

(1) 

l=W*-^i + W*(xcp-d) 
EI 

(2) 

where W* (xcp - d) is the moment applied at the beam end 
by the load W* acting at xcp, the center of pressure, which is 
given by 

xcp=rcv sin ((3-6cp) (3) 
A useful relation between y and 8b can be found from 
equations (1) and (2) in the form 

7 _ 3 l + 2(xcp-d) 

8b 2l2+3(xcp-d)l 
(4) 

Dynamics of the Cantilever-Mounted Pad 

In the following we shall assume that the runner is aligned 
with the bearing and hence, axisymmetry prevails. In this 
case, only one pad with its corresponding portion of the 
runner has to be examined. The dynamic system is shown in 
Fig. 3 where mR indicates the rotor mass divided by the 
number of pads. The runner can move axially thus, it has one 
degree of freedom designated xx. The pad can move axially 
and can also rotate about the pitch line; hence, it has two 
degrees of freedom x2 and xi. However, due to the constraint 
of the beam these two degrees of freedom are related through 
equation (4). 

The dynamic equations of the bearing can be put into the 
dimensionless general form 

MJ8Xj{T)='E[8Fii(T)+6Bii(T)] (5) 

where 8FiJ and <5B,:/ are fluid film and beam forces, respec­
tively, in degree of freedom j responding to a disturbance in 
degree of freedom ;'. The beam response can be expressed in 

A ,•;;. — 

N o m e n c l a t u r e 

' ( / • * 

B„ = 

C„ = 

C, = 

D 

k'h Laguerre coefficient for 
response in j direction due to a 
jump in/direction 
defined in equation (13) 
dimensionless beam reactions, 
b/parl 
beam general reaction 
element ij in matrix equation 
(14) 
/th coefficient in polynomial 
equation (20) 
dimensionless pitch line 
location, d/r0 

pitch line location 

E 
G 

Hi, 

h 
h7 

h 

1 

h 

Ku 

= beam modulus of elasticity 
= general mass factor, 

equation (18) 
= dimensionless response in j 

direction due to a jump in / 
direction 

= film thickness 
= minimum film thickness 
= dimensionless film thickness, 

h/h2 
= beam cross section moment of 

inertia 
= pad moment of inertia about 

pitch line 
= beam spring constants (Table 

1) 

*/ 

L 
I 

/ ' 
M, 

m„ 
mR 

N 

P 
P 

Pa 

number of Laguerre coef­
ficients 
dimensionless length, //r0 

beam length 
pad center of mass location 
general dimensionless mass 
(Table 1) 
pad mass 
rotor mass per pad 
number of independent degrees 
of freedom 
dimensionless pressure, plpa 

pressure 
ambient pressure 
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terms of spring constants K^ by rearranging equations (1) and 
(2) in the form 

b> 

12£Y 
1 - I 

2 

/ P 
2 3 

Xi 

(6) 

where 6, and b2 substitute the force and moment, respec­
tively; andx2 , Xj replace 8b and y, respectively. 

Normalizing *, and x2 by h2, x3 by h2/r0, forces by par\, 
and moments by parl the dimensionless equations of motion 
are 

3 

M>8Xl = ^8Fn (7) 
/ = ] 

3 

M2(8X2+L'8X3) = J^8Fa+K228X2+Ki28X} (8) 

3 

M3 8X3 +M2L'8X2= Yt 5 ,̂3 + K2i 8X2 + Kn 8X} (9) 

In equations (8) and (9) L' is the dimensionless distance /'//•„ 
(see Fig. 3) from the pad center of mass to the pitch line. The 
general dynamic forces in equations (8) and (9) are calculated 
at the pitch line rather than at the pad center of mass. This 
allows the use of beam reactions at the beam end instead of 
transforming these reactions to the pad center of mass. The 
various dimensionless general masses Mj for they'th degree of 
freedom along with the various spring constants Ku are given 
in Table 1. 

Applying small perturbation about the equilibrium position 
in each degree of freedom in the form 

8Xi(T)=8Xie"T (10) 

and expressing the fluid film general forces SFy (T) in terms 
of response to step-jump (see Appendix 1) we have 

8FU(T) = 
k = \ 

8X,e'T 

where 

f= 
via. 

v/a+ 1 

(11) 

(12) 

Also, denoting 

Table 1 Dimensionless Mass My and Spring Constants Ktj 

Degree of 
freedom j 

Dimensionless 
mass M; 

' * * ' ( i ) 2 

Pad 

nph2 ( ? ) 

Pad 

'Ml)2 

Part, 

Dimensionless spring constant A"(/ 

/ = 1 / = 2 

\2EIh2 

6EIh2 

Pad'2 

6EIh2 

Pad? 

