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Fluid Film Dynamic Coefficients in 
Mechanical Face Seals 
The stiffness and damping coefficients of the fluid film in mechanical face seals are 
calculated for the three major degrees of freedom of the primary seal ring. The 
calculation is based on small perturbation of the ring from its equilibrium position. 
Analytical expressions are presented for the various coefficients and a comparison 
is made with results of accurate but more complex analyses to establish the range of 
applicability. 

Introduction 
A mechanical face seal, Fig. 1, is basically a dynamic 

system in which a flexibly mounted primary seal ring is 
separated by a thin fluid film from a rotating seat. The ability 
of the flexibly mounted ring to track the rotating seat in a 
controlled manner is of great importance for safe operation of 
the seal. The subject of mechanical face seal dynamics is 
attracting a growing amount of interest recently, [1] to [9], 
and as the demand for higher operating speeds in rotating 
machines increases the importance of seal dynamics becomes 
more and more evident. 

Problems related to vibrations in mechanical face seals have 
been documented in the literature since the early 60's [10] to 
[12]. However, due to its complexity, theoretical treatment of 
the problem has been very limited in scope. Examples can be 
found in references [13] to [16] from the mid 70's. A common 
drawback in all of these works is the lack of accurate in­
formation on the dynamic properties of the thin fluid film, 
which consequently leads to crude approximations. Even in 
more recent works e.g. [2] and [6] the stiffness and damping 
coefficients of the fluid film are only estimated or generally 
postulated. Since the fluid film is a major component of the 
seal system, its dynamic properties must be known if a 
comprehensive dynamic analysis is to be performed. It is the 
aim of this work, therefore, to calculate the dynamic coef­
ficients of the fluid film in a mechanical face seal and to 
present them in an orderly fashion. This, it is hoped, will be 
helpful to seal investigators and result in better seal designs. 

Generally, the fluid film dynamic coefficients are non­
linear, however, a good insight into the dynamic behavior of a 
seal system can be obtained from a linearized solution based 
on small perturbation. Hence, only the coefficients that are 
relevant to small perturbation analysis will be considered in 
this paper. 

Theoretical Background 
A theoretical model of the mechanical face seal is shown in 

Fig. 2. The seat rotates at a constant angular velocity, w, 

Contributed by the Lubrication Division of THE AMERICAN SOCIETY OF 
MECHANICAL ENGINEERS and presented at the ASME/ASLE Joint Lubrication 
Conference, Washington, D.C., October 5-7, 1982. Manuscript received by the 
Lubrication Division, February 1, 1982. Paper No. 82-Lub-34. 

about the axis z of an inertial reference xyz. The primary seal 
ring can move axially along axis z and can tilt simultaneously 
about the x and y axes. It is easier to analyze the dynamic 
coefficients by introducing a rotating coordinate system 123 
which coincides with the principal axes of the ring. The system 
123 precesses in the inertial reference xyz so that axis 1 always 
remains in the plane xy and axis 2 is directed to the in­
stantaneous point of maximum film thickness. Thus, the 
orientation of the coordinate system 123, and the ring, in the 
inertial reference xyz can be defined by the nutation angle 7* 
measured from axis z to axis 3, and by the precession angle 4** 
measured from axis x to axis 1. 

The dynamic behavior of the seal ring can be analyzed by 
solving its equations of motion which have the general form 

mJXj=LF? (1) 

In equation (1) mf, xj, and F* represent generalized mass, 
acceleration, and force, respectively, in degree of freedom j . 
The sum of generalized forces, LFj, in (1) is combined of both 
the fluid film and the flexible support contributions. In the 
following only the fluid film contribution will be considered. 

Introducing dynamic coefficients, the sum of generalized 
forces can be expressed in the form 

E/^=-E*S-*7-I>8*? (2) 

SPRING PRIMARY SEAL RING 

Fig. 1 Schematic of a radial face seal 
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SEAL RING 

Fig. 2 
SECTION: A-A 

Seal model and coordinates systems 

In (2) K*j, and Dfj are fluid film stiffness and damping 
coefficients, respectively, generating a response in degree o f 
freedom j to a disturbance in degree of freedom /. These 
coefficients are of the general form 

and 

IS* 

D* = -

dFJ 

dXf 

dFJ 

(3) 

(4) 

For small perturbation the dynamic coefficients are obtained 
by perturbing only one degree of freedom at a time while 
holding all others fixed at their equilibrium positions. 