4EIh7 

Pad' 

aIJ=H,J(co)+ J^Ayik-l)!* (13) 

equations (7) through (9) can be arranged in a matrix form 

C. 

c,. 

C, 

Cr 

C, 

Cr 

C13 Q>3 C33 

8Xt 

8X2 = 0 (14) 

where the various elements C,y of the matrix are 

C„ = M , a 2 r 2 - ( l - f ) 2 f l „ 

Q i = - d - f ) 2 « 2 i 

Q , = - ( l - t f 2 f l 3 1 

C12 = ^ d - f ) 2 a l 2 

c22 = M2a2r2-(i-n2(«22+^22) 
C32 = M2a

2?L'~(l-tf{ai2+Kn) 

C13 = - ( l - f ) 2 « 1 3 

C23 = M2a
2?L'-(l-~tf(a23+K23) 

C33 = M 3 a 2 r 2 - ( l - r ) 2 ( « 3 3 + ^ 3 3 ) 
Recalling that 8X2 and 8X3 are related due to the beam 

constraint we have 

Nomenclature (cont.) 

R = dimensionless radius, r/r0 

r = radial coordinate 
/•,• = pad inner radius 
r0 = pad outer radius 
T = dimensionless time, cot/2 
t = time 

W = dimensionless load W*/par\ 
W* = load 
Xj = dimensionless coordinate in y'th 

degree of freedom, normalized 
by h2 or by h2/r0 

Xcp = dimensionless distance xcp /r0 

Xj = general coordinate in jth degree 
of freedom 

a 
13 
y 

8F„ = 

8Xj = 

AXj 

center of pressure location 
attenuation coefficient 
sector angle 
tilt angle about pitch line, 
beam angular deflection 
beam end deflection 
dimensionless fluid film force 
in j direction due to a jump in i 
direction 
dimensionless displacement in 
7th degree of freedom 

= dimensionless step-jump in 
y'th degree of freedom 

= tilt parameter, yr0/h2 

= transform variable, equation 
(34) 

6 — angular coordinate 
X = beam constraint factor, 

equation (16) 
A = compres s ib i l i t y n u m b e r , 

6iuar2
0/p„hl 

H = gas viscosity 
v = complex exponent 
a> = shaft angular velocity 

Subscripts 

cp = center of pressure 
eq = equilibrium 
o = old 
n — new 
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5X, = \5X2 

where by equation (4) 

(15) Table 2 Laguerre Coefficients 

X = 
L + 2(Xcp-D) 

(16) 

~L2+(Xcp~D)L 

The dimensionless mass M3 (see Table 1) is a measure of the 
pad moment of inertia about the pitch line, which, for a pad 
of uniform thickness, relates to the mass mp by 

1 l 2 1 + m / sin 2/3 \ 
2/3 

Hence, multiplying by h2(o}/2)2/parj, we have 

where 

(17) 

G = 
1 

1 + & ('-W)M'0^ 2/3 

Using equations (15) and (17) in (14), and combining the 
second and third rows of the matrix we finally have 

Cl2 + C,3 

c21 + xc31 

C22 + C23+X(C32 + C33) 

5X 

8 * 2 

= 0 

(19) 

where 

C 3 3 =GM 2 a 2 f 2 - ( l - f t ) 2 ( f l 3 3 +* 3 3 ) 

For a solution of (19) to exist the determinant of the coef­
ficient matrix must equal zero. Each element of this deter­
minant is a series in ft, hence the expansion of the determinant 
yields a polynomial in ft of order N(kL + 2) 

Co + C^+C2^ + ...CNikL+2)^
kL^=0 (20) 

where N is the number of independent degrees of freedom 
(two in our case), and kL is the finite number of Laguerre 
coefficients Aijk needed in equation (11). 

Equation (20) represents the characteristic equation of the 
dynamic system shown in Fig. 3. The roots of f are trans­
formed to values of v by equation (12). If any of the real parts 
of v is greater than zero, then the system is unstable for that 
particular set of dynamic parameters. 

Results and Discussion 

The general theory described in the previous section was 
used to analyze the effect of beam geometry and pad and 
runners masses on the stability of the cantilever-mounted 
bearing described in reference [5]. The bearing has the 
following dimensions and operating conditions: 

Outer radius, r0, m 5 x 10~2 

Inner radius, rh m 2.5 x 10~2 

Ambient pressure, pa, N/m2 105 

Dynamic viscosity of gas (air), JX, Ns/m2 1.86xl0~5 

Angular velocity, co, rpm 34.000 
Total load, W*,N 74 
Young modulus of beam material, E,N/m2 2.1 x 10" 

The bearing consists of six individual pads; hence, the load 
per pad is 74/6 N. In reference [4] it was found that this 

0 
1 
2 
3 
4 
5 

-0.00872 
-0.00397 
-0.00159 
-0.00055 
-0.00022 
-0.00023 

-0.00338 
-0.00226 
-0.00157 
-0.00114 
-0.OOO87 
-0.00071 

-0.02325 
-0.00924 
-0.00304 
-0.00068 
-0.00005 
-0.00004 

-0.00550 
-0.00269 
-0.00133 
-0.00072 
-0.00047 
-0.00036 

bearing will operate optimally if the compressibility number is 
A = 50 and the tilt parameter is e = 3.2, where 

and 

A = 6p,wrl/pah
2 

e = yr0/h2 

The first step in the analysis is to obtain a steady state 
solution for the pressure distribution in the lubricating film. 
This can be done by solving the Reynolds equation using one 
of the methods described in [9]. It is very important that the 
numerical results be as accurate as possible to avoid large 
errors in computing the response coefficients Hy (see Ap­
pendix 1). Hence, if using an iterative solution for the 
pressure, the convergence criterion should be very small. In 
the present work a criterion of 10 ' 1 was used to determine 
pressure convergence [10]. Such an accuracy was achieved by 
first solving for (Ph)2 using successive over-relaxation 
technique to get fast initial convergence, and then letting the 
pressure diffuse with time until the difference in grid pressures 
over successive time iterations became less than 10~7. 

The step-jumps for calculating H^ (see Appendix 1) were 
AXX = AX2 = 0.02 and AX3 = 0.03. These jumps 
correspond to 2 percent of the equilibrium dimensionless 
minimum film thickness and about 1 percent of the 
equilibrium tilt. Various time steps were examined [10] and it 
was found that with AT = 10~2 one hundred time steps are 
enough to obtain the asymptotic values Hy (oo). However, a 
time step AT = 2 x 10~3 was used in order to get more data 
points for Hjj(T) and hence better accuracy in fitting the 
Laguerre polynomials to the numerical results. Examination 
of various values of attenuation coefficient a revealed that a 
= 3.8 resulted in the fastest convergence of the series of 
Laguerre coefficients AiJk. These coefficients are presented in 
Table 2 from which it is seen that 6 terms are.sufficient for the 
series ofAjjk. 

Once the response coefficients at the new equilibrium 
position Htj (co) and the Laguerre coefficients Aijk are known 
a parametric investigation of the bearing stability can be 
performed. The computer program is described in detail in 
[10]. Basically, it calculates for a given set of pad geometry 
and operating conditions, and for various values of L, D, M, , 
and M2 the following: 

(1) Center of mass location L' (see Fig. 3) 
(2) The factors X and G (equations (16) and (18)) 
(3) Spring constants Ky. Here only K22 is needed (see 

Appendix 2) since all the other constants can be expressed in 
terms of K22 

(4) The coefficients C,- of the polynomial equation (20) 
(5) The roots ft of the polynomial equation (20) and their 

corresponding vt (equation (12)) 

Finally, the program searches for the value of M2 which 
makes the largest real part of all v-, zero for a set of parameters 
Mx, L, and D, thus finding the stability threshold for the 
bearing. 

The bearing of [5] was designed with a beam length L = 0.8 
and pitch location D = 0. The rotor dimensionless mass per 
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•f .5 

.1 .2 .3 .4 .5 
DIMENSIONLESS ROTOR MASS, Mj 

F ig . 4 S tab i l i t y map f o r D = 0 

pad and the pad mass were A/, = 0.225, and M2 = 7.1 x 
10~2, respectively. Hence, the range of the various 
parameters for the present investigation was 0.6 < L < 1.6, 
0 < D < 0.35,0.1 < M , < 0.6, and 10-4 < M2 < 10. A too 
long or too short beam is impractical because of space 
limitations (see Fig. 1). 

Figure 4 is an example of a stability map for the case D = 0 
and various beam lengths L. An interesting result is the linear 
relation between M{ and M2 at stability threshold. For any 
given value L the ratio M2/Mx is a constant depending only 
on L. This result is typical of all the pitch line locations D 
examined in this work. Similar results were obtained in [7] 
where a linear relation was found between the moments of 
inertia of inner and outer gimbals of the gimbal-mounted 
bearing. 