In order to evaluate the stiffness and damping coefficients 
the system of fluid film forces and moments acting on the seal 
ring has to be known. This system is the result of the fluid film 
pressure generated in the sealing gap by hydrostatic, 
hydrodynamic, and squeeze film effects. Hydrostatic and 
hydrodynamic effects were analyzed in [17] and [18], 
respectively. In both cases a general model of coned face seal 
having a coning B* (see Fig. 2) was considered and the 

complete range of tilt parameter, e, was covered. In [19] 
squeeze effect was analyzed for /3* = 0. From these works it is 
more convenient to obtain the fluid film moments about axes 
1 and 2 of the rotating coordinate system 123. Hence, the 
angular stiffness and damping coefficients in this report will 
also be calculated with respect to the 123 system. The results 
can then be transformed to any other preferred system of 
coordinates. 

Assuming that the fluid film in the sealing gap is complete 
namely, cavitation does not occur, it can be easily shown that 
the hydrodynamic pressure component is antisymmetric with 
respect to axis 2. Hence, the hydrodynamic effect contributes 
only a transverse moment MJ about axis 2. The hydrostatic 
and the squeeze film effects on the other hand generate, for 
the case of full fluid film, pressure components that are 
symmetric with respect to axis 2. Hence, these effects con­
tribute only moments M\ about axis 1 and forces F* along 
axis z. Using axis 3 instead of z to describe the axial degree of 
freedom (which is justified since 7* is extremely small in any 
practical seal), we can conclude that in the rotating reference 
system 123 K*{, K*3 and their cross coupled coefficients have 
only hydrostatic components, while K*2, K*32 have only 
hydrodynamic components, also, all the damping coefficients 
Dfj where j = 2 vanish. Since no tilt is taking place about axis 
2 all the coefficients Kfj and Dfj where ; = 2 are identically 
zero. 

Stiffness and Damping Coefficients 

The expressions for axial forces and tilting moments 
generated by the hydrodynamic, hydrostatic, and squeeze 
effects are quite complex and cumbersome when the full range 
of the tilt parameter, e, is considered. For small perturbation, 
however, when it can be assumed that e2 < < 1 these ex­
pressions can be much simplified. The simplified expressions 
for the forces and moments are presented in the following. 

The hydrostatic components of the axial force and the 
tilting moment about axis 1 were found in [17]. Using the 
normalized expressions for all the relevant parameters the 
hydrostatic force has the form 

(F,)s= — (l-R}XPi+P0) + *(Po-Pi)W-Ri)E 

where 

E= (l-Rt)Rn 
2 + 6(1 -i?,) 

The normalized hydrostatic moment is 

(5) 

(6) 

c = 
Co = 

Dfj = 
Dij = 

E = 

FJ = 
F* = 
F = 
G = 

H = 

h = 

Kl = 
Kij = 

seal center-line clearance 
equilibrium center-line 
clearance 
damping coefficient 
normal ized damping , 
equations (22), (23) 
s t i f f n e s s p a r a m e t e r , 
equation (6) 
generalized force 
force 
normalized force, F*/Srl 
d a m p i n g p a r a m e t e r , 
equation (9) 
normalized film thickness, 
h/C 
film thickess 
stiffness coefficient 
normal ized s t i f fness , 
equations (20), (21) 

M* 
M 

m* 
P 
P 
R 
r 
S 

t* 
t 

Z* 

z 
8* 
B 

7* 

= 
= 

= 
= 
== 
= 
= 
= 

= 
= 
= 
= 

= 
= 
= 

moment 
n o r m a l i z e d m o m e n t , 
M*/Srl 
generalized mass 
normalized pressure, p/S 
pressure 
normalized radius, r/r0 

radius 
seal parameter, 
6 |uo(r 0 /Co) 2 ( l -R, ) 2 

time 
normalized time, wt* 
axial displacement 
normalized displacement, 

z*/c0 coning angle 
normalized coning, B*r0/C0 

nutation 

7 = 

5 = 
e = 

e = 
M = 

V = 
i> = 
CO = 

Subscripts 

1,2,3 = 
/ = 

m = 
0 = 
Q = 
s = 
z = 

n o r m a l i z e d n u t a t i o n , 
7 % / C 0 

coning parameter, B*r0/C 
tilt parameter, y*r0/C 
angular coordinate 
viscosity 
precession angle 
normalized precession, 
f / u 
shaft angular velocity 

axes 1, 2, or 3, respectively 
inner radius 
mid radius 
outer radius, or Z = 0 
squeeze effect 
hydrostatic effect 
axisz 
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Table 1 Stiffness and damping coefficients, Ky and Dy 

i=\ 

i = 2 

( = 3 

K 

D 

K 
and 
D 

K 

D 

*(P0 

y=i 

-p^ (mi 

2irRmG0 

0 

0 

~\)El 

7 = 2 

2irRl,G0(j,-

0 

0 

0 

• i ) 