The result of constant values for the ratio M 2 /M, at any D 
and L enables one to plot these constant values at the stability 
threshold as functions of the dimensionless beam length and 
pitch line location. Fig. 5 presents stability maps obtained 
from such plots. No data is shown in the figure for L < ID 
since it was found in [4] that L > 2D is necessary for proper 
operation. Both M, and M2 are linearized by the same factor, 
hence the ratio M2/Mt is identical to the ratio mplmR. It is 
clear from Fig. 5 that at any given ratio mp/mR the bearing 
stability is improved by increasing l/r0 and d/r0. Increasing 
both l/r0 and d/ra without increasing the housing size can be 
accomplished by holding the beam support at its place and 
moving the pitch line toward the pad leading edge (see Figs. 1 
and 2). 

The bearing of reference [5] has a mass ratio of mp/mK = 
0.0315, beam length l/r0 = 0.8, and pitch line location d/r0 

= 0. As can be seen from Fig. 5 such bearing is very unstable 
at the given load and speed of the design point. Indeed, the 
bearing in [5] operated well only up to 17,000 rpm where 
vigorous vibration started and prevented further increase in 
speed. 

As an attempt to study the effect of shaft speed co on the 
stability of the bearing described in [5], two slightly off-design 
points were also examined. These were at A = 50 and D = 0 
but at tilt parameter values e = 3.6 and e = 2.8 (the tilt 
parameter at the design point is 3.2). A higher e value in-

2.25 
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1.75 
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1.25 
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1.0 1.2 1.4 
DIMENSIONLESS BEAM LENGTH, i / r „ 
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Fig. 5 Thrust bearing stability as a function of beam length and pitch 
line location, t = 3.2 
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Fig. 6 Thrust bearing stability as a function of beam length and tilt 
parameter, d/ra = 0 
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dicates lower shaft speed since the minimum film thickness 
decreases with decreasing speed. The results are presented in 
Fig. 6. It is clear from the figure that the bearing tends to 
become more stable as the speed decreases. This result fairly 
agrees with the general trend found experimentally in [5]. 

As can be seen from Fig. 5 the bearing of reference [5] with 
the mass ratio mplmR = 0.0315 could not be stabilized at the 
design point with any practical beam geometry. Changing the 
mass ratio would not help either since the ratios needed are 
too high and impractical. Hence, it seems as if the best way to 
improve stability is by providing more damping to the system. 
This can be done, for example, by adding external Coulamb 
friction on the sides of the beams. The present analysis does 
not include damping other than this presented by the Laguerre 
coefficients. Further investigation is needed to determine how 
much damping is required to stabilize the bearing. 

Conclusion 

The step-jump approach is implied to a parametric in­
vestigation of a cantilever-mounted gas-lubricated thrust 
bearing dynamics. The general theory is presented and then 
used to examine an actual bearing design. The bearing was 
found unstable at its design point of 34,000 rpm both ex­
perimentally and by the theoretical analysis presented here. 
The theory indicates improvement in stability as speed 
decreases. Experimental results show stable operation at 
17,000 rpm. It is suggested that bearing stability at the design 
point could be improved by adding damping to the system. 
Further investigation is needed to determine how much 
damping is required to stabilize the bearing. 
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A P P E N D I X 1 

Step-Jump Approach as Applied to the Cantilever-Mounted 
Bearing 

The method assumes the bearing is in an equilibrium 
position and then obtains responses to a small disturbance by 
using of small perturbation techniques. Suitable polynomial 
representation of the responses permits a characteristic 
equation to be established and hence, a parametric in­
vestigation of the system. The general procedure is as follows: 

(a) For a given operation condition (A,e) obtain a steady 

state solution of the Reynolds equation 

3 ( -,dP\ Id 
[RPtf — + 

dR \ 3R<> R 36 (ppfe)=AR[ 
diPfi)_ d(Ph)i 

36 + T j 
(21) 

where for the particular bearing 

li=l + eR s in(0-0) 

For the steady state solution d(Ph)/dTxn (21) is set equal to 
zero. After the pressure P is found the load at equilibrium, 
Weq, and center of pressure, Xcp, are calculated by in­
tegrations of P over the pad area. 