7 = 3 

0 

0 

2/3 , 

4x/?,„G0 

En = 
V-Ri)Rm 

i+m-Ri) 

ln[l +0(1-/?,)]-2 
|3(1-/?,-) 

2 + 0(1-/?,) 
3 ( 1 - * , ) 2 

Go 0 = 0 
1 - * / 

12 

(Af,), = i r (Po- .P/)£ 2 ( l - f iK/)e (7) 
The hydrodynamic moment about axis 2 was found in [18] by 
tedious integration. It is rederived in the Appendix for the 
case of e2 < < 1 and has the form 

M2 = irRl(l-2i)Gy 

where 

ln[l +5(1 -R,)] - 2 

G = 
2 + 8(1-/?,) 

6(1+Z)3[S(1-/?,)]2 

(8) 

(9) 

The squeeze film components of the axial force and the tilting 
moment about axis 1 are also derived in the Appendix for e2 

< < 1. The normalized axial force has the form 

(Fz)g=-4vRmGZ (10) 

and the normalized moment is 

(Mi)q=-2rR3
mGy (11) 

In equations (5) through (11) 8 is the coning parameter given 
by 5 = /?V0/C where 

C=C 0 (1+Z) (12) 

Hence 

P 
5 = 

1 + Z 
(13) 

where 0 is the normalized coning defined as 0 = P*r0/C0. 
Recalling that for small perturbation the dynamic coef­

ficients are obtained by perturbing only one degree of 
freedom at a time while holding all others fixed at their 
equilibrium positions, we can proceed and calculate the 
dynamic coefficients from the relevant forces and moments. 

From equations (5) and (6) it is clear that K,3 = 0. The 
axial stiffness A^ is obtained from 

HFt), * « = 
dz 

Hence, using equation (13) 

K13 = r(P0-P,) 
R, 

•20 (14) 

4 6 8 10 12 14 16 

Modified Coning Parameter, /S(l-Ri) 

Fig. 3 Modified damping parameter as function of modified coning 
parameter 

where E0 is the corresponding value of E (see equation (6)) at 
equilibrium (Z = 0). 

The tilt parameter e is given by e = y*r0/C hence, 

(15) 
1+Z 

Substituting equation (15) in (7) it is clear that K3i = 0. The 
angular stiffness Kn is obtained from 

3(Af,), 
AT,, = -

dy 
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Fig. 4 Percentage error in the normalized hydrostatic moment, (/W1 ) s , 
versus the normalized coning, /3, for various radius ratios, R,, at t = 0.3 

Hence, by (15) 
K.^iriP-Pd^Ri-DEl (16) 

From equation (8) the normalized transverse stiffness 
coefficient A-! 2 is 

Ki2=2irRl,G0(i,-^) (17) 

where G0 is the corresponding value of G (see equation (9)) at 
equilibrium (Z = 0). 

As can be seen from (17) the cross coupled stiffness Kl2 
depends on the precession \[/ and hence, is nonlinear. In many 
practical cases, when the seal ring tracks synchronously the 
motion of the rotating seat, the precession \p* is equal to the 
shaft speed o>. In these cases we have \i< = 1 and Kn becomes 
linear. For a general nonsynchronous solution, however, the 
nonlinear expression for Kn as given in (17) has to be used. 

From equations (10) and (11) the normalized damping 
coefficients are 

D33=4TCR,„G0 (18) 

and 
Dn=2*RiG0 (19) 

It is also clear that Dn = £>31 =0 . 
The normalized dynamic coefficients are related to the 

corresponding actual ones by the following normalization 
factors. 

Axial stiffness by 

Angular stiffness by 

J'O '0 

Axial damping and angular damping by 
D%3 C0 

Sr0 r0 

and 

' Sri r0 ' 

(21) 

(22) 

(23) 

e=o-3 

I 10 100 

Normalized Coning, ft* r0 /C0 

Fig. 5 Percentage error in the normalized hydrodynamic transverse 
moment, M 2 , versus the normalized coning, ft tor various radius ratios, 
A/,ate = 0.3 
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Fig. 6 Percentage error in the normalized squeeze moment, (M-|)„, 
versus the normalized coning, /3, for various radius ratios, R,, at < = 0.3 

By expanding G0 as a series of /3 (1 -R,) it can be shown 
that in the limiting case /3 = 0, which corresponds to flat face 
seals, the function G0 is 

U 0 = O 12 
(24) 

Hence, all the dynamic coefficients presented here are also 
applicable for flat face seals where 0 = 0. The results for Ktj 
and Djj are summarized in Table 1. 