(b) The bearing is given a step jump in one of its degrees of 
freedom and the new film thickness distribution hn is com­
puted. If the jump is in one of the translational degrees of 
freedom Xl or X2, the new film thickness will be h„ = h0 + 
AX. If, however, the jump is in the rotational degree of 
freedom we have 

h„ = l+(e + AX3)R sin(/3- (22 

In the second case there is no change in the minimum film 
thickness; hence, the compressibility number A does not 
change. However, with the jumps AX, or AX2 the minimum 
film thickness changes and the new compressibility number 
becomes 

(yjxu>r2
0 A 0 

" pa(h2+Ah2)
2 ~(\+AX)2 

(c) Since the jump is an isothermal process, the value of Ph 
remains constant. Therefore, after the jump, pressures 
throughout the grid of the pad area are computed from 

Pn=P0
Hf (23) 

(d) With the new values of pressures, the new load and 
center of pressure at time T = 0 are computed. The 
calculation is then repeated at a time T + AT by using the 
known pressures from the previous time Tin equation (21) 
along with the film thickness distribution h„ and the com­
pressibility number A„. Thus, 

P(T+AT)=P(T)+ — (T)AT 
dT (24) 

The load and center of pressure values of each time step are 
saved, and the procedure is continued forward in time until a 
new steady state condition is reached. Dimensionless 
responses are computed from the following: 

HU(T) = 
rV(T)~Wec 

AX, 

W(T)\xcp(T)~D ea \ "^ cp, eq U ) 

Hn(T) = 
AX, 

H3l(T) = 
W(T)-Wec 

AX, 

H„ = 

W( T) [xcp (T) -D] - Weq (Xcp_eq ~D) 

(25) 

(26) 

(27) 

(28) 

AX, 

From Fig. 3 we can see that 

H22(T)=H2l(T)=Hl2(T)=Hll(T) 

Hn(T)=Hl3{T) 

H32(T)=H3i(T) 
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hence, only the four responses / / , , , Hn, Hiu and Hi} are 
needed to determine the total of nine responses //,-,-. 

The numerical data of Hq is best fitted by Laguerre 
polynomials [6] in the form 

HIJ(T)=HIJ(°o)+ ^AukLk(aT)e-»T 

Aijk = «$"[//(,- ( T) -Hu (OO)]L, (aT)dT 

where 

M0 = E 
k\ ( - € ) ' 

!f0 (k — m)! m! AM ! 

S.Ye"7' (33) 

f= iV<X + 1 
(34) 

The Laplace transform has the form 

- I - + I U 

LkWe <ty="r (35) 

(29) Substituting equation (35) in equation (33) we finally obtain 
equation (11). 

where //(oo) is the response after the new equilibrium is 
reached, and a is an attenuation factor. The Laguerre 
coefficients A ijk in (29) are determined from 

(30) 

(31) 

A P P E N D I X 2 

Spring Constants of the Cantilever Beam 

As can be seen from Table 1 spring constants K,j can be 
expressed in terms of K22 in the form 

The two unknowns in (30) are the number of terms, kL, 
necessary for convergence of the series, and the value of the 
attenuation coefficient a. Selecting an optimum value for a 
results in fast convergence of the Laguerre coefficients AiJk 

and, hence, a small number of terms kL. Selection of optimal 
a is accomplished by curve fitting routines through trial and 
error until the desired fit of the numerical data for Hq (T) is 
achieved. 

The deviational fluid film forces can be expressed [6] in the 
general form 

&Fil(T)=Hu(<»)&Xi(T) + 

\ 5X, ( 7 - r) £ AIJkLk ( a T ) e ^ d r (32) 

Substituting equation (10) in (32) we obtain 

SFU(T) = 

oo „ j — ( — + I jar 

Hij{oo)+ - YiAUk \Lk(aT)e " d{ar) 

1 / 
K2i =Kn= - -— K22 

L i ... 

Kr 
3 \r 

I \ 2 

T.) Kr 

The constant K22 itself is obtained from matching the beam 
deflection with the required pad tilt at the design point. Thus, 
from equation (2) 

Wl1 ( xco-d\ 
EI= -^— ( 1 + 2 - ^ - ; — ) 

2Y / 
(36) 

Using the definitions e = yr0/h, W = W*/par
2
0, and the 

expression for K22 given in Table 1 we have from (36) 

K„ = e L V L 
(37) 

As T — oo, which is the case for examining asymptotic 
stability, the integral in (33) becomes a Laplace transform. 
Defining 

\j/ = (XT 

and 

via 

Hence, for a given design point (Wcq, t, Xcpeq) the spring 
constant K22, and by it all the other constants K^ are deter­
mined by the selection of L and D for the supporting beam. 

From equation (37) and the definition of K22 in Table 1 it is 
clear that the beam cross section moment of inertia I is not an 
independent variable. Once L and D are selected / is deter­
mined by these two parameters, by the design point conditions 
(Weq, e, Xcpeq), and by the modulus of elasticity, E, of the 
beam material. 
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