Discussion of the Results 

The information provided in Table 1 can be used to 
calculate the various components of forces and moments 
according to equation (2) which can then be used in the 
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equations of motion (1). The substitution is straightforward 
and the system of fluid film forces and moments for small 
perturbation thus become 

Fz=-Ki3Z-D3iZ (25) 

Mi = -Kuy-Duy (26a) 

M2 = -Kny (26b) 
As can be seen from Table 1 the various dynamic coef­

ficients depend on the coning /3 via the parameters E0 and G0. 
Figure 3 presents the variation of G0 versus /3(1 -/?,•). From 
the figure it is clear that the coning reduces G0 and thus, 
reduces the axial and angular damping of the fluid film. 
Hence, from the point of view of damping, flat faces are 
preferable to coned faces. 

Increasing the coning (3 reduces the effect of the cross 
coupled stiffness coefficient Kn and therefore reduces the 
transverse hydrodynamic moment M2 of equation (26b). The 
moment M2 is affected also by the precession \j/ and, as can be 
seen from Table 1, at \f> = 0.5 the transverse moment vanishes 
completely. From equation (29) of the Appendix the same 
effect can be seen on the hydrodynamic component of the 
pressure P. From equation (29) it is clear that the range of 0 < 
i// < 1 corresponds to reduced hydrodynamic effect. Because 
of the flexible support of the ring ip is normally in that range 
and hence, in practical seals the hydrodynamic effect may be 
less significant than the other effects. A small hydrodynamic 
effect makes the assumption of a complete fluid film without 
cavitation more valid. This is because cavitation is the result 
of hydrodynamic effect in diverging gaps. 

The effect of coning on the axial and angular stiffness 
coefficients is very interesting. At /3 = 0 A"33 vanishes and 
therefore flat face seals do not have any axial stiffness. In­
creasing the coning will increase both Ku and A"33 up to a 
maximum after which a further increase in p will cause a drop 
in stiffness. Hence, there is an optimum coning for 
maximizing the stiffness of fluid film in face seals. By dif­
ferentiating Kn and A"33 of Table 1 with respect to /3 it can be 
easily shown that the optimum coning for Ku is 

*» = ̂ rW (27a) 

while the optimum coning for A"33 is 

It is interesting to note that the optimum coning for angular 
stiffness is identical to the optimum coning that was found 
empirically in [7] for maximum dynamic stability. Since in 
practical seals R, is close to unity there is not much difference 
between the optimum conings of equations (27a) and (276) 
and either one can be used as a guide for maximum stiffness 
design. 

Since the dynamic coefficients in Table 1 are based on small 
tilt namely, e2 < < 1, it may be of interest to know the range of 
tilt parameter values, e, for which Table 1 is still applicable. 
For this purpose the various components of the axial force Fz 
and the moments Mi and M2 of equations (25) to (27) were 
compared with the corresponding values derived from more 
rigorous analyses, e.g. references [17], [18] and a numerical 
integration of equation (29) of the Appendix where the 
complete range of e is covered. The results in terms of the 
percentage error are presented in Figs. 4 to 6. All the results 
are for the case e = 0.3 and show the percentage error versus 
coning parameter /3 at various values of the radius ratio /?,-. 
The locus of the optimum coning for maximizing angular 
stiffness 2 

is shown too. Figure 4 presents the results for the hydrostatic 

moment (M,)s, and Figs. 5 and 6 present the results for the 
hydrodynamic transverse moment M2 and squeeze film 
moment (M\)q, respectively. In all three cases the percentage 
error decreases with increasing coning. The worst case is that 
of the squeeze film effect shown in Fig. 6 where the error can 
reach values as high as 32 percent at R, = 0.98 and /3 = 1. For 
/3 > |8opl and 7?, < 0.9 the error at e = 0.3 is always less than 
10 percent. The accuracy is much better when the hydrostatic 
component of M, is considered (see Fig. 4). Here the error is 
less than 7 percent for the complete range covered in the 
figure. The hydrodynamic transverse moment, M2, can be 
calculated by using Table 1 within an accuracy of 10 percent 
or better for R, < 0.9 up to e = 0.3. The percentage error in 
the axial force was found to be always smaller than that of the 
corresponding component of the moment and hence is not 
presented. 

From the comparison discussed above it can be concluded 
that the results of Table 1 can be used safely up to e = 0.3 
provided that /3 > /3opt and that no cavitation occurs. For flat 
face seals where /3 = 0 the range of e permitting the use of 
Table 1 for calculating forces and moments will be less than 
0.3 mainly because of the error involved in the squeeze film 
effect. 

Concluding Remarks 

The dynamic coefficients of the fluid film in a mechanical 
face seal are calculated based on small perturbation of the seal 
ring. The seal model used is that of the coned face type, 
however, the results are applicable for flat face seals as well. 

The effect of coning on the various dynamic coefficients is 
discussed, and optimization with respect to the axial and 
angular stiffness of the fluid film is pointed out. 

The tabulated results of the dynamic coefficients can be 
used for small perturbation dynamic analyses of mechanical 
face seals. These results can also be used within an accuracy of 
10 percent to calculate various fluid film forces and moments 
acting on the seal ring up to significant values of tilt of the 
ring with respect to its center line. 
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A P P E N D I X 

Hydrodynamic and Squeeze Film Effects 

The pressure distribution, p, in the sealing gap of a 
mechanical face seal can be found from a solution of the 
Reynolds equation which for practical narrow seals reduces to 

dr 

Due to its linear nature equation (28) can be solved separately 
for the hydrostatic, hydrodynamic, and squeeze components 
of the pressure [17-19]. The hydrodynamic and squeeze 
components can be combined yielding 

[h3 — 1 = 6 / t ( o j — + 2 — ) 
A dr) \ dd dt*/ 

(28) 

, / dh M \ 
>= -3IJ.(W-—- + 2 ^ — 1 

\ dd dt*/ 
dh\ (rQ-r)(r-ri 

' dt* / hmh2 

or in a normalized form (see reference [7]) 

1 \ _ . • „.1 A 
P 

where 

and 

[(5-*)TR. ,s in0-(Z+7/?mcos0) 
R-Ri 

(1+Z)3 l-Ri 
1-^ 
J(l + 

(29) 

A = 
l-R 

HmH\\-R,) 

H=l + eRcos6 + 8(R-Ri) (31) 

The system of forces and moments acting on the seal ring of 
Fig. 2 in the case of full fluid film (no cavitation) is 

F7=2R} 

M, =2/J; 

(T 
'JO JRJ 

n1 
'Jo J «,-

PdRdd 

PcosddRdd 

and 

'JO Jfl; 
PsinddRdd 

(32) 

(33) 

(34) 

From equations (29) through (34) it can be seen that a com­
mon integral T(8) is required for evaluating the force and 
moments, where 

dR TW~U HmH2 

Evaluating T(6) yields 

r ln/y 0 - lni / , - \-R; "I 

L (5-f-ecos0)3 ~ Hm(8 + eco$d)2l ( 3 5 ) 

Rearranging equation (31) in the form 

H=[l+8{R-R,)][l+a{R)cos6] (36) 

where 

«(*) = 
eR 

(37) 

(38) 

1 + 8(R-Rj) 

we have for t2 << 1, and hence a2 < < 1, 

liLf7=a'(/?)-l-a!(.f?)cos0 

where 

a'(R)=ln[l+8(R-Ri)] 

Substituting (38) into (35) and using the expansion 

(l + ecos0)~" = l -«ecos0 

where e = e/8 and e2 < < 1, we finally have 

2a'(1) 2cos0 

2 ( 1 ~Rl) i?(1 R^C0$6 a ^ " ) + 2 e " nn 
82[\ + 8{Rm - / ? , ) ] U ' S2 1+ « ( * „ - * , ) ( ' 

Using equation (39) in the evaluation of the hydrodynamic 
and squeeze components of equations (32) to (34) we have 

( * " « ) , = • 

(1 

2Rm r 
+ Z)i(i-Ri)

2 Jc 
(Z+yRmcosd)T(d)dd (40) 

(30) (M,) , = -
2Rl S ir (Z q ( 1 + Z ) 3 ( 1 - * , ) 2 

+ yRmcos6)cosdT(6)d6 

M , = 
( l - 2 * ) 7 * 

( l + Z ) 3 ( l - t f , ) R:)2 JO 
sin2 9T (6) dd 

(41) 

(42) 

Neglecting second order terms such as Ze, ya(R) etc. since we 
are interested in small perturbation only, the integrations of 
equations (40) to (42) result in 

(Fz)q = -4irRmGZ (43) 

(Ml)q=-27rR3
mGy (44) 

and 

M2 = irRl(\-24,)Gy (45) 

where 

ln [ l+5( l - , f? , ) ] -2 
8(1-*/) 

2 + 5 ( 1 - * , ) 

5(1+Z)3[8(1-*,)]2 
